metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-4-ethyl­benzoato-κ2O:O′)­bis­­[(4-ethyl­benzoic acid-κO)copper(II)]

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: bezuidbc.sci@ufs.ac.za

(Received 20 May 2008; accepted 27 May 2008; online 19 June 2008)

The molecule of the title compound, [Cu2(C9H9O2)4(C9H10O2)2], lies on a center of inversion. It consists of four bridging ethyl­benzoate ligands, forming a cage around two Cu atoms in a synsyn configuration, and two monodentate ethyl­benzoic acid ligands bonded apically to the square-planar Cu atoms. The Cu⋯Cu distance is 2.6047 (5) Å.

Related literature

For the synthesis of aromatic carboxylic acids, see: Kaeding (1967[Kaeding, W. W. (1967). J. Org. Chem. 26, 3144-3148.]). For tetra­kis(μ2-2-methyl­benzoato)bis­(2-methyl­benzoic acid)dicopper(II), see: Sunil et al. (2008[Sunil, A. C., Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2008). Acta Cryst. E64, m553-m554.]). For tetra­kis(μ2-2-fluoro­benzoato)bis­(2-fluoro­benzoic acid)dicopper(II), see: Valach et al. (2000[Valach, F., Tokarcik, M., Maris, T., Watkin, D. J. & Prout, C. K. (2000). Z. Kristallogr. 215, 56-60.]). For tetra­kis(μ2benzoato) bis­(2-fluoro­benzoic acid)dicopper(II), see: Kawata et al. (1992[Kawata, T., Uekusa, H., Ohba, S., Furukawa, T., Tokii, T., Muto, Y. & Kato, M. (1992). Acta Cryst. B48, 253-261.]). For tetra­kis-[μ-(2-phenoxy­benzoato-O,O′)]bis­[(2-phenoxy­benzoic acid)copper(II)], see: Mak & Yip (1990[Mak, T. C. W. & Yip, W. H. (1990). Polyhedron, 9, 1667-1670.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C9H9O2)4(C9H10O2)2]

  • Mr = 1024.07

  • Triclinic, [P \overline 1]

  • a = 10.6167 (5) Å

  • b = 10.7394 (7) Å

  • c = 10.8096 (7) Å

  • α = 81.848 (3)°

  • β = 88.594 (3)°

  • γ = 79.468 (2)°

  • V = 1199.47 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 100 (2) K

  • 0.54 × 0.4 × 0.39 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.628, Tmax = 0.708

  • 15971 measured reflections

  • 5683 independent reflections

  • 4721 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.03

  • 5683 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.9498 (15)
Cu1—O4 1.9501 (16)
Cu1—O2 1.9593 (16)
Cu1—O1 2.0040 (16)
Cu1—O5 2.1761 (15)
Cu1—Cu1i 2.6047 (5)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound forms part of the copper(II) complexes of the type [Cu2(RCO2)4L2] (R=aryl, L=monodentate ligand). This type of complex forms tetra-(carboxylato-O,O') bridges and four of the carboxylate groups hold together two Cu atoms (Fig. 1). The Cu···Cu distance in the title compound is 2.6047 (5) Å, probably displaying weak orbital interaction considering that the van der Waals radius of copper is 2.32 Å. The axial sites of each copper atom are bonded to a monodentate p-ethylbenzoic acid ligand. In turn the acid protons are hydrogen bonded to the cage carboxylate O atoms, O—H···O = 166.79° and O···O = 2.645 Å.

Neighbouring molecules stack with overlap between the axially bonded phenyl rings displaying a centroid to centroid distance of 4.2918 (3) Å and an interplanar distance of 3.6277 Å (Fig. 2 A). This inter-molecular interaction influence the dihedral angle displayed between the phenyl rings from the axially bonded monodentate ligands and the carboxylic oxygen plane, O1, O2, O1i and O2i (i = 1 - x, 1 - y, 2 - z). Molecular packing in the (0 0 h) plane is in a puckered pseudo-hexagonal close packing fashion. This close packing is stabilized by soft inter-molecular C···H contacts ranging from 2.720–2.813 Å (Fig. 2B).

Related literature top

For the synthesis of aromatic carboxylic acids, see: Kaeding (1967). For tetrakis(µ2-2-methylbenzoato)bis(2-methylbenzoic acid)dicopper(II), see: Sunil et al. (2008). For tetrakis(µ2-2-fluorobenzoato)bis(2-fluorobenzoic acid)dicopper(II), see: Valach et al. (2000). For tetrakis(µ2benzoato) bis(2-fluorobenzoic acid)dicopper(II), see: Kawata et al. (1992). For tetrakis-[µ-(2-phenoxybenzoato-O,O')]bis[(2-phenoxybenzoic acid)copper(II)], see Mak & Yip (1990).

Experimental top

The complex [Cu2(C9H10O2)4(C9H11O2)2] was prepared by heating 4-ethylbenzoic acid (1.77 g, 11.81 mmol), copper carbonate (0.74 g, 3.34 mmol) and magnesium oxide (0.20 g, 4.98 mmol) under reflux, in toluene (15 ml) for 60 h. The product was extacted and crystallized from diethyl ether to yield a blue crystalline solid. (Yield: 80%)

Refinement top

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (CH) [Uiso(H) = 1.2Ueq] and 0.96 Å (CH3) [Uiso(H) = 1.5Ueq] respectively. Initial positions of methyl H-atoms were obtained from Fourier difference maps and refined as a fixed rotor.

The highest density peak is 0.50 located 0.65 Å from C14 and the deepest hole is -0.37 located at 0.68 Å from Cu1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level, non labelled atoms are symmetric equivalents. For the phenyl C-atoms, the first digit indicates ring number and the second digit the position of the atom in the ring. Symmetry code: 1 - x, 1 - y, 2 - z.
[Figure 2] Fig. 2. (A) Hacked lines indicate overlap between ethylbenzoic groups of neighbouring molecules. (B) Indication of pseudo-hexagonal close packing along the c axis.
Tetrakis(µ-4-ethylbenzoato-κ2O:O')bis[(4-ethylbenzoic acid-κO)copper(II)] top
Crystal data top
[Cu2(C9H9O2)4(C9H10O2)2]Z = 1
Mr = 1024.07F(000) = 534
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.6167 (5) ÅCell parameters from 4441 reflections
b = 10.7394 (7) Åθ = 2.5–28.2°
c = 10.8096 (7) ŵ = 0.95 mm1
α = 81.848 (3)°T = 100 K
β = 88.594 (3)°Cuboid, blue
γ = 79.468 (2)°0.54 × 0.4 × 0.39 mm
V = 1199.47 (12) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
5683 independent reflections
Radiation source: fine-focus sealed tube4721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scansθmax = 28°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 714
Tmin = 0.628, Tmax = 0.708k = 1414
15971 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.9309P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.50 e Å3
5683 reflectionsΔρmin = 0.37 e Å3
311 parameters
Crystal data top
[Cu2(C9H9O2)4(C9H10O2)2]γ = 79.468 (2)°
Mr = 1024.07V = 1199.47 (12) Å3
Triclinic, P1Z = 1
a = 10.6167 (5) ÅMo Kα radiation
b = 10.7394 (7) ŵ = 0.95 mm1
c = 10.8096 (7) ÅT = 100 K
α = 81.848 (3)°0.54 × 0.4 × 0.39 mm
β = 88.594 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
5683 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4721 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.708Rint = 0.040
15971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
5683 reflectionsΔρmin = 0.37 e Å3
311 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 2 s/frame. A total of 1507 frames were collected with a frame width of 0.5° covering up to θ = 28.0° with 98.3% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45033 (3)0.46672 (2)0.90347 (2)0.01213 (9)
O60.58444 (17)0.40202 (18)0.62540 (16)0.0239 (4)
H60.5990.44450.6790.036*
O10.60816 (15)0.51776 (15)0.82165 (14)0.0152 (3)
O30.36215 (15)0.64398 (14)0.86973 (14)0.0166 (3)
O40.54987 (16)0.29874 (15)0.96412 (14)0.0181 (3)
O20.30749 (15)0.42705 (15)1.01089 (14)0.0167 (3)
O50.40263 (15)0.39621 (15)0.73471 (14)0.0168 (3)
C510.4404 (2)0.2808 (2)0.5616 (2)0.0144 (4)
C110.8123 (2)0.58002 (19)0.80261 (19)0.0124 (4)
C300.3784 (2)0.7244 (2)0.94028 (19)0.0140 (4)
C530.3163 (2)0.1251 (2)0.5207 (2)0.0192 (5)
H530.25420.07590.5460.023*
C550.4715 (2)0.1870 (2)0.3717 (2)0.0172 (5)
H550.51340.18060.29570.021*
C520.3464 (2)0.2079 (2)0.5971 (2)0.0172 (5)
H520.30380.2150.67270.021*
C540.3778 (2)0.1138 (2)0.4054 (2)0.0169 (5)
C360.2111 (2)0.8866 (2)0.8178 (2)0.0171 (5)
H360.19560.8230.7730.02*
C160.9223 (2)0.5936 (2)0.8637 (2)0.0145 (4)
H160.92120.59180.950.017*
C100.6968 (2)0.55566 (19)0.87604 (19)0.0133 (4)
C310.3059 (2)0.8585 (2)0.9087 (2)0.0143 (4)
C340.1628 (2)1.1064 (2)0.8569 (2)0.0184 (5)
C320.3321 (2)0.9558 (2)0.9709 (2)0.0191 (5)
H320.39680.93841.03060.023*
C560.5043 (2)0.2694 (2)0.4481 (2)0.0162 (5)
H560.56820.31660.4240.019*
C120.8152 (2)0.5865 (2)0.6725 (2)0.0146 (4)
H120.7430.57770.630.018*
C5410.3421 (3)0.0255 (2)0.3213 (2)0.0235 (5)
H54A0.36270.06180.36330.028*
H54B0.39360.03130.24610.028*
C1411.1539 (2)0.6401 (2)0.5944 (2)0.0208 (5)
H14A1.18030.5710.54520.025*
H14B1.22280.63910.65210.025*
C500.4725 (2)0.3652 (2)0.6484 (2)0.0155 (5)
C130.9247 (2)0.6059 (2)0.6070 (2)0.0158 (5)
H130.92460.61140.52030.019*
C151.0327 (2)0.6096 (2)0.7979 (2)0.0164 (5)
H151.10590.61530.84080.02*
C141.0360 (2)0.6173 (2)0.6679 (2)0.0152 (4)
C6420.0475 (3)1.2359 (3)0.9030 (3)0.0385 (7)
H64A0.09231.17680.87170.058*
H64B0.09891.320.89010.058*
H64C0.03111.210.99070.058*
C6410.0790 (3)1.2371 (2)0.8338 (2)0.0254 (6)
H64D0.06281.26120.74490.03*
H64E0.12261.29970.86230.03*
C330.2619 (3)1.0788 (2)0.9443 (2)0.0229 (5)
H330.28121.14350.98520.028*
C350.1394 (2)1.0083 (2)0.7935 (2)0.0186 (5)
H350.07461.02530.73390.022*
C1421.1323 (3)0.7677 (3)0.5072 (3)0.0323 (6)
H14C1.06510.76880.4490.048*
H14D1.20990.77750.46230.048*
H14E1.10850.83670.55560.048*
C5420.2016 (3)0.0542 (2)0.2846 (2)0.0277 (6)
H54C0.14980.04630.35830.042*
H54D0.18550.00530.2310.042*
H54E0.18070.13970.24120.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01076 (16)0.01499 (14)0.01135 (13)0.00383 (10)0.00010 (10)0.00231 (9)
O60.0189 (10)0.0369 (10)0.0225 (9)0.0156 (8)0.0057 (7)0.0139 (7)
O10.0110 (8)0.0221 (8)0.0148 (7)0.0076 (7)0.0005 (6)0.0041 (6)
O30.0161 (9)0.0154 (7)0.0184 (8)0.0022 (6)0.0021 (7)0.0032 (6)
O40.0212 (9)0.0164 (8)0.0168 (8)0.0025 (7)0.0044 (7)0.0032 (6)
O20.0130 (8)0.0256 (8)0.0138 (7)0.0087 (7)0.0014 (6)0.0036 (6)
O50.0144 (9)0.0232 (8)0.0142 (7)0.0042 (7)0.0001 (6)0.0059 (6)
C510.0119 (12)0.0176 (10)0.0129 (10)0.0019 (9)0.0023 (8)0.0001 (8)
C110.0097 (11)0.0118 (9)0.0152 (10)0.0021 (8)0.0009 (8)0.0005 (8)
C300.0114 (11)0.0179 (10)0.0130 (10)0.0047 (9)0.0049 (8)0.0008 (8)
C530.0187 (13)0.0212 (11)0.0195 (11)0.0096 (10)0.0022 (10)0.0010 (9)
C550.0149 (12)0.0217 (11)0.0139 (10)0.0000 (9)0.0025 (9)0.0030 (9)
C520.0159 (12)0.0235 (11)0.0126 (10)0.0057 (10)0.0022 (9)0.0015 (9)
C540.0152 (12)0.0178 (11)0.0169 (11)0.0007 (9)0.0032 (9)0.0041 (9)
C360.0165 (12)0.0166 (10)0.0184 (11)0.0035 (9)0.0004 (9)0.0026 (8)
C160.0140 (12)0.0171 (10)0.0128 (10)0.0039 (9)0.0025 (9)0.0019 (8)
C100.0147 (12)0.0124 (10)0.0122 (9)0.0027 (9)0.0021 (8)0.0009 (8)
C310.0111 (11)0.0164 (10)0.0155 (10)0.0038 (9)0.0037 (9)0.0014 (8)
C340.0192 (13)0.0159 (11)0.0191 (11)0.0037 (9)0.0064 (9)0.0001 (9)
C320.0186 (13)0.0215 (11)0.0174 (11)0.0029 (10)0.0034 (9)0.0040 (9)
C560.0107 (12)0.0200 (11)0.0180 (11)0.0046 (9)0.0013 (9)0.0015 (9)
C120.0112 (12)0.0175 (10)0.0161 (10)0.0041 (9)0.0022 (9)0.0029 (8)
C5410.0256 (14)0.0240 (12)0.0239 (12)0.0073 (11)0.0018 (11)0.0101 (10)
C1410.0140 (12)0.0277 (12)0.0229 (12)0.0086 (10)0.0037 (10)0.0059 (10)
C500.0142 (12)0.0175 (10)0.0145 (10)0.0032 (9)0.0027 (9)0.0008 (8)
C130.0145 (12)0.0196 (11)0.0133 (10)0.0033 (9)0.0008 (9)0.0025 (8)
C150.0118 (12)0.0185 (11)0.0199 (11)0.0054 (9)0.0041 (9)0.0016 (9)
C140.0114 (12)0.0131 (10)0.0210 (11)0.0030 (9)0.0021 (9)0.0019 (8)
C6420.0278 (17)0.0213 (13)0.065 (2)0.0006 (12)0.0111 (15)0.0078 (13)
C6410.0290 (15)0.0182 (11)0.0273 (13)0.0024 (11)0.0028 (11)0.0008 (10)
C330.0306 (15)0.0184 (11)0.0211 (12)0.0052 (11)0.0008 (11)0.0067 (9)
C350.0147 (13)0.0198 (11)0.0202 (11)0.0022 (9)0.0024 (9)0.0003 (9)
C1420.0232 (15)0.0422 (16)0.0296 (14)0.0106 (13)0.0002 (12)0.0071 (12)
C5420.0304 (16)0.0261 (13)0.0292 (13)0.0071 (11)0.0066 (11)0.0086 (10)
Geometric parameters (Å, º) top
Cu1—O31.9498 (15)C31—C321.392 (3)
Cu1—O41.9501 (16)C34—C331.394 (3)
Cu1—O21.9593 (16)C34—C351.397 (3)
Cu1—O12.0040 (16)C34—C6411.509 (3)
Cu1—O52.1761 (15)C32—C331.387 (3)
Cu1—Cu1i2.6047 (5)C32—H320.93
O6—C501.326 (3)C56—H560.93
O6—H60.82C12—C131.380 (3)
O1—C101.277 (3)C12—H120.93
O3—C301.267 (3)C541—C5421.517 (4)
O4—C30i1.267 (3)C541—H54A0.97
O2—C10i1.261 (2)C541—H54B0.97
O5—C501.223 (3)C141—C141.505 (3)
C51—C521.392 (3)C141—C1421.532 (3)
C51—C561.397 (3)C141—H14A0.97
C51—C501.479 (3)C141—H14B0.97
C11—C161.396 (3)C13—C141.400 (3)
C11—C121.398 (3)C13—H130.93
C11—C101.488 (3)C15—C141.396 (3)
C30—O4i1.267 (3)C15—H150.93
C30—C311.501 (3)C642—C6411.523 (4)
C53—C521.378 (3)C642—H64A0.96
C53—C541.403 (3)C642—H64B0.96
C53—H530.93C642—H64C0.96
C55—C561.386 (3)C641—H64D0.97
C55—C541.388 (3)C641—H64E0.97
C55—H550.93C33—H330.93
C52—H520.93C35—H350.93
C54—C5411.505 (3)C142—H14C0.96
C36—C351.381 (3)C142—H14D0.96
C36—C311.387 (3)C142—H14E0.96
C36—H360.93C542—H54C0.96
C16—C151.382 (3)C542—H54D0.96
C16—H160.93C542—H54E0.96
C10—O2i1.261 (2)
O3—Cu1—O4169.67 (6)C55—C56—C51119.3 (2)
O3—Cu1—O289.21 (7)C55—C56—H56120.3
O4—Cu1—O289.79 (7)C51—C56—H56120.3
O3—Cu1—O189.64 (7)C13—C12—C11120.3 (2)
O4—Cu1—O189.46 (7)C13—C12—H12119.8
O2—Cu1—O1169.42 (6)C11—C12—H12119.8
O3—Cu1—O5100.25 (6)C54—C541—C542113.8 (2)
O4—Cu1—O590.05 (6)C54—C541—H54A108.8
O2—Cu1—O599.99 (6)C542—C541—H54A108.8
O1—Cu1—O590.57 (6)C54—C541—H54B108.8
O3—Cu1—Cu1i86.32 (5)C542—C541—H54B108.8
O4—Cu1—Cu1i83.36 (5)H54A—C541—H54B107.7
O2—Cu1—Cu1i87.95 (5)C14—C141—C142112.7 (2)
O1—Cu1—Cu1i81.48 (4)C14—C141—H14A109.1
O5—Cu1—Cu1i169.69 (5)C142—C141—H14A109.1
C50—O6—H6109.5C14—C141—H14B109.1
C10—O1—Cu1125.79 (14)C142—C141—H14B109.1
C30—O3—Cu1120.62 (14)H14A—C141—H14B107.8
C30i—O4—Cu1124.01 (14)O5—C50—O6123.3 (2)
C10i—O2—Cu1120.97 (15)O5—C50—C51122.7 (2)
C50—O5—Cu1128.90 (15)O6—C50—C51113.97 (19)
C52—C51—C56119.6 (2)C12—C13—C14121.5 (2)
C52—C51—C50118.4 (2)C12—C13—H13119.2
C56—C51—C50122.0 (2)C14—C13—H13119.2
C16—C11—C12118.5 (2)C16—C15—C14120.9 (2)
C16—C11—C10120.04 (19)C16—C15—H15119.5
C12—C11—C10121.5 (2)C14—C15—H15119.5
O3—C30—O4i125.7 (2)C15—C14—C13117.8 (2)
O3—C30—C31117.29 (19)C15—C14—C141121.5 (2)
O4i—C30—C31117.03 (19)C13—C14—C141120.7 (2)
C52—C53—C54121.0 (2)C641—C642—H64A109.5
C52—C53—H53119.5C641—C642—H64B109.5
C54—C53—H53119.5H64A—C642—H64B109.5
C56—C55—C54121.9 (2)C641—C642—H64C109.5
C56—C55—H55119.1H64A—C642—H64C109.5
C54—C55—H55119.1H64B—C642—H64C109.5
C53—C52—C51120.3 (2)C34—C641—C642110.1 (2)
C53—C52—H52119.9C34—C641—H64D109.6
C51—C52—H52119.9C642—C641—H64D109.6
C55—C54—C53117.9 (2)C34—C641—H64E109.6
C55—C54—C541121.5 (2)C642—C641—H64E109.6
C53—C54—C541120.6 (2)H64D—C641—H64E108.2
C35—C36—C31120.3 (2)C32—C33—C34120.8 (2)
C35—C36—H36119.8C32—C33—H33119.6
C31—C36—H36119.8C34—C33—H33119.6
C15—C16—C11120.9 (2)C36—C35—C34121.1 (2)
C15—C16—H16119.5C36—C35—H35119.5
C11—C16—H16119.5C34—C35—H35119.5
O2i—C10—O1123.7 (2)C141—C142—H14C109.5
O2i—C10—C11117.84 (19)C141—C142—H14D109.5
O1—C10—C11118.46 (18)H14C—C142—H14D109.5
C36—C31—C32119.2 (2)C141—C142—H14E109.5
C36—C31—C30120.3 (2)H14C—C142—H14E109.5
C32—C31—C30120.5 (2)H14D—C142—H14E109.5
C33—C34—C35118.2 (2)C541—C542—H54C109.5
C33—C34—C641121.5 (2)C541—C542—H54D109.5
C35—C34—C641120.2 (2)H54C—C542—H54D109.5
C33—C32—C31120.3 (2)C541—C542—H54E109.5
C33—C32—H32119.9H54C—C542—H54E109.5
C31—C32—H32119.9H54D—C542—H54E109.5
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(C9H9O2)4(C9H10O2)2]
Mr1024.07
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.6167 (5), 10.7394 (7), 10.8096 (7)
α, β, γ (°)81.848 (3), 88.594 (3), 79.468 (2)
V3)1199.47 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.54 × 0.4 × 0.39
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.628, 0.708
No. of measured, independent and
observed [I > 2σ(I)] reflections
15971, 5683, 4721
Rint0.040
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.04
No. of reflections5683
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O31.9498 (15)Cu1—Cu1i2.6047 (5)
Cu1—O41.9501 (16)C51—C501.479 (3)
Cu1—O21.9593 (16)C11—C101.488 (3)
Cu1—O12.0040 (16)C30—C311.501 (3)
Cu1—O52.1761 (15)
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

Financial assistance from the University of the Free State and SASOL to ACS is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaeding, W. W. (1967). J. Org. Chem. 26, 3144–3148.  CrossRef Web of Science Google Scholar
First citationKawata, T., Uekusa, H., Ohba, S., Furukawa, T., Tokii, T., Muto, Y. & Kato, M. (1992). Acta Cryst. B48, 253–261.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMak, T. C. W. & Yip, W. H. (1990). Polyhedron, 9, 1667–1670.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunil, A. C., Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2008). Acta Cryst. E64, m553–m554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationValach, F., Tokarcik, M., Maris, T., Watkin, D. J. & Prout, C. K. (2000). Z. Kristallogr. 215, 56–60.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds