organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1295-o1296

Cytenamide–butyric acid (1/1)

aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, Glasgow G4 0NR, Scotland, bGZG, Department of Crystallography, University of Göttingen, D-37077 Göttingen, Germany, cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and dDepartment of Chemistry, University College London, London WC1H 0AJ, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 14 May 2008; accepted 13 June 2008; online 19 June 2008)

Cytenamide forms a 1:1 solvate with butyric acid [systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide–butanoic acid (1/1)], C16H13NO·C4H8O2. The title compound crystallizes with one mol­ecule of cytenamide and one of butyric acid in the asymmetric unit; these mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds to form an R22(8) heterodimer motif. Pairs of adjacent motifs are further connected via N—H⋯O inter­actions to form a discrete centrosymmetric assembly.

Related literature

For details on experimental methods used to obtain the title solvate, see: Davis et al. (1964[Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88-94.]); Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]); Florence, Johnston, Fernandes et al. (2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]). For literature on cytenamide and related mol­ecules, see: Florence, Bedford et al. (2008[Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm. doi:10.1039/b719717a.]); Cyr et al. (1987[Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836-840.]); Fleischman et al. (2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]); Florence, Johnston, Price et al. (2006[Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918-1930.]); Florence, Leech et al. (2006[Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746-747.]); Bandoli et al. (1992[Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.]); Leech et al. (2007[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675-o677.]); Florence, Shankland et al. (2008[Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26-28.]). For other related literature, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) ; Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO·C4H8O2

  • Mr = 323.39

  • Monoclinic, P 21 /n

  • a = 5.9351 (2) Å

  • b = 16.3595 (5) Å

  • c = 17.6738 (4) Å

  • β = 98.046 (2)°

  • V = 1699.15 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 160 K

  • 0.35 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.91, Tmax = 0.99

  • 18979 measured reflections

  • 4069 independent reflections

  • 2928 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.088

  • S = 0.95

  • 4069 reflections

  • 226 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2 0.860 (14) 2.348 (14) 2.8761 (15) 120.0 (10)
N1—H12⋯O2i 0.898 (13) 2.146 (13) 3.0167 (15) 163.2 (13)
O3—H311⋯O1i 0.879 (17) 1.698 (17) 2.5658 (13) 168.8 (16)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED and SORTAV (Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-butyric acid solvate was produced during an automated parallel crystallization study (Florence, Johnston, Fernandes et al., 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity in CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2006) and its closely related analogues, CYT (Florence, Bedford et al., 2008), 10,11-dihydrocarbamazepine (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2007) and cyheptamide (Florence, Shankland et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated butyric acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The compound crystallizes in the monoclinic space group P21/n with one CYT and one solvent molecule in the asymmetric unit. The molecules adopt a hydrogen-bonded arrangement similar to that observed in CBZ-butyric acid solvate (1/1) (Fleischman et al., 2003) whereby the CYT and butyric acid molecules are connected via N—H···O and O—H···O hydrogen bonds to form an R22(8) dimer motif (Etter, 1990). Adjacent dimers are linked via a third contact (N1—H1···O2; Fig 2) to form an R42(8) centrosymmetric double motif arrangement. The O1···O3 distance of 2.566 (1) Å lies within the expected range for strong hydrogen bonds (2.5 - 3.2 Å; Desiraju and Steiner, 1999).

CYT-butyric acid solvate structure reported here is essentially isostructural with both CBZ-formic acid and CBZ-acetic acid solvates (Fleischman et al., 2003).

Related literature top

For details on experimental methods used to obtain the title solvate, see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006). For literature on cytenamide and related molecules, see: Florence, Bedford et al. (2008); Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006); Florence, Leech et al. (2006); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2007); Florence, Shankland et al. (2008). For other related literature, see: Etter (1990 ); Desiraju & Steiner (1999).

Experimental top

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of cytenamide-butyric acid was grown form a saturated butyric acid solution by isothermal solvent evaporation at 278 K.

Refinement top

H-atoms were found on a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The positions of H-atoms involved in H-bonding were refined subject to distance restraints.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED; data reduction: CrysAlis RED (Oxford Diffraction, 2007) and SORTAV (Blessing, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of CYT–butyric acid (1/1), showing 50% probablility displacement ellipsoids.
[Figure 2] Fig. 2. The hydrogen bonded R22(8) motifs of CYT-butyric acid joined in a centrosymmetric arrangement via an R42(8) motif. Hydrogen bonds are shown as dashed lines.
5H-dibenzo[a,d]cycloheptatriene-5-carboxamide–butanoic acid (1/1) top
Crystal data top
C16H13NO·C4H8O2F(000) = 688
Mr = 323.39Dx = 1.264 Mg m3
Monoclinic, P21/nMelting point: 216.2 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.9351 (2) ÅCell parameters from 6486 reflections
b = 16.3595 (5) Åθ = 3–29°
c = 17.6738 (4) ŵ = 0.09 mm1
β = 98.046 (2)°T = 160 K
V = 1699.15 (9) Å3Block, colourless
Z = 40.35 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
4069 independent reflections
Radiation source: Enhance (Mo) X-ray Source2928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 15.9745 pixels mm-1θmax = 28.7°, θmin = 2.6°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 021
Tmin = 0.91, Tmax = 0.99l = 023
18979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: geom+difmap
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.5P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.95(Δ/σ)max = 0.001
4069 reflectionsΔρmax = 0.38 e Å3
226 parametersΔρmin = 0.27 e Å3
3 restraints
Crystal data top
C16H13NO·C4H8O2V = 1699.15 (9) Å3
Mr = 323.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9351 (2) ŵ = 0.09 mm1
b = 16.3595 (5) ÅT = 160 K
c = 17.6738 (4) Å0.35 × 0.15 × 0.12 mm
β = 98.046 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer
4069 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2928 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.99Rint = 0.031
18979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.38 e Å3
4069 reflectionsΔρmin = 0.27 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3604 (2)0.32253 (7)0.41898 (7)0.0261
C20.1718 (2)0.36489 (8)0.38294 (7)0.0323
C30.1256 (2)0.36854 (9)0.30423 (8)0.0391
C40.2687 (2)0.33058 (9)0.25996 (7)0.0392
C50.4591 (2)0.28990 (8)0.29445 (7)0.0344
C60.5061 (2)0.28359 (7)0.37441 (7)0.0279
C70.6996 (2)0.23388 (8)0.40716 (7)0.0304
C80.7115 (2)0.18488 (8)0.46816 (7)0.0301
C90.5383 (2)0.17092 (8)0.51782 (6)0.0269
C100.5251 (2)0.09343 (8)0.55037 (7)0.0341
C110.3603 (2)0.07491 (9)0.59538 (8)0.0398
C120.2069 (2)0.13407 (9)0.61005 (8)0.0389
C130.2205 (2)0.21186 (8)0.58012 (7)0.0321
C140.3844 (2)0.23123 (7)0.53434 (6)0.0258
C150.4034 (2)0.31760 (7)0.50530 (6)0.0257
C160.6242 (2)0.35710 (7)0.54306 (7)0.0276
C170.3158 (3)0.57421 (11)0.16558 (9)0.0568
C180.5184 (3)0.60108 (10)0.22080 (8)0.0455
C190.5957 (2)0.53835 (9)0.28103 (8)0.0371
C200.8040 (2)0.56040 (8)0.33497 (7)0.0295
O10.70946 (16)0.33413 (6)0.60746 (5)0.0369
O20.84351 (15)0.53413 (6)0.39986 (5)0.0346
N10.7091 (2)0.41860 (7)0.50777 (6)0.0335
O30.94149 (17)0.61035 (6)0.30567 (5)0.0435
H1510.28280.34880.52490.0293*
H210.07130.39160.41450.0377*
H810.84560.14980.47860.0333*
H710.82930.23320.37900.0372*
H1910.47660.52660.31150.0486*
H1920.62950.48890.25640.0473*
H1310.11550.25360.59140.0383*
H1010.62910.05260.53890.0392*
H410.23380.33170.20570.0465*
H1210.09350.12220.64190.0464*
H510.56370.26360.26410.0395*
H1110.35070.02140.61500.0470*
H1820.47700.65150.24590.0609*
H1810.65030.61200.19460.0611*
H310.00990.39710.27940.0463*
H1720.27120.61620.12790.0868*
H1730.18580.56250.19330.0867*
H1710.35040.52400.14020.0875*
H120.834 (2)0.4432 (9)0.5320 (8)0.0446*
H110.652 (2)0.4352 (9)0.4630 (8)0.0433*
H3111.058 (3)0.6243 (11)0.3395 (9)0.0689*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (6)0.0234 (6)0.0265 (6)0.0013 (5)0.0032 (5)0.0008 (5)
C20.0315 (7)0.0305 (7)0.0348 (7)0.0030 (5)0.0040 (5)0.0027 (5)
C30.0366 (8)0.0396 (8)0.0383 (7)0.0032 (6)0.0041 (6)0.0075 (6)
C40.0476 (8)0.0422 (8)0.0259 (6)0.0032 (7)0.0010 (6)0.0030 (6)
C50.0414 (8)0.0345 (8)0.0279 (6)0.0020 (6)0.0075 (6)0.0025 (5)
C60.0297 (6)0.0258 (7)0.0279 (6)0.0019 (5)0.0031 (5)0.0021 (5)
C70.0287 (6)0.0318 (7)0.0315 (6)0.0018 (5)0.0065 (5)0.0068 (5)
C80.0270 (6)0.0295 (7)0.0321 (6)0.0056 (5)0.0016 (5)0.0067 (5)
C90.0273 (6)0.0284 (7)0.0227 (6)0.0004 (5)0.0051 (5)0.0026 (5)
C100.0388 (7)0.0291 (7)0.0313 (6)0.0021 (6)0.0057 (6)0.0015 (5)
C110.0507 (9)0.0310 (8)0.0347 (7)0.0078 (6)0.0051 (6)0.0073 (6)
C120.0384 (8)0.0448 (9)0.0327 (7)0.0111 (7)0.0021 (6)0.0063 (6)
C130.0298 (7)0.0379 (8)0.0275 (6)0.0022 (6)0.0010 (5)0.0008 (5)
C140.0264 (6)0.0277 (7)0.0215 (5)0.0016 (5)0.0027 (5)0.0024 (5)
C150.0270 (6)0.0256 (7)0.0252 (6)0.0034 (5)0.0055 (5)0.0028 (5)
C160.0334 (7)0.0245 (6)0.0252 (6)0.0009 (5)0.0059 (5)0.0041 (5)
C170.0518 (10)0.0666 (12)0.0470 (9)0.0033 (8)0.0109 (7)0.0040 (8)
C180.0467 (9)0.0430 (9)0.0435 (8)0.0033 (7)0.0052 (7)0.0042 (7)
C190.0398 (8)0.0347 (8)0.0361 (7)0.0062 (6)0.0026 (6)0.0017 (6)
C200.0366 (7)0.0246 (7)0.0279 (6)0.0004 (5)0.0066 (5)0.0014 (5)
O20.0421 (5)0.0326 (5)0.0290 (5)0.0029 (4)0.0045 (4)0.0035 (4)
N10.0402 (7)0.0304 (6)0.0291 (5)0.0056 (5)0.0024 (5)0.0018 (5)
O30.0457 (6)0.0529 (7)0.0297 (5)0.0205 (5)0.0027 (4)0.0077 (4)
O10.0441 (5)0.0373 (5)0.0271 (4)0.0124 (4)0.0027 (4)0.0021 (4)
Geometric parameters (Å, º) top
C1—C21.3924 (17)C12—H1210.956
C1—C61.4018 (17)C13—C141.3860 (17)
C1—C151.5133 (15)C13—H1310.965
C2—C31.3811 (18)C14—C151.5129 (17)
C2—H210.975C15—C161.5282 (17)
C3—C41.380 (2)C15—H1510.981
C3—H310.980C16—N11.3204 (16)
C4—C51.378 (2)C16—O11.2376 (14)
C4—H410.952C17—C181.504 (2)
C5—C61.4054 (17)C17—H1720.968
C5—H510.976C17—H1730.988
C6—C71.4591 (17)C17—H1710.971
C7—C81.3373 (18)C18—C191.5034 (19)
C7—H710.974C18—H1820.984
C8—C91.4601 (18)C18—H1810.980
C8—H810.977C19—C201.4956 (18)
C9—C101.3988 (18)C19—H1910.967
C9—C141.4026 (17)C19—H1920.954
C10—C111.3778 (19)C20—O21.2165 (14)
C10—H1010.950C20—O31.3114 (15)
C11—C121.378 (2)N1—H120.899 (14)
C11—H1110.946N1—H110.860 (14)
C12—C131.3848 (19)O3—H3110.880 (14)
C2—C1—C6119.25 (11)C14—C13—H131119.0
C2—C1—C15119.95 (11)C9—C14—C13119.42 (12)
C6—C1—C15120.79 (10)C9—C14—C15120.31 (11)
C1—C2—C3121.06 (12)C13—C14—C15120.22 (11)
C1—C2—H21118.6C1—C15—C14112.44 (10)
C3—C2—H21120.4C1—C15—C16115.54 (10)
C2—C3—C4120.03 (13)C14—C15—C16110.29 (10)
C2—C3—H31120.5C1—C15—H151107.5
C4—C3—H31119.5C14—C15—H151105.8
C3—C4—C5119.87 (12)C16—C15—H151104.4
C3—C4—H41119.9C15—C16—N1118.47 (11)
C5—C4—H41120.2C15—C16—O1119.24 (11)
C4—C5—C6121.01 (12)N1—C16—O1122.14 (12)
C4—C5—H51121.0C18—C17—H172110.8
C6—C5—H51118.0C18—C17—H173110.1
C5—C6—C1118.72 (11)H172—C17—H173108.7
C5—C6—C7118.30 (11)C18—C17—H171110.2
C1—C6—C7122.92 (11)H172—C17—H171109.7
C6—C7—C8127.14 (12)H173—C17—H171107.2
C6—C7—H71116.0C17—C18—C19113.39 (13)
C8—C7—H71116.7C17—C18—H182108.1
C7—C8—C9128.04 (12)C19—C18—H182108.9
C7—C8—H81117.0C17—C18—H181111.4
C9—C8—H81114.7C19—C18—H181105.9
C8—C9—C10118.27 (11)H182—C18—H181109.0
C8—C9—C14123.29 (11)C18—C19—C20115.46 (11)
C10—C9—C14118.45 (11)C18—C19—H191110.9
C9—C10—C11121.46 (13)C20—C19—H191107.3
C9—C10—H101118.2C18—C19—H192108.6
C11—C10—H101120.2C20—C19—H192106.7
C10—C11—C12119.67 (13)H191—C19—H192107.6
C10—C11—H111120.0C19—C20—O2123.28 (12)
C12—C11—H111120.3C19—C20—O3113.77 (11)
C11—C12—C13119.87 (13)O2—C20—O3122.95 (12)
C11—C12—H121120.4C16—N1—H12117.5 (10)
C13—C12—H121119.7C16—N1—H11123.2 (10)
C12—C13—C14121.09 (13)H12—N1—H11119.3 (14)
C12—C13—H131119.9C20—O3—H311111.5 (12)
C6—C1—C2—C30.48 (19)C14—C9—C10—C112.43 (18)
C15—C1—C2—C3178.34 (12)C8—C9—C14—C13177.89 (11)
C2—C1—C6—C51.17 (17)C8—C9—C14—C154.73 (17)
C2—C1—C6—C7176.25 (11)C10—C9—C14—C131.96 (17)
C15—C1—C6—C5180.00 (12)C10—C9—C14—C15175.42 (10)
C15—C1—C6—C72.57 (18)C9—C10—C11—C121.2 (2)
C2—C1—C15—C14114.81 (12)C10—C11—C12—C130.6 (2)
C2—C1—C15—C16117.37 (12)C11—C12—C13—C141.0 (2)
C6—C1—C15—C1463.99 (14)C12—C13—C14—C90.28 (18)
C6—C1—C15—C1663.83 (14)C12—C13—C14—C15177.10 (11)
C1—C2—C3—C40.7 (2)C9—C14—C15—C164.61 (14)
C2—C3—C4—C50.8 (2)C9—C14—C15—C1665.93 (13)
C3—C4—C5—C62.5 (2)C13—C14—C15—C1118.03 (12)
C4—C5—C6—C12.67 (18)C13—C14—C15—C16111.43 (12)
C4—C5—C6—C7174.87 (12)C1—C15—C16—O1156.56 (11)
C1—C6—C7—C836.0 (2)C1—C15—C16—N127.97 (15)
C5—C6—C7—C8141.46 (14)C14—C15—C16—O127.68 (15)
C6—C7—C8—C91.9 (2)C14—C15—C16—N1156.85 (11)
C7—C8—C9—C10147.22 (13)C17—C18—C19—C20177.01 (13)
C7—C8—C9—C1432.6 (2)C18—C19—C20—O2152.97 (13)
C8—C9—C10—C11177.43 (12)C18—C19—C20—O327.50 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O20.86 (1)2.35 (1)2.8761 (15)120 (1)
N1—H12···O2i0.90 (1)2.15 (1)3.0167 (15)163 (1)
O3—H311···O1i0.88 (2)1.70 (2)2.5658 (13)169 (2)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NO·C4H8O2
Mr323.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)160
a, b, c (Å)5.9351 (2), 16.3595 (5), 17.6738 (4)
β (°) 98.046 (2)
V3)1699.15 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.91, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
18979, 4069, 2928
Rint0.031
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.088, 0.95
No. of reflections4069
No. of parameters226
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007) and SORTAV (Blessing, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O20.860 (14)2.348 (14)2.8761 (15)120.0 (10)
N1—H12···O2i0.898 (13)2.146 (13)3.0167 (15)163.2 (13)
O3—H311···O1i0.879 (17)1.698 (17)2.5658 (13)168.8 (16)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk ).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840.  CAS PubMed Web of Science Google Scholar
First citationDavis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88–94.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm. doi:10.1039/b719717a.  Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1295-o1296
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds