organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di-4-pyridyl-1,4-di­hydro-1,2,4,5-tetra­zine

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.cn

(Received 26 May 2008; accepted 10 June 2008; online 13 June 2008)

The mol­ecule of the title compound, C12H10N6, which is V-shaped due to the boat conformation of the dihydro­tetra­zine ring, has crystallographic C2 symmetry. The dihedral angle between the planes of the two pyridine rings is 31.57 (3)°. Mol­ecules are linked by weak N—H⋯N and C—H⋯N hydrogen bonds, forming a two-dimensional polymeric structure.

Related literature

For related structures, see: Bradford et al. (2004[Bradford, F. E., Connor, L. P., Kilner, C. A. & Halcrow, M. A. (2004). Polyhedron, 23, 2141-2151.]); Caira et al. (1976[Caira, M. R., Giles, R. G. F., Nassimbeni, L. R., Sheldrick, G. M. & Hazell, R. G. (1976). Acta Cryst. B32, 1467-1469.]); Liou et al. (1996[Liou, L.-S., Chen, P.-S., Sun, C.-H. & Wang, J.-C. (1996). Acta Cryst. C52, 1841-1843.]); Zachara et al. (2004[Zachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57-o59.]); Rao & Hu (2005[Rao, G.-W. & Hu, W.-X. (2005). Acta Cryst. E61, o3664-o3665.]). For related literature on tetra­zines, see: Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N6

  • Mr = 238.26

  • Orthorhombic, P c c n

  • a = 11.2862 (18) Å

  • b = 14.481 (2) Å

  • c = 6.8864 (12) Å

  • V = 1125.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.991

  • 4214 measured reflections

  • 1105 independent reflections

  • 938 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.08

  • 1105 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N1i 0.83 (2) 2.35 (2) 3.142 (2) 159.8 (18)
C3—H3A⋯N2ii 0.93 2.55 3.312 (2) 139
C4—H4A⋯N1iii 0.93 2.55 3.475 (3) 171
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazine derivatives have been widely used in pesticides and herbicides as they have a high potential for biological activity and possess a wide range of antiviral and antitumor properties (Sauer, 1996). Herein, we report the crystal structure of a new tetrazine derivative, 3,6-di(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine.

The molecule of the title compound, which has a crystallographic C2 symmetry is shown in Fig. 1. The title compound can be regarded as a V-shaped tetrazine with the dihedral angle between the pyridine rings of 31.57 (3) °. In the crystalline state, each molecule is connected to four adjacent molecules to form a two-dimensional (4,4) hydrogen-bonding network by the intermolecular N—H···N and weak C—H···N hydrogen bonds (Fig. 2.). Crystal structures of several other tetrazine derivatives with a similar shape have been reported (Bradford et al., 2004; Caira et al., 1976; Liou et al., 1996; Zachara et al., 2004; Rao & Hu, 2005).

Related literature top

For related structures, see: Bradford et al. (2004); Caira et al. (1976); Liou et al. (1996); Zachara et al. (2004); Rao & Hu (2005). For ralated literature on tetrazines, see: Sauer (1996).

Experimental top

A mixture of 4-cyanopyridine (0.416g, 4.0 mmol), 80% hydrazine hydrate (5 ml), CoCl2.6H2O (0.238g, 1.0 mmol) and 95% ethanol (4 ml) was heated in a 15-mL Teflon-lined autoclave at 120°C deg for 3 days, followed by slow cooling (5°/h deg) to room temperature. The resulting mixture was washed with 95% ethanol, and red block crystals were collected and dried in air [yield 3.0% (14.3 mg) based on 4-cyanopyridine].

Refinement top

H atoms bonded to N atoms were located in an electron-density difference map and refined isotropically without any restraints. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% displacement ellipsoids. Symmetry code for the atoms designated with A: -1/2 - x, 1/2 - y, z.
[Figure 2] Fig. 2. A two-dimensional (4,4) hydrogen-bond network of the title compound viewed along the c axis
3,6-Di-4-pyridyl-1,4-dihydro-1,2,4,5-tetrazine top
Crystal data top
C12H10N6F(000) = 496
Mr = 238.26Dx = 1.406 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 820 reflections
a = 11.2862 (18) Åθ = 2.5–28.0°
b = 14.481 (2) ŵ = 0.09 mm1
c = 6.8864 (12) ÅT = 293 K
V = 1125.4 (3) Å3Block, red
Z = 40.50 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1105 independent reflections
Radiation source: fine-focus sealed tube938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.8°
ϕ and ω scansh = 1310
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1717
Tmin = 0.955, Tmax = 0.991l = 38
4214 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.3052P]
where P = (Fo2 + 2Fc2)/3
1105 reflections(Δ/σ)max < 0.001
86 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C12H10N6V = 1125.4 (3) Å3
Mr = 238.26Z = 4
Orthorhombic, PccnMo Kα radiation
a = 11.2862 (18) ŵ = 0.09 mm1
b = 14.481 (2) ÅT = 293 K
c = 6.8864 (12) Å0.50 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
938 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.991Rint = 0.032
4214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
1105 reflectionsΔρmin = 0.14 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56160 (17)0.17370 (13)0.1811 (4)0.0589 (7)
H1A0.57690.23510.15000.071*
C20.65246 (19)0.11530 (16)0.2327 (4)0.0683 (8)
H2A0.72860.13970.23700.082*
C30.52968 (17)0.00510 (13)0.2686 (3)0.0463 (5)
H3A0.51720.06710.29710.056*
C40.43215 (16)0.04780 (12)0.2202 (3)0.0390 (5)
H4A0.35710.02140.21760.047*
C50.44678 (15)0.13961 (11)0.1762 (3)0.0322 (4)
C60.34693 (13)0.20078 (11)0.1238 (2)0.0296 (4)
N10.63928 (15)0.02634 (11)0.2770 (3)0.0526 (5)
N20.36287 (11)0.28776 (9)0.1283 (2)0.0331 (4)
N30.26087 (12)0.33789 (10)0.0671 (2)0.0332 (4)
H3B0.2708 (17)0.3931 (14)0.097 (3)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (11)0.0379 (11)0.108 (2)0.0006 (8)0.0039 (11)0.0119 (11)
C20.0282 (11)0.0536 (13)0.123 (2)0.0004 (9)0.0073 (12)0.0094 (14)
C30.0396 (13)0.0355 (10)0.0639 (14)0.0077 (8)0.0012 (9)0.0042 (9)
C40.0294 (10)0.0324 (9)0.0553 (12)0.0011 (7)0.0008 (8)0.0023 (8)
C50.0273 (9)0.0314 (9)0.0379 (9)0.0025 (7)0.0029 (7)0.0026 (7)
C60.0255 (9)0.0272 (8)0.0360 (9)0.0013 (6)0.0027 (7)0.0009 (7)
N10.0357 (10)0.0463 (10)0.0756 (13)0.0111 (7)0.0021 (8)0.0028 (9)
N20.0238 (8)0.0283 (7)0.0471 (9)0.0007 (6)0.0036 (6)0.0006 (6)
N30.0270 (8)0.0239 (7)0.0487 (9)0.0011 (6)0.0019 (6)0.0030 (6)
Geometric parameters (Å, º) top
C1—C21.376 (3)C4—C51.374 (2)
C1—C51.387 (2)C4—H4A0.9300
C1—H1A0.9300C5—C61.478 (2)
C2—N11.332 (3)C6—N21.273 (2)
C2—H2A0.9300C6—N3i1.395 (2)
C3—N11.319 (2)N2—N31.4249 (18)
C3—C41.382 (3)N3—C6i1.395 (2)
C3—H3A0.9300N3—H3B0.83 (2)
C2—C1—C5118.94 (18)C4—C5—C1116.82 (16)
C2—C1—H1A120.5C4—C5—C6122.84 (15)
C5—C1—H1A120.5C1—C5—C6120.33 (16)
N1—C2—C1124.8 (2)N2—C6—N3i121.83 (14)
N1—C2—H2A117.6N2—C6—C5118.64 (15)
C1—C2—H2A117.6N3i—C6—C5119.51 (14)
N1—C3—C4124.48 (18)C3—N1—C2115.36 (17)
N1—C3—H3A117.8C6—N2—N3112.51 (13)
C4—C3—H3A117.8C6i—N3—N2114.66 (12)
C5—C4—C3119.61 (17)C6i—N3—H3B115.7 (14)
C5—C4—H4A120.2N2—N3—H3B107.9 (14)
C3—C4—H4A120.2
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N1ii0.83 (2)2.35 (2)3.142 (2)159.8 (18)
C3—H3A···N2iii0.932.553.312 (2)139
C4—H4A···N1iv0.932.553.475 (3)171
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N6
Mr238.26
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)11.2862 (18), 14.481 (2), 6.8864 (12)
V3)1125.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.955, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4214, 1105, 938
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.08
No. of reflections1105
No. of parameters86
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N1i0.83 (2)2.35 (2)3.142 (2)159.8 (18)
C3—H3A···N2ii0.932.553.312 (2)139.0
C4—H4A···N1iii0.932.553.475 (3)171.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBradford, F. E., Connor, L. P., Kilner, C. A. & Halcrow, M. A. (2004). Polyhedron, 23, 2141–2151.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaira, M. R., Giles, R. G. F., Nassimbeni, L. R., Sheldrick, G. M. & Hazell, R. G. (1976). Acta Cryst. B32, 1467–1469.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLiou, L.-S., Chen, P.-S., Sun, C.-H. & Wang, J.-C. (1996). Acta Cryst. C52, 1841–1843.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRao, G.-W. & Hu, W.-X. (2005). Acta Cryst. E61, o3664–o3665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57–o59.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds