organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(4-fluoro­phen­yl)acetamide

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 27 May 2008; accepted 28 May 2008; online 7 June 2008)

In the title compound, C8H7ClFNO, an intra­molecular C—H⋯O hydrogen bond forms a six-membered ring. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming infinite chains along the c axis.

Related literature

For related compounds, see: Wen et al. (2006[Wen, Y. H., Zhang, S. S., Yu, B. H., Li, X. M. & Liu, Q. (2006). Asian J. Chem. 18, 1032-1038.]); Zhang et al. (2006[Zhang, S.-S., Wen, H.-L., Li, X.-M., Xu, L.-L. & Wen, Y.-H. (2006). Acta Cryst. E62, o3412-o3413.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClFNO

  • Mr = 187.60

  • Monoclinic, C c

  • a = 4.7410 (9) Å

  • b = 20.062 (4) Å

  • c = 8.9860 (18) Å

  • β = 99.60 (3)°

  • V = 842.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.885, Tmax = 0.980

  • 974 measured reflections

  • 861 independent reflections

  • 610 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.00

  • 861 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 92 Friedel pairs

  • Flack parameter: 0.18 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O 0.93 2.36 2.925 (8) 119
N—H1⋯Oi 0.86 2.02 2.853 (6) 164
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-(substituted phenyl)-2-chloroacetamides are important intermediates in organic synthesis. They can be used in the synthesis of many derivatives such as (quinolin-8-yloxy) acetamide (Zhang et al., 2006) and 2,5-piperazinedione (Wen et al., 2006). In our studies in this area, the title compound,(I), was synthesized and structurally characterised.

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). An intramolecular C—H···O interaction occurs (Fig. 1) and an intermolecular N—H···O hydrogen bond helps to establish the packing (Table 1).

Related literature top

For related compounds, see: Wen et al. (2006); Zhang et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

Chloroacetyl chloride (0.05 mol) was added to a solution of 4-nitrophenylamine (0.05 mol) and triethylamine (0.05 mol) in toluene (50 ml) over a period of 30 min, with cooling in an ice bath, and then the mixture was stirred at room remperature for 4 h. After separation of the triethylamine hydrochloride by filtration, the organic phase was washed three times with water. The toluene layer was removed and evaporated. Pink blocks of (I) were obtained by slow evaporation of a chloroform solution over a period of 7 d.

Refinement top

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93-0.97Å) and refined as riding with Uiso(H) = xUeq(carrier).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.
2-Chloro-N-(4-fluorophenyl)acetamide top
Crystal data top
C8H7ClFNOF(000) = 384
Mr = 187.60Dx = 1.479 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 4.7410 (9) Åθ = 8–12°
b = 20.062 (4) ŵ = 0.42 mm1
c = 8.9860 (18) ÅT = 293 K
β = 99.60 (3)°Block, pink
V = 842.7 (3) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
610 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 024
Tmin = 0.885, Tmax = 0.980l = 1010
974 measured reflections3 standard reflections every 200 reflections
861 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
861 reflectionsΔρmax = 0.16 e Å3
103 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 92 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.18 (17)
Crystal data top
C8H7ClFNOV = 842.7 (3) Å3
Mr = 187.60Z = 4
Monoclinic, CcMo Kα radiation
a = 4.7410 (9) ŵ = 0.42 mm1
b = 20.062 (4) ÅT = 293 K
c = 8.9860 (18) Å0.30 × 0.20 × 0.05 mm
β = 99.60 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
610 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.885, Tmax = 0.9803 standard reflections every 200 reflections
974 measured reflections intensity decay: none
861 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.16 e Å3
S = 1.00Δρmin = 0.20 e Å3
861 reflectionsAbsolute structure: Flack (1983), 92 Friedel pairs
103 parametersAbsolute structure parameter: 0.18 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.4033 (4)0.15199 (10)0.5685 (2)0.1096 (7)
N0.1497 (11)0.2970 (2)0.6731 (5)0.0738 (14)
H10.20330.28480.76530.089*
O0.1268 (10)0.2652 (2)0.4535 (5)0.084
F0.6949 (14)0.5279 (2)0.5602 (6)0.147 (2)
C10.5590 (19)0.4687 (3)0.5826 (8)0.095 (2)
C20.3302 (19)0.4493 (4)0.4775 (8)0.097 (2)
H2A0.26840.47490.39200.116*
C30.1935 (15)0.3901 (3)0.5030 (6)0.0817 (18)
H3A0.04500.37430.43080.098*
C40.2759 (13)0.3546 (3)0.6344 (6)0.0707 (15)
C50.5091 (15)0.3787 (3)0.7356 (7)0.0798 (17)
H5A0.57150.35390.82240.096*
C60.6503 (19)0.4357 (4)0.7157 (8)0.099 (2)
H6A0.79950.45160.78740.119*
C70.0366 (13)0.2576 (3)0.5950 (5)0.0710 (16)
C80.1284 (15)0.1998 (3)0.6748 (6)0.089 (2)
H8A0.19370.21530.76540.107*
H8B0.03580.17120.70580.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1293 (15)0.1275 (15)0.0742 (9)0.0277 (13)0.0237 (9)0.0087 (10)
N0.089 (3)0.082 (3)0.051 (2)0.010 (3)0.013 (2)0.004 (2)
O0.0840.0840.0840.0000.0140.000
F0.213 (7)0.120 (3)0.121 (3)0.062 (4)0.067 (4)0.001 (3)
C10.117 (6)0.091 (5)0.086 (5)0.031 (5)0.043 (5)0.001 (4)
C20.121 (6)0.103 (5)0.074 (4)0.000 (5)0.039 (4)0.017 (4)
C30.090 (4)0.096 (5)0.063 (3)0.006 (4)0.025 (3)0.002 (3)
C40.078 (4)0.080 (4)0.058 (3)0.008 (3)0.020 (3)0.008 (3)
C50.095 (4)0.083 (4)0.067 (3)0.016 (4)0.029 (3)0.000 (3)
C60.115 (6)0.116 (5)0.074 (4)0.007 (5)0.038 (4)0.010 (4)
C70.072 (3)0.102 (4)0.039 (2)0.003 (3)0.009 (2)0.011 (3)
C80.111 (5)0.110 (5)0.044 (3)0.017 (4)0.005 (3)0.013 (3)
Geometric parameters (Å, º) top
Cl—C81.765 (7)C3—C41.379 (8)
N—C71.300 (7)C3—H3A0.9300
N—C41.373 (8)C4—C51.396 (9)
N—H10.8600C5—C61.353 (10)
O—C71.281 (6)C5—H5A0.9300
F—C11.381 (7)C6—H6A0.9300
C1—C21.371 (10)C7—C81.467 (8)
C1—C61.372 (10)C8—H8A0.9700
C2—C31.390 (9)C8—H8B0.9700
C2—H2A0.9300
C7—N—C4131.3 (5)C6—C5—C4124.2 (6)
C7—N—H1114.3C6—C5—H5A117.9
C4—N—H1114.3C4—C5—H5A117.9
C2—C1—C6124.2 (7)C5—C6—C1115.6 (7)
C2—C1—F118.6 (7)C5—C6—H6A122.2
C6—C1—F117.0 (7)C1—C6—H6A122.2
C1—C2—C3117.7 (6)O—C7—N123.2 (6)
C1—C2—H2A121.1O—C7—C8120.1 (5)
C3—C2—H2A121.1N—C7—C8116.5 (4)
C4—C3—C2120.7 (6)C7—C8—Cl114.7 (4)
C4—C3—H3A119.7C7—C8—H8A108.6
C2—C3—H3A119.7Cl—C8—H8A108.6
N—C4—C3125.4 (6)C7—C8—H8B108.6
N—C4—C5117.3 (5)Cl—C8—H8B108.6
C3—C4—C5117.3 (6)H8A—C8—H8B107.6
C6—C1—C2—C34.3 (12)C3—C4—C5—C62.8 (10)
F—C1—C2—C3179.1 (7)C4—C5—C6—C13.0 (11)
C1—C2—C3—C43.9 (11)C2—C1—C6—C53.8 (12)
C7—N—C4—C311.2 (11)F—C1—C6—C5178.7 (7)
C7—N—C4—C5168.0 (7)C4—N—C7—O4.7 (11)
C2—C3—C4—N177.7 (6)C4—N—C7—C8179.3 (6)
C2—C3—C4—C53.1 (10)O—C7—C8—Cl9.0 (9)
N—C4—C5—C6177.9 (7)N—C7—C8—Cl174.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O0.932.362.925 (8)119
N—H1···Oi0.862.022.853 (6)164
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7ClFNO
Mr187.60
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)4.7410 (9), 20.062 (4), 8.9860 (18)
β (°) 99.60 (3)
V3)842.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.885, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
974, 861, 610
Rint0.016
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.00
No. of reflections861
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20
Absolute structureFlack (1983), 92 Friedel pairs
Absolute structure parameter0.18 (17)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O0.932.362.925 (8)119
N—H1···Oi0.862.022.853 (6)164
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y. H., Zhang, S. S., Yu, B. H., Li, X. M. & Liu, Q. (2006). Asian J. Chem. 18, 1032–1038.  CAS Google Scholar
First citationZhang, S.-S., Wen, H.-L., Li, X.-M., Xu, L.-L. & Wen, Y.-H. (2006). Acta Cryst. E62, o3412–o3413.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds