organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2,6-di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 June 2008; accepted 24 June 2008; online 28 June 2008)

The conformations of the N—H and C=O bonds in the structure of the title compound (N26DMP4CBA), C15H14ClNO, are anti to each other, similar to that observed in N-phenyl­benzamide, N-(3,4-dimethyl­phen­yl)benzamide, N-(2,6-dichloro­phen­yl)benzamide and other benzanilides. There are three mol­ecules in the asymmetric unit of N26DMP4CBA. The central amide group is tilted with respect to the benzoyl ring by 45.2 (1)° in mol­ecule 1, 21.2 (2)° in mol­ecule 2 and 14.9 (2)° in mol­ecule 3. The dihedral angles between the benzoyl and aniline rings are 39.9 (1), 51.0 (1) and 86.3 (3)° in mol­ecules 1, 2 and 3, respectively. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the [101] direction. One xylyl group is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2008a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO

  • Mr = 259.72

  • Triclinic, [P \overline 1]

  • a = 12.2696 (3) Å

  • b = 13.6249 (4) Å

  • c = 13.7981 (4) Å

  • α = 91.880 (2)°

  • β = 113.623 (2)°

  • γ = 90.3676 (18)°

  • V = 2111.74 (10) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 (2) K

  • 0.49 × 0.22 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction (2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.896, Tmax = 0.973

  • 63529 measured reflections

  • 8072 independent reflections

  • 3945 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 0.89

  • 8072 reflections

  • 543 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.02 2.8585 (19) 165
N2—H2⋯O3 0.86 1.96 2.778 (2) 158
N3—H3A⋯O1i 0.86 1.99 2.814 (2) 161
Symmetry code: (i) x-1, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of N-(2,6-dimethylphenyl)- 4-chlorobenzamide (N26DMP4CBA) has been determined to study the effect of substituents on the solid state geometries of benzanilides (Gowda et al., 2003, 2008a,b).

The conformations of the N—H and C=O bonds in N26DMP4CBA (Fig.1) are anti to each other, similar to that observed in N-(phenyl)-benzamide(NPBA)(Gowda et al., 2003), N-(3,4-dimethylphenyl)-benzamide (Gowda et al., 2008a), N-(2,6-dichlorophenyl)-benzamide and other benzanilides (Gowda et al., 2008b), with similar bond parameters. The amide group –NHCO– forms the dihedral angle of 45.2 (1)° in molecule 1, 21.2 (1)° in molecule 2, and 14.9 (2)° in molecule 3, with the benzoyl benzene ring. The dihedral angles between the benzoyl and aniline benzene rings are 39.9 (1)°, 51.0 (1)° and 86.3 (3)° in the molecule 1, 2 and 3, respectively.

The intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the [101] direction (Table 1).

Related literature top

For related literature, see: Gowda et al. (2003, 2008a,b).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(Caromatic or N) and with Uiso(H) = 1.5Ueq(Cmethyl).

The xylyl ring of the molecule 3 revealed excessively elongated displacement ellipsoids and therefore this ring (C48 to C55) as well as the C atoms attached to it were treated as disordered with two components marked A and B. The constraint of regular hexagon was applied and the two components A and B were treated using the tools (SAME and PART) available in SHELXL97 (Sheldrick, 2008). In the first stage of refinement, the site-occupation factors were refined to be 0.561 (4) for component A (atoms C48A to C55A) and 0.439 (4) for component B (atoms C48B to C55B) then they were fixed.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. In molecule 3 only the A-component of the disordered xylyl ring is shown (atoms C48A to C55A). Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
4-Chloro-N-(2,6-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOZ = 6
Mr = 259.72F(000) = 816
Triclinic, P1Dx = 1.225 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.2696 (3) ÅCell parameters from 16102 reflections
b = 13.6249 (4) Åθ = 3.2–29.3°
c = 13.7981 (4) ŵ = 0.26 mm1
α = 91.880 (2)°T = 295 K
β = 113.623 (2)°Block, colourless
γ = 90.3676 (18)°0.49 × 0.22 × 0.13 mm
V = 2111.74 (10) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
Rint = 0.042
Graphite monochromatorθmax = 25.9°, θmin = 5.6°
ω scans with κ offsetsh = 1515
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction (2007); based on Clark & Reid (1995)]
k = 1616
Tmin = 0.896, Tmax = 0.973l = 1616
63529 measured reflections3 standard reflections every 120 min
8072 independent reflections intensity decay: none
3945 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0808P)2]
where P = (Fo2 + 2Fc2)/3
8072 reflections(Δ/σ)max = 0.027
543 parametersΔρmax = 0.21 e Å3
21 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H14ClNOγ = 90.3676 (18)°
Mr = 259.72V = 2111.74 (10) Å3
Triclinic, P1Z = 6
a = 12.2696 (3) ÅMo Kα radiation
b = 13.6249 (4) ŵ = 0.26 mm1
c = 13.7981 (4) ÅT = 295 K
α = 91.880 (2)°0.49 × 0.22 × 0.13 mm
β = 113.623 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3945 reflections with I > 2σ(I)
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction (2007); based on Clark & Reid (1995)]
Rint = 0.042
Tmin = 0.896, Tmax = 0.9733 standard reflections every 120 min
63529 measured reflections intensity decay: none
8072 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04621 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.89Δρmax = 0.21 e Å3
8072 reflectionsΔρmin = 0.20 e Å3
543 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.09618 (16)0.27402 (14)0.88857 (16)0.0737 (5)
C21.11617 (15)0.37750 (13)0.86787 (15)0.0690 (5)
C31.11340 (19)0.45167 (17)0.93676 (18)0.0923 (6)
H31.09760.43660.99520.111*
C41.1337 (2)0.54812 (18)0.9205 (2)0.1047 (7)
H41.13010.59800.96670.126*
C51.15906 (19)0.56963 (16)0.8358 (2)0.0945 (7)
C61.16544 (19)0.49792 (17)0.7682 (2)0.0946 (6)
H61.18490.51320.71180.114*
C71.14264 (17)0.40178 (15)0.78394 (18)0.0824 (6)
H71.14530.35250.73670.099*
Cl11.18407 (8)0.69118 (5)0.81480 (8)0.1603 (4)
O11.14255 (14)0.24299 (11)0.97876 (11)0.1085 (5)
N11.02664 (13)0.21731 (10)0.80724 (12)0.0711 (4)
H10.99230.24230.74620.085*
C81.00731 (18)0.11569 (14)0.81848 (14)0.0736 (5)
C90.9194 (2)0.08774 (18)0.8511 (2)0.0993 (7)
C100.9064 (3)0.0110 (3)0.8638 (3)0.1357 (10)
H100.84750.03200.88520.163*
C110.9784 (4)0.0784 (2)0.8456 (3)0.1356 (11)
H110.96940.14450.85620.163*
C121.0624 (3)0.04965 (18)0.8124 (2)0.1176 (8)
H121.10980.09660.79900.141*
C131.0797 (2)0.04760 (16)0.79793 (17)0.0884 (6)
C141.1743 (3)0.0792 (2)0.7626 (3)0.1316 (9)
H14A1.22010.02350.75890.197*
H14B1.22540.12780.81220.197*
H14C1.13800.10660.69400.197*
C150.8417 (3)0.1628 (2)0.8728 (3)0.1510 (12)
H15A0.79990.19820.80990.227*
H15B0.89020.20790.92860.227*
H15C0.78530.13020.89370.227*
C210.80003 (17)0.33775 (13)0.54313 (15)0.0699 (5)
C220.77906 (16)0.43964 (13)0.50443 (14)0.0673 (5)
C230.87450 (18)0.50444 (15)0.53812 (17)0.0838 (6)
H230.94900.48270.58240.101*
C240.8632 (2)0.59984 (15)0.50858 (19)0.0894 (6)
H240.92930.64210.53150.107*
C250.7536 (2)0.63199 (14)0.44497 (18)0.0838 (6)
C260.6571 (2)0.57051 (16)0.41144 (19)0.0985 (7)
H260.58240.59360.36930.118*
C270.66980 (18)0.47394 (14)0.43985 (17)0.0870 (6)
H270.60380.43160.41510.104*
Cl20.73859 (7)0.75296 (4)0.40748 (7)0.1292 (3)
O20.88901 (13)0.32078 (10)0.62217 (11)0.1040 (5)
N20.72097 (12)0.26782 (10)0.48919 (12)0.0700 (4)
H20.66190.28340.43260.084*
C280.72888 (16)0.16867 (13)0.52006 (14)0.0687 (5)
C290.81179 (19)0.10850 (16)0.50619 (17)0.0857 (6)
C300.8150 (2)0.01226 (19)0.5342 (2)0.1094 (8)
H300.87030.02930.52510.131*
C310.7402 (3)0.0228 (2)0.5742 (2)0.1215 (9)
H310.74450.08790.59330.146*
C320.6578 (3)0.0365 (2)0.5871 (2)0.1237 (9)
H320.60580.01130.61450.148*
C330.6504 (2)0.13410 (16)0.56004 (18)0.0921 (6)
C340.5566 (3)0.2008 (2)0.5709 (3)0.1433 (11)
H34A0.59410.26010.60970.215*
H34B0.51640.16780.60790.215*
H34C0.50000.21660.50180.215*
C350.8955 (2)0.1461 (2)0.4599 (3)0.1335 (10)
H35A0.94900.19450.50790.200*
H35B0.85060.17530.39350.200*
H35C0.94020.09260.44870.200*
C410.44189 (18)0.23143 (15)0.21886 (17)0.0803 (6)
C420.44517 (16)0.12663 (14)0.18302 (16)0.0729 (5)
C430.52129 (19)0.06379 (18)0.25365 (19)0.0930 (6)
H430.56890.08760.32170.112*
C440.5291 (2)0.03250 (19)0.2268 (2)0.0990 (7)
H440.58010.07390.27640.119*
C450.4612 (2)0.06729 (16)0.1265 (2)0.0927 (7)
C460.3847 (2)0.00681 (19)0.0540 (2)0.1044 (7)
H460.33860.03080.01430.125*
C470.37655 (19)0.08965 (16)0.08270 (18)0.0908 (6)
H470.32380.13050.03360.109*
Cl30.47088 (8)0.18837 (5)0.09012 (8)0.1440 (3)
O30.51840 (14)0.26464 (11)0.30151 (14)0.1222 (6)
N30.35416 (14)0.28586 (12)0.15755 (12)0.0789 (5)
H3A0.29540.25890.10500.095*
C48A0.3568 (7)0.3855 (3)0.1777 (7)0.080 (2)0.56
C49A0.4260 (6)0.4483 (3)0.1473 (6)0.098 (3)0.56
C50A0.4161 (5)0.5494 (3)0.1565 (5)0.115 (2)0.56
H50A0.46240.59140.13610.138*0.56
C51A0.3369 (6)0.5877 (3)0.1962 (5)0.124 (3)0.56
H51A0.33030.65540.20240.149*0.56
C52A0.2676 (7)0.5249 (5)0.2267 (7)0.139 (3)0.56
H52A0.21460.55060.25330.167*0.56
C53A0.2776 (8)0.4238 (4)0.2175 (8)0.106 (3)0.56
C54A0.1967 (18)0.3545 (10)0.2438 (17)0.162 (7)0.56
H54A0.14440.39200.26630.243*0.56
H54B0.24410.31320.29970.243*0.56
H54C0.15050.31440.18220.243*0.56
C55A0.5035 (12)0.4070 (8)0.0937 (10)0.142 (4)0.56
H55A0.54950.35430.13390.213*0.56
H55B0.55610.45780.08990.213*0.56
H55C0.45400.38270.02350.213*0.56
C48B0.3277 (9)0.3861 (3)0.1819 (9)0.077 (3)0.44
C49B0.3888 (8)0.4653 (5)0.1647 (8)0.105 (4)0.44
C50B0.3633 (7)0.5605 (4)0.1870 (7)0.104 (3)0.44
H50B0.40420.61350.17550.125*0.44
C51B0.2768 (7)0.5765 (3)0.2265 (6)0.113 (3)0.44
H51B0.25970.64020.24150.135*0.44
C52B0.2157 (7)0.4973 (5)0.2438 (6)0.113 (3)0.44
H52B0.15780.50800.27020.136*0.44
C53B0.2412 (8)0.4021 (4)0.2215 (8)0.088 (3)0.44
C54B0.181 (2)0.3162 (13)0.244 (2)0.134 (6)0.44
H54D0.23900.27530.29280.202*0.44
H54E0.13690.27920.17930.202*0.44
H54F0.12690.33890.27440.202*0.44
C55B0.4917 (12)0.4440 (12)0.1357 (13)0.150 (8)0.44
H55D0.51920.50370.11720.226*0.44
H55E0.46690.39780.07650.226*0.44
H55F0.55490.41680.19490.226*0.44
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0661 (11)0.0725 (12)0.0614 (13)0.0051 (9)0.0032 (10)0.0065 (11)
C20.0613 (11)0.0665 (12)0.0607 (12)0.0026 (8)0.0054 (9)0.0017 (10)
C30.1087 (16)0.0799 (15)0.0766 (14)0.0160 (12)0.0249 (12)0.0004 (12)
C40.1182 (18)0.0728 (16)0.0999 (19)0.0190 (12)0.0204 (15)0.0134 (13)
C50.0885 (15)0.0657 (14)0.1108 (19)0.0000 (11)0.0209 (14)0.0015 (14)
C60.0960 (15)0.0827 (16)0.1026 (17)0.0163 (12)0.0379 (13)0.0019 (14)
C70.0845 (13)0.0668 (13)0.0896 (16)0.0110 (10)0.0296 (12)0.0121 (11)
Cl10.1757 (7)0.0677 (4)0.2189 (10)0.0112 (4)0.0594 (7)0.0131 (5)
O10.1175 (11)0.0922 (10)0.0698 (10)0.0058 (8)0.0114 (8)0.0156 (8)
N10.0747 (9)0.0635 (9)0.0554 (9)0.0018 (7)0.0051 (8)0.0093 (7)
C80.0768 (12)0.0604 (11)0.0647 (12)0.0016 (10)0.0080 (10)0.0106 (9)
C90.0876 (15)0.0877 (16)0.1184 (18)0.0027 (13)0.0357 (14)0.0213 (13)
C100.127 (2)0.107 (2)0.176 (3)0.0205 (19)0.061 (2)0.036 (2)
C110.153 (3)0.0748 (18)0.156 (3)0.0189 (19)0.037 (2)0.0289 (17)
C120.139 (2)0.0682 (16)0.125 (2)0.0077 (15)0.0314 (18)0.0068 (14)
C130.1003 (15)0.0694 (14)0.0826 (15)0.0039 (12)0.0230 (12)0.0039 (11)
C140.156 (2)0.110 (2)0.159 (3)0.0103 (17)0.096 (2)0.0014 (18)
C150.1123 (19)0.146 (3)0.221 (4)0.0118 (19)0.092 (2)0.027 (2)
C210.0672 (12)0.0682 (12)0.0614 (12)0.0022 (10)0.0120 (10)0.0061 (10)
C220.0677 (12)0.0642 (11)0.0611 (11)0.0021 (9)0.0163 (9)0.0060 (9)
C230.0709 (12)0.0728 (13)0.0940 (15)0.0012 (10)0.0177 (11)0.0168 (11)
C240.0868 (15)0.0723 (13)0.1117 (17)0.0049 (11)0.0422 (13)0.0101 (12)
C250.1046 (17)0.0592 (12)0.0925 (15)0.0109 (12)0.0442 (13)0.0084 (11)
C260.0864 (15)0.0766 (15)0.1070 (17)0.0188 (13)0.0113 (13)0.0088 (12)
C270.0745 (13)0.0665 (12)0.0950 (15)0.0021 (10)0.0078 (11)0.0054 (11)
Cl20.1546 (6)0.0690 (4)0.1770 (7)0.0267 (4)0.0777 (5)0.0318 (4)
O20.0955 (10)0.0762 (9)0.0863 (10)0.0137 (7)0.0213 (8)0.0215 (7)
N20.0625 (9)0.0626 (9)0.0647 (9)0.0004 (7)0.0044 (7)0.0025 (7)
C280.0645 (11)0.0619 (11)0.0645 (11)0.0025 (9)0.0106 (9)0.0037 (9)
C290.0812 (14)0.0708 (14)0.0922 (15)0.0046 (11)0.0215 (12)0.0002 (11)
C300.1033 (18)0.0782 (17)0.126 (2)0.0132 (13)0.0247 (16)0.0065 (15)
C310.158 (3)0.0688 (16)0.124 (2)0.0065 (18)0.041 (2)0.0091 (15)
C320.159 (3)0.093 (2)0.133 (2)0.0378 (19)0.075 (2)0.0056 (16)
C330.1031 (16)0.0748 (14)0.1024 (16)0.0176 (12)0.0466 (14)0.0097 (12)
C340.143 (2)0.123 (2)0.202 (3)0.0182 (19)0.112 (2)0.024 (2)
C350.1168 (19)0.121 (2)0.190 (3)0.0149 (16)0.090 (2)0.0027 (19)
C410.0716 (12)0.0766 (14)0.0727 (14)0.0032 (11)0.0077 (11)0.0093 (11)
C420.0620 (11)0.0763 (13)0.0718 (13)0.0028 (9)0.0174 (10)0.0110 (11)
C430.0879 (14)0.0899 (16)0.0858 (15)0.0074 (12)0.0180 (12)0.0131 (13)
C440.0985 (16)0.0877 (17)0.112 (2)0.0169 (13)0.0414 (16)0.0270 (15)
C450.0941 (16)0.0712 (14)0.127 (2)0.0044 (12)0.0588 (16)0.0123 (15)
C460.1089 (17)0.0920 (18)0.1009 (18)0.0004 (14)0.0314 (15)0.0131 (15)
C470.0871 (14)0.0817 (15)0.0867 (16)0.0080 (11)0.0168 (12)0.0060 (12)
Cl30.1719 (7)0.0809 (4)0.1979 (8)0.0112 (4)0.0942 (6)0.0001 (4)
O30.1012 (11)0.0939 (11)0.1011 (11)0.0008 (9)0.0326 (10)0.0029 (9)
N30.0770 (10)0.0681 (10)0.0653 (10)0.0031 (8)0.0010 (8)0.0020 (8)
C48A0.062 (4)0.095 (6)0.058 (4)0.001 (3)0.002 (3)0.008 (3)
C49A0.065 (5)0.064 (4)0.135 (7)0.003 (4)0.010 (4)0.004 (3)
C50A0.106 (5)0.088 (4)0.126 (5)0.012 (3)0.021 (4)0.011 (3)
C51A0.161 (7)0.081 (4)0.102 (5)0.030 (5)0.025 (5)0.021 (4)
C52A0.187 (9)0.097 (6)0.113 (5)0.023 (6)0.042 (5)0.031 (5)
C53A0.117 (7)0.087 (5)0.095 (5)0.007 (4)0.023 (5)0.006 (4)
C54A0.24 (2)0.134 (14)0.136 (8)0.050 (11)0.096 (12)0.001 (10)
C55A0.149 (7)0.124 (6)0.187 (11)0.013 (5)0.101 (8)0.036 (6)
C48B0.065 (5)0.051 (5)0.089 (6)0.008 (3)0.004 (4)0.006 (4)
C49B0.080 (6)0.114 (8)0.099 (5)0.001 (5)0.011 (4)0.045 (6)
C50B0.113 (6)0.047 (4)0.118 (7)0.011 (4)0.011 (5)0.013 (4)
C51B0.129 (7)0.080 (6)0.082 (5)0.005 (5)0.005 (4)0.007 (4)
C52B0.120 (6)0.096 (6)0.085 (5)0.003 (5)0.004 (4)0.017 (4)
C53B0.099 (7)0.063 (5)0.066 (5)0.005 (5)0.003 (4)0.015 (4)
C54B0.150 (9)0.121 (12)0.168 (10)0.033 (10)0.103 (8)0.025 (11)
C55B0.157 (15)0.160 (15)0.139 (10)0.072 (13)0.064 (10)0.012 (8)
Geometric parameters (Å, º) top
C1—O11.233 (2)C33—C341.522 (3)
C1—N11.323 (2)C34—H34A0.9600
C1—C21.486 (3)C34—H34B0.9600
C2—C71.372 (3)C34—H34C0.9600
C2—C31.374 (3)C35—H35A0.9600
C3—C41.378 (3)C35—H35B0.9600
C3—H30.9300C35—H35C0.9600
C4—C51.364 (3)C41—O31.220 (2)
C4—H40.9300C41—N31.321 (2)
C5—C61.353 (3)C41—C421.502 (3)
C5—Cl11.737 (2)C42—C431.375 (3)
C6—C71.380 (3)C42—C471.376 (3)
C6—H60.9300C43—C441.366 (3)
C7—H70.9300C43—H430.9300
N1—C81.427 (2)C44—C451.365 (3)
N1—H10.8600C44—H440.9300
C8—C91.380 (3)C45—C461.368 (3)
C8—C131.387 (3)C45—Cl31.727 (2)
C9—C101.379 (4)C46—C471.376 (3)
C9—C151.506 (4)C46—H460.9300
C10—C111.364 (4)C47—H470.9300
C10—H100.9300N3—C48A1.375 (4)
C11—C121.345 (4)N3—C48B1.465 (5)
C11—H110.9300N3—H3A0.8600
C12—C131.374 (3)C48A—C49A1.3900
C12—H120.9300C48A—C53A1.3900
C13—C141.493 (3)C49A—C50A1.3900
C14—H14A0.9600C49A—C55A1.520 (10)
C14—H14B0.9600C50A—C51A1.3900
C14—H14C0.9600C50A—H50A0.9300
C15—H15A0.9600C51A—C52A1.3900
C15—H15B0.9600C51A—H51A0.9300
C15—H15C0.9600C52A—C53A1.3900
C21—O21.225 (2)C52A—H52A0.9300
C21—N21.329 (2)C53A—C54A1.520 (10)
C21—C221.490 (2)C54A—H54A0.9600
C22—C271.374 (3)C54A—H54B0.9600
C22—C231.375 (3)C54A—H54C0.9600
C23—C241.366 (3)C55A—H55A0.9600
C23—H230.9300C55A—H55B0.9600
C24—C251.363 (3)C55A—H55C0.9600
C24—H240.9300C48B—C49B1.3900
C25—C261.357 (3)C48B—C53B1.3900
C25—Cl21.732 (2)C49B—C50B1.3900
C26—C271.377 (3)C49B—C55B1.497 (13)
C26—H260.9300C50B—C51B1.3900
C27—H270.9300C50B—H50B0.9300
N2—C281.422 (2)C51B—C52B1.3900
N2—H20.8600C51B—H51B0.9300
C28—C331.375 (3)C52B—C53B1.3900
C28—C291.378 (3)C52B—H52B0.9300
C29—C301.376 (3)C53B—C54B1.488 (13)
C29—C351.505 (3)C54B—H54D0.9600
C30—C311.340 (4)C54B—H54E0.9600
C30—H300.9300C54B—H54F0.9600
C31—C321.361 (4)C55B—H55D0.9600
C31—H310.9300C55B—H55E0.9600
C32—C331.386 (3)C55B—H55F0.9600
C32—H320.9300
O1—C1—N1121.69 (18)C33—C32—H32119.6
O1—C1—C2120.68 (17)C28—C33—C32117.9 (2)
N1—C1—C2117.63 (16)C28—C33—C34120.5 (2)
C7—C2—C3118.21 (19)C32—C33—C34121.6 (2)
C7—C2—C1122.03 (18)C33—C34—H34A109.5
C3—C2—C1119.7 (2)C33—C34—H34B109.5
C2—C3—C4120.9 (2)H34A—C34—H34B109.5
C2—C3—H3119.5C33—C34—H34C109.5
C4—C3—H3119.5H34A—C34—H34C109.5
C5—C4—C3119.3 (2)H34B—C34—H34C109.5
C5—C4—H4120.4C29—C35—H35A109.5
C3—C4—H4120.4C29—C35—H35B109.5
C6—C5—C4121.1 (2)H35A—C35—H35B109.5
C6—C5—Cl1119.5 (2)C29—C35—H35C109.5
C4—C5—Cl1119.3 (2)H35A—C35—H35C109.5
C5—C6—C7119.1 (2)H35B—C35—H35C109.5
C5—C6—H6120.4O3—C41—N3121.64 (19)
C7—C6—H6120.4O3—C41—C42120.69 (18)
C2—C7—C6121.3 (2)N3—C41—C42117.67 (18)
C2—C7—H7119.4C43—C42—C47117.8 (2)
C6—C7—H7119.4C43—C42—C41118.59 (19)
C1—N1—C8121.57 (15)C47—C42—C41123.64 (18)
C1—N1—H1119.2C44—C43—C42121.9 (2)
C8—N1—H1119.2C44—C43—H43119.0
C9—C8—C13121.77 (19)C42—C43—H43119.0
C9—C8—N1119.7 (2)C45—C44—C43119.3 (2)
C13—C8—N1118.55 (19)C45—C44—H44120.4
C10—C9—C8117.6 (3)C43—C44—H44120.4
C10—C9—C15121.4 (3)C44—C45—C46120.4 (2)
C8—C9—C15121.0 (2)C44—C45—Cl3120.2 (2)
C11—C10—C9121.1 (3)C46—C45—Cl3119.4 (2)
C11—C10—H10119.4C45—C46—C47119.6 (2)
C9—C10—H10119.4C45—C46—H46120.2
C12—C11—C10120.3 (3)C47—C46—H46120.2
C12—C11—H11119.8C46—C47—C42121.0 (2)
C10—C11—H11119.8C46—C47—H47119.5
C11—C12—C13121.4 (3)C42—C47—H47119.5
C11—C12—H12119.3C41—N3—C48A120.0 (4)
C13—C12—H12119.3C41—N3—C48B126.6 (5)
C12—C13—C8117.8 (2)C48A—N3—C48B15.1 (5)
C12—C13—C14121.2 (2)C41—N3—H3A120.0
C8—C13—C14121.0 (2)C48A—N3—H3A120.0
C13—C14—H14A109.5C48B—N3—H3A111.7
C13—C14—H14B109.5N3—C48A—C49A121.1 (4)
H14A—C14—H14B109.5N3—C48A—C53A118.5 (4)
C13—C14—H14C109.5C49A—C48A—C53A120.0
H14A—C14—H14C109.5C50A—C49A—C48A120.0
H14B—C14—H14C109.5C50A—C49A—C55A119.6 (5)
C9—C15—H15A109.5C48A—C49A—C55A120.1 (5)
C9—C15—H15B109.5C49A—C50A—C51A120.0
H15A—C15—H15B109.5C49A—C50A—H50A120.0
C9—C15—H15C109.5C51A—C50A—H50A120.0
H15A—C15—H15C109.5C50A—C51A—C52A120.0
H15B—C15—H15C109.5C50A—C51A—H51A120.0
O2—C21—N2122.20 (17)C52A—C51A—H51A120.0
O2—C21—C22119.60 (16)C53A—C52A—C51A120.0
N2—C21—C22118.20 (16)C53A—C52A—H52A120.0
C27—C22—C23117.79 (17)C51A—C52A—H52A120.0
C27—C22—C21124.24 (17)C52A—C53A—C48A120.0
C23—C22—C21117.94 (16)C52A—C53A—C54A120.4 (7)
C24—C23—C22122.03 (19)C48A—C53A—C54A119.4 (7)
C24—C23—H23119.0C49B—C48B—C53B120.0
C22—C23—H23119.0C49B—C48B—N3119.8 (5)
C25—C24—C23118.89 (19)C53B—C48B—N3120.2 (5)
C25—C24—H24120.6C48B—C49B—C50B120.0
C23—C24—H24120.6C48B—C49B—C55B117.9 (7)
C26—C25—C24120.72 (19)C50B—C49B—C55B121.6 (7)
C26—C25—Cl2120.13 (18)C51B—C50B—C49B120.0
C24—C25—Cl2119.15 (17)C51B—C50B—H50B120.0
C25—C26—C27119.9 (2)C49B—C50B—H50B120.0
C25—C26—H26120.0C52B—C51B—C50B120.0
C27—C26—H26120.0C52B—C51B—H51B120.0
C22—C27—C26120.60 (19)C50B—C51B—H51B120.0
C22—C27—H27119.7C51B—C52B—C53B120.0
C26—C27—H27119.7C51B—C52B—H52B120.0
C21—N2—C28123.50 (15)C53B—C52B—H52B120.0
C21—N2—H2118.2C52B—C53B—C48B120.0
C28—N2—H2118.2C52B—C53B—C54B120.7 (9)
C33—C28—C29121.41 (19)C48B—C53B—C54B119.2 (9)
C33—C28—N2118.86 (18)C53B—C54B—H54D109.4
C29—C28—N2119.69 (18)C53B—C54B—H54E109.5
C30—C29—C28118.3 (2)H54D—C54B—H54E109.5
C30—C29—C35120.6 (2)C53B—C54B—H54F109.5
C28—C29—C35121.2 (2)H54D—C54B—H54F109.5
C31—C30—C29121.4 (3)H54E—C54B—H54F109.5
C31—C30—H30119.3C49B—C55B—H55D109.5
C29—C30—H30119.3C49B—C55B—H55E109.5
C30—C31—C32120.3 (3)H55D—C55B—H55E109.5
C30—C31—H31119.8C49B—C55B—H55F109.5
C32—C31—H31119.8H55D—C55B—H55F109.5
C31—C32—C33120.8 (3)H55E—C55B—H55F109.5
C31—C32—H32119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.022.8585 (19)165
N2—H2···O30.861.962.778 (2)158
N3—H3A···O1i0.861.992.814 (2)161
Symmetry code: (i) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC15H14ClNO
Mr259.72
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)12.2696 (3), 13.6249 (4), 13.7981 (4)
α, β, γ (°)91.880 (2), 113.623 (2), 90.3676 (18)
V3)2111.74 (10)
Z6
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.49 × 0.22 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction (2007); based on Clark & Reid (1995)]
Tmin, Tmax0.896, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
63529, 8072, 3945
Rint0.042
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 0.89
No. of reflections8072
No. of parameters543
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.022.8585 (19)165.0
N2—H2···O30.861.962.778 (2)158.2
N3—H3A···O1i0.861.992.814 (2)160.8
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds