metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1-ethyl-3-methyl­imidazolium) hexa­bromidoeuropate(III)

aLaboratory of Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F bus 2404, B-3001 Leuven, Belgium, and bLaboratory of Biomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F bus 2404, B-3001 Leuven, Belgium
*Correspondence e-mail: peter.nockemann@chem.kuleuven.be

(Received 30 April 2008; accepted 17 June 2008; online 21 June 2008)

The crystal structure of the title compound, (C6H11N2)3[EuBr6], consists of 1-ethyl-3-methyl­imidazolium cations and centrosymmetric octa­hedral hexa­bromido­europate anions. The [EuBr6]3− anions are located at the corners and face-centres of the monoclinic unit cell. Characteristic hydrogen-bonding inter­actions can be observed between the bromide anions and the acidic H atoms of the imidazolium cations.

Related literature

For related literature, see: Arenz et al. (2005[Arenz, S., Babai, A., Binnemans, K., Driesen, K., Giernoth, R., Mudring, A. V. & Nockemann, P. (2005). Chem. Phys. Lett. 402, 75-79.]); Binnemans (2007[Binnemans, K. (2007). Chem. Rev. 107, 2592-2614.]); Chaumont & Wipff (2003[Chaumont, A. & Wipff, G. (2003). Phys. Chem. Chem. Phys. 5, 3481-3488.]); Driesen et al. (2004[Driesen, K., Nockemann, P. & Binnemans, K. (2004). Chem. Phys. Lett. 395, 306-310.]); Matsumoto et al. (2002[Matsumoto, K., Tsuda, T., Nohira, T., Hagiwara, R., Ito, Y. & Tamada, O. (2002). Acta Cryst. C58, m186-m187.]); Nockemann et al. (2005[Nockemann, P., Beurer, E., Driesen, K., Van Deun, R., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2005). Chem. Commun. pp. 4354-4355.], 2006[Nockemann, P., Thijs, B., Postelmans, N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2006). J. Am. Chem. Soc. 128, 13658-13659.], 2008[Nockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2008). Cryst. Growth Des. 8, 1353-1363.]); Reichert et al. (2006[Reichert, W. M., Holbrey, J. D., Vigour, K. B., Morgan, T. D., Broker, G. A. & Rogers, R. D. (2006). Chem. Commun. pp. 4767-4779.]); Taubert (2004[Taubert, A. (2004). Angew. Chem. Int. Ed. 43, 5380-5382.]); Tsuda et al. (2001[Tsuda, T., Nohira, T. & Ito, Y. (2001). Electrochim. Acta, 46, 1891-1897.]); Zhao et al. (2004[Zhao, D. B., Fei, Z. F., Scopelliti, R. & Dyson, P. J. (2004). Inorg. Chem. 43, 2197-2205.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H11N2)3[EuBr6]

  • Mr = 964.87

  • Monoclinic, P 21 /c

  • a = 15.765 (1) Å

  • b = 12.729 (1) Å

  • c = 14.920 (1) Å

  • β = 90.36 (1)°

  • V = 2994.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.12 mm−1

  • T = 100 (2) K

  • 0.18 × 0.17 × 0.16 mm

Data collection
  • Oxford Diffraction Gemini A Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.148, Tmax = 0.200

  • 17678 measured reflections

  • 7019 independent reflections

  • 5043 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.099

  • S = 1.07

  • 7019 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −1.44 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Ionic liquids are increasingly attracting the attention of inorganic and materials chemists (Taubert, 2004; Reichert et al., 2006; Nockemann et al., 2008). Lanthanide compounds dissolved in ionic liquids have been of interest especially due to their photoluminescence behavior (Driesen et al., 2004; Binnemans, 2007; Nockemann et al., 2005). Experimental and theoretical studies on lanthanide ions in halide containing imidazolium ionic liquids have been investigated regarding electrochemical and spectroscopic properties (Arenz et al., 2005; Chaumont & Wipff, 2003; Tsuda et al., 2001). Imidazolium cations have been reported to yield low-melting lanthanide-containing ionic liquids like [BMIM]5[Eu(SCN)8] (Nockemann et al., 2006). An analogue structure to the title compound, [EMIM]3[LaCl6], has been reported previously (Matsumoto et al., 2002). The title compound crystallized unexpectedly after dissolving europium bis(trifluoromethylsulfonyl)imide hexahydrate, Eu(Tf2N)3.6H2O in a mixture of [EMIM]Br and a nitrile functionalized imidazolium ionic liquid, 1-butyronitrile-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C3CNMIM][Tf2N]. The crystal structure of [EMIM]3[EuBr6] (Fig. 1) consists of 1-ethyl-3-methylimidazolium cations and octahedral [EuBr6]3- anions. The Eu—Br distances are in the range of 2.7793 (6) Å to 2.8187 (6) Å. The octahedral geometry of the two crystallographically independent [EuBr6]3- anions is slightly distorted with the surrounding of Eu1 more distorted than Eu2 with Br—Eu—Br angles ranging from 86.90 (2)° to 93.10 (2)° for Eu1, compared to angles ranging from 89.11 (2)° to 90.89 (2)° for Eu2. All bromine anions exhibit short contacts to neighboring H-atoms of imidazolium rings ranging from 2.76 Å to 2.90 Å. All three H-atoms of each of the three crystallographically independent imidazolium cations form hydrogen bonds with bromide atoms, which is exemplarily shown in Fig. 2 for one cation. In the packing of [EMIM]3[EuBr6], the [EuBr6]3- anions are located on the corners and face-centers of the monoclinic unit cell (Fig. 3).

Related literature top

For related literature, see: Arenz et al. (2005); Binnemans (2007); Chaumont & Wipff (2003); Driesen et al. (2004); Matsumoto et al. (2002); Nockemann et al. (2005, 2006, 2008); Reichert et al. (2006); Taubert (2004); Tsuda et al. (2001); Zhao et al. (2004).

Experimental top

[EMIM]3[EuBr6] crystallized unintentionally after dissolving europium(III) bis(trifluoromethylsulfonyl)imide hexahydrate, Eu(Tf2N)3.6H2O (0.5 g, 0.454 mmol) in a mixture of 5 ml of [EMIM]Br and 5 ml of a nitrile functionalized imidazolium ionic liquid, 1-butyronitrile-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C3CNMIM][Tf2N]. [EMIM]Br was purchased from IoLiTec. The nitrile functionalized imidazolium ionic liquid has been synthesized following a procedure that has been reported in the literature (Zhao et al. 2004). The title compound crystallized as small slightly yellow blocks.

Refinement top

Hydrogen atoms were refined in the riding mode with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 times for methyl groups).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Structure of the [EuBr6]3- anion and interactions to two exemplary [EMIM]+ cations around Eu1 in the crystal structure of [EMIM]3[EuBr6]. The dashed lines indicate the hydrogen bonding interactions. Displacement ellipsoids are shown at the 50% probability level and H-atoms are drawn as small circles of arbitrary radii.
[Figure 2] Fig. 2. Surrounding of an [EMIM]+ cation in the crystal structure of [EMIM]3[EuBr6]. The dashed lines indicate the hydrogen bonding interactions. Displacement ellipsoids are shown at the 50% probability level and H-atoms are drawn as small circles of arbitrary radii.
[Figure 3] Fig. 3. Packing of the structure of [EMIM]3[EuBr6] viewed along the b axis. The [EuBr6]3- anions are located on the corners and face-centers of the monoclinic unit cell.
Tris(1-ethyl-3-methylimidazolium) hexabromidoeuropate(III) top
Crystal data top
(C6H11N2)3[EuBr6]F(000) = 1824
Mr = 964.87Dx = 2.141 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9203 reflections
a = 15.765 (1) Åθ = 3.0–29.1°
b = 12.729 (1) ŵ = 10.12 mm1
c = 14.920 (1) ÅT = 100 K
β = 90.36 (1)°Block, yellow
V = 2994.0 (4) Å30.18 × 0.17 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Gemini A Ultra
diffractometer
7019 independent reflections
Radiation source: Enhance (Mo) X-ray Source5043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.3310 pixels mm-1θmax = 29.1°, θmin = 3.0°
ω and ϕ scansh = 2113
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1417
Tmin = 0.148, Tmax = 0.200l = 1919
17678 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
7019 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 1.75 e Å3
0 restraintsΔρmin = 1.44 e Å3
Crystal data top
(C6H11N2)3[EuBr6]V = 2994.0 (4) Å3
Mr = 964.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.765 (1) ŵ = 10.12 mm1
b = 12.729 (1) ÅT = 100 K
c = 14.920 (1) Å0.18 × 0.17 × 0.16 mm
β = 90.36 (1)°
Data collection top
Oxford Diffraction Gemini A Ultra
diffractometer
7019 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
5043 reflections with I > 2σ(I)
Tmin = 0.148, Tmax = 0.200Rint = 0.029
17678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 1.75 e Å3
7019 reflectionsΔρmin = 1.44 e Å3
290 parameters
Special details top

Experimental. CrysAlis RED (CrysAlis RED, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9054 (4)0.1566 (5)0.4127 (4)0.0200 (14)
H10.93610.20680.44710.024*
C20.8011 (5)0.0618 (5)0.3547 (4)0.0257 (15)
H20.74590.03480.34280.031*
C30.8726 (4)0.0310 (5)0.3170 (4)0.0228 (14)
H30.87810.02180.27250.027*
C41.0300 (4)0.0820 (5)0.3349 (4)0.0171 (13)
H4A1.05760.15000.34910.021*
H4B1.03790.06800.27020.021*
C51.0725 (4)0.0044 (5)0.3889 (4)0.0212 (14)
H5A1.06140.00640.45280.032*
H5B1.13380.00290.37850.032*
H5C1.04970.07270.37030.032*
C60.7598 (4)0.2016 (5)0.4680 (4)0.0270 (16)
H6A0.74280.16040.52040.041*
H6B0.70980.21690.43090.041*
H6C0.78580.26760.48800.041*
C70.6503 (4)0.3160 (6)0.2301 (4)0.0235 (15)
H70.59220.30540.21590.028*
C80.7896 (4)0.2961 (5)0.2383 (4)0.0243 (15)
H80.84540.26960.23090.029*
C90.7664 (4)0.3830 (5)0.2844 (4)0.0217 (14)
H90.80390.42870.31560.026*
C100.6311 (5)0.4800 (6)0.3179 (4)0.0306 (17)
H10A0.58070.49230.27940.037*
H10B0.66500.54550.31890.037*
C110.6025 (5)0.4553 (6)0.4115 (5)0.0358 (18)
H11A0.57150.38860.41140.054*
H11B0.56530.51150.43290.054*
H11C0.65210.44970.45120.054*
C120.7057 (5)0.1584 (5)0.1507 (4)0.0291 (16)
H12A0.66580.11110.18050.044*
H12B0.76070.12330.14440.044*
H12C0.68360.17690.09120.044*
C130.7070 (4)0.8020 (5)0.3480 (4)0.0272 (15)
H130.66710.83810.38410.033*
C140.8247 (5)0.7279 (7)0.3036 (5)0.042 (2)
H140.88130.70240.30250.051*
C150.7644 (4)0.7205 (7)0.2371 (5)0.037 (2)
H150.77200.68880.18000.045*
C160.6146 (5)0.7797 (6)0.2138 (5)0.0376 (18)
H16A0.56980.81210.25080.045*
H16B0.59420.71000.19370.045*
C170.6318 (5)0.8486 (6)0.1327 (5)0.045 (2)
H17A0.65720.91500.15240.068*
H17B0.57830.86290.10110.068*
H17C0.67090.81230.09230.068*
C180.8275 (5)0.8070 (6)0.4594 (4)0.0316 (17)
H18A0.78970.85040.49590.047*
H18B0.88000.84580.44760.047*
H18C0.84100.74210.49170.047*
N10.9384 (3)0.0896 (4)0.3541 (3)0.0166 (11)
N20.8220 (3)0.1409 (4)0.4148 (3)0.0141 (10)
N30.6826 (4)0.3942 (4)0.2789 (3)0.0281 (13)
N40.7163 (3)0.2543 (4)0.2045 (3)0.0194 (11)
N50.6912 (4)0.7670 (4)0.2673 (4)0.0294 (13)
N60.7846 (4)0.7809 (4)0.3727 (4)0.0273 (13)
Br10.99929 (4)0.37839 (5)0.34343 (4)0.01889 (14)
Br20.82537 (4)0.52642 (5)0.48677 (4)0.02342 (15)
Br31.03396 (4)0.68086 (5)0.39729 (4)0.01711 (14)
Br40.33611 (4)0.02950 (5)0.43034 (4)0.01855 (14)
Br50.50481 (4)0.21190 (5)0.54969 (4)0.02105 (14)
Br60.56634 (4)0.05083 (5)0.33129 (4)0.02125 (15)
Eu11.00000.50000.50000.00923 (9)
Eu20.50000.00000.50000.01018 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (4)0.013 (3)0.015 (3)0.001 (3)0.008 (3)0.003 (2)
C20.036 (4)0.017 (3)0.024 (3)0.003 (3)0.003 (3)0.004 (3)
C30.025 (3)0.018 (3)0.026 (3)0.000 (3)0.004 (3)0.007 (3)
C40.017 (3)0.021 (3)0.014 (3)0.001 (3)0.000 (2)0.000 (3)
C50.014 (3)0.021 (3)0.029 (3)0.001 (3)0.003 (3)0.002 (3)
C60.036 (4)0.018 (3)0.028 (3)0.005 (3)0.015 (3)0.005 (3)
C70.016 (3)0.039 (4)0.015 (3)0.000 (3)0.006 (2)0.004 (3)
C80.028 (4)0.026 (4)0.019 (3)0.004 (3)0.001 (3)0.005 (3)
C90.023 (3)0.026 (4)0.017 (3)0.005 (3)0.008 (3)0.002 (3)
C100.036 (4)0.028 (4)0.028 (4)0.013 (3)0.003 (3)0.002 (3)
C110.026 (4)0.047 (5)0.035 (4)0.003 (3)0.006 (3)0.009 (4)
C120.043 (4)0.023 (4)0.021 (3)0.005 (3)0.009 (3)0.004 (3)
C130.029 (4)0.027 (4)0.026 (3)0.001 (3)0.000 (3)0.007 (3)
C140.050 (5)0.054 (6)0.023 (4)0.023 (4)0.000 (3)0.014 (4)
C150.014 (3)0.063 (6)0.035 (4)0.015 (3)0.005 (3)0.014 (4)
C160.029 (4)0.037 (5)0.047 (5)0.004 (3)0.009 (3)0.017 (4)
C170.054 (5)0.044 (5)0.037 (4)0.000 (4)0.026 (4)0.005 (4)
C180.036 (4)0.034 (4)0.025 (3)0.012 (3)0.007 (3)0.008 (3)
N10.017 (3)0.016 (3)0.017 (2)0.002 (2)0.001 (2)0.002 (2)
N20.009 (2)0.017 (3)0.016 (2)0.001 (2)0.0001 (19)0.004 (2)
N30.044 (4)0.021 (3)0.019 (3)0.003 (3)0.006 (3)0.000 (2)
N40.019 (3)0.026 (3)0.014 (2)0.004 (2)0.002 (2)0.001 (2)
N50.030 (3)0.023 (3)0.036 (3)0.004 (3)0.005 (3)0.007 (3)
N60.034 (3)0.021 (3)0.027 (3)0.010 (3)0.008 (3)0.000 (2)
Br10.0281 (3)0.0149 (3)0.0137 (3)0.0037 (3)0.0016 (2)0.0014 (2)
Br20.0153 (3)0.0261 (4)0.0288 (3)0.0010 (3)0.0015 (3)0.0004 (3)
Br30.0229 (3)0.0138 (3)0.0146 (3)0.0018 (2)0.0001 (2)0.0010 (2)
Br40.0137 (3)0.0225 (3)0.0195 (3)0.0012 (2)0.0022 (2)0.0004 (3)
Br50.0235 (3)0.0168 (3)0.0228 (3)0.0011 (3)0.0039 (2)0.0003 (3)
Br60.0185 (3)0.0301 (4)0.0152 (3)0.0005 (3)0.0030 (2)0.0040 (3)
Eu10.01068 (18)0.00812 (19)0.00889 (18)0.00080 (16)0.00038 (14)0.00018 (15)
Eu20.00931 (18)0.0124 (2)0.00889 (18)0.00017 (16)0.00048 (14)0.00114 (16)
Geometric parameters (Å, º) top
C1—N11.329 (7)C12—H12A0.9800
C1—N21.331 (8)C12—H12B0.9800
C1—H10.9500C12—H12C0.9800
C2—C31.322 (9)C13—N61.304 (9)
C2—N21.388 (8)C13—N51.306 (8)
C2—H20.9500C13—H130.9500
C3—N11.390 (8)C14—C151.373 (10)
C3—H30.9500C14—N61.387 (8)
C4—N11.478 (7)C14—H140.9500
C4—C51.517 (8)C15—N51.375 (8)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—N51.452 (9)
C5—H5A0.9800C16—C171.520 (11)
C5—H5B0.9800C16—H16A0.9900
C5—H5C0.9800C16—H16B0.9900
C6—N21.482 (7)C17—H17A0.9800
C6—H6A0.9800C17—H17B0.9800
C6—H6B0.9800C17—H17C0.9800
C6—H6C0.9800C18—N61.495 (9)
C7—N31.332 (8)C18—H18A0.9800
C7—N41.360 (8)C18—H18B0.9800
C7—H70.9500C18—H18C0.9800
C8—C91.355 (9)Br1—Eu12.8024 (6)
C8—N41.365 (8)Br2—Eu12.7793 (6)
C8—H80.9500Br3—Eu12.8188 (6)
C9—N31.330 (8)Br4—Eu22.8041 (6)
C9—H90.9500Br5—Eu22.7982 (6)
C10—N31.483 (8)Br6—Eu22.8074 (5)
C10—C111.503 (9)Eu1—Br2i2.7794 (6)
C10—H10A0.9900Eu1—Br1i2.8023 (6)
C10—H10B0.9900Eu1—Br3i2.8187 (6)
C11—H11A0.9800Eu2—Br5ii2.7982 (6)
C11—H11B0.9800Eu2—Br4ii2.8041 (6)
C11—H11C0.9800Eu2—Br6ii2.8073 (5)
C12—N41.470 (8)
N1—C1—N2108.1 (5)C17—C16—H16A109.6
N1—C1—H1125.9N5—C16—H16B109.6
N2—C1—H1125.9C17—C16—H16B109.6
C3—C2—N2106.8 (6)H16A—C16—H16B108.1
C3—C2—H2126.6C16—C17—H17A109.5
N2—C2—H2126.6C16—C17—H17B109.5
C2—C3—N1108.0 (6)H17A—C17—H17B109.5
C2—C3—H3126.0C16—C17—H17C109.5
N1—C3—H3126.0H17A—C17—H17C109.5
N1—C4—C5111.9 (5)H17B—C17—H17C109.5
N1—C4—H4A109.2N6—C18—H18A109.5
C5—C4—H4A109.2N6—C18—H18B109.5
N1—C4—H4B109.2H18A—C18—H18B109.5
C5—C4—H4B109.2N6—C18—H18C109.5
H4A—C4—H4B107.9H18A—C18—H18C109.5
C4—C5—H5A109.5H18B—C18—H18C109.5
C4—C5—H5B109.5C1—N1—C3108.2 (5)
H5A—C5—H5B109.5C1—N1—C4123.8 (5)
C4—C5—H5C109.5C3—N1—C4128.0 (5)
H5A—C5—H5C109.5C1—N2—C2108.9 (5)
H5B—C5—H5C109.5C1—N2—C6126.3 (5)
N2—C6—H6A109.5C2—N2—C6124.7 (5)
N2—C6—H6B109.5C9—N3—C7109.3 (5)
H6A—C6—H6B109.5C9—N3—C10126.9 (6)
N2—C6—H6C109.5C7—N3—C10123.8 (6)
H6A—C6—H6C109.5C7—N4—C8108.5 (5)
H6B—C6—H6C109.5C7—N4—C12123.2 (6)
N3—C7—N4107.1 (5)C8—N4—C12128.2 (6)
N3—C7—H7126.4C13—N5—C15107.1 (6)
N4—C7—H7126.4C13—N5—C16128.4 (6)
C9—C8—N4106.0 (6)C15—N5—C16124.3 (6)
C9—C8—H8127.0C13—N6—C14108.8 (6)
N4—C8—H8127.0C13—N6—C18128.1 (5)
N3—C9—C8109.1 (6)C14—N6—C18123.1 (6)
N3—C9—H9125.5Br2—Eu1—Br2i180.0
C8—C9—H9125.5Br2—Eu1—Br1i89.496 (19)
N3—C10—C11112.2 (6)Br2i—Eu1—Br1i90.505 (18)
N3—C10—H10A109.2Br2—Eu1—Br190.505 (19)
C11—C10—H10A109.2Br2i—Eu1—Br189.494 (18)
N3—C10—H10B109.2Br1i—Eu1—Br1180.0
C11—C10—H10B109.2Br2—Eu1—Br3i86.905 (18)
H10A—C10—H10B107.9Br2i—Eu1—Br3i93.095 (18)
C10—C11—H11A109.5Br1i—Eu1—Br3i89.872 (16)
C10—C11—H11B109.5Br1—Eu1—Br3i90.129 (16)
H11A—C11—H11B109.5Br2—Eu1—Br393.096 (18)
C10—C11—H11C109.5Br2i—Eu1—Br386.904 (18)
H11A—C11—H11C109.5Br1i—Eu1—Br390.128 (16)
H11B—C11—H11C109.5Br1—Eu1—Br389.871 (16)
N4—C12—H12A109.5Br3i—Eu1—Br3180.0
N4—C12—H12B109.5Br5—Eu2—Br5ii180.0
H12A—C12—H12B109.5Br5—Eu2—Br4ii90.431 (18)
N4—C12—H12C109.5Br5ii—Eu2—Br4ii89.569 (18)
H12A—C12—H12C109.5Br5—Eu2—Br489.568 (18)
H12B—C12—H12C109.5Br5ii—Eu2—Br490.432 (18)
N6—C13—N5111.3 (6)Br4ii—Eu2—Br4180.0
N6—C13—H13124.4Br5—Eu2—Br6ii89.668 (18)
N5—C13—H13124.4Br5ii—Eu2—Br6ii90.332 (18)
C15—C14—N6104.7 (7)Br4ii—Eu2—Br6ii89.105 (17)
C15—C14—H14127.6Br4—Eu2—Br6ii90.895 (17)
N6—C14—H14127.6Br5—Eu2—Br690.331 (18)
C14—C15—N5108.2 (6)Br5ii—Eu2—Br689.668 (18)
C14—C15—H15125.9Br4ii—Eu2—Br690.896 (17)
N5—C15—H15125.9Br4—Eu2—Br689.104 (17)
N5—C16—C17110.5 (6)Br6ii—Eu2—Br6180.0
N5—C16—H16A109.6
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C6H11N2)3[EuBr6]
Mr964.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.765 (1), 12.729 (1), 14.920 (1)
β (°) 90.36 (1)
V3)2994.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)10.12
Crystal size (mm)0.18 × 0.17 × 0.16
Data collection
DiffractometerOxford Diffraction Gemini A Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.148, 0.200
No. of measured, independent and
observed [I > 2σ(I)] reflections
17678, 7019, 5043
Rint0.029
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.099, 1.07
No. of reflections7019
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 1.44

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), PLATON (Spek, 2003).

 

Acknowledgements

The authors acknowledge the FWO-Flanders for financial support (project No. G.0508.07). Financial support by the Katholieke Universiteit Leuven is also acknowledged (project Nos. GOA08/05 and IDO/05/005). Dr Oliver Presly from Oxford Diffraction Ltd is greatly acknowledged for the collection and processing of the diffraction data.

References

First citationArenz, S., Babai, A., Binnemans, K., Driesen, K., Giernoth, R., Mudring, A. V. & Nockemann, P. (2005). Chem. Phys. Lett. 402, 75–79.  Web of Science CrossRef CAS Google Scholar
First citationBinnemans, K. (2007). Chem. Rev. 107, 2592–2614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChaumont, A. & Wipff, G. (2003). Phys. Chem. Chem. Phys. 5, 3481–3488.  Web of Science CrossRef CAS Google Scholar
First citationDriesen, K., Nockemann, P. & Binnemans, K. (2004). Chem. Phys. Lett. 395, 306–310.  Web of Science CrossRef CAS Google Scholar
First citationMatsumoto, K., Tsuda, T., Nohira, T., Hagiwara, R., Ito, Y. & Tamada, O. (2002). Acta Cryst. C58, m186–m187.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNockemann, P., Beurer, E., Driesen, K., Van Deun, R., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2005). Chem. Commun. pp. 4354–4355.  Web of Science CSD CrossRef Google Scholar
First citationNockemann, P., Thijs, B., Postelmans, N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2006). J. Am. Chem. Soc. 128, 13658–13659.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2008). Cryst. Growth Des. 8, 1353–1363.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationReichert, W. M., Holbrey, J. D., Vigour, K. B., Morgan, T. D., Broker, G. A. & Rogers, R. D. (2006). Chem. Commun. pp. 4767–4779.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaubert, A. (2004). Angew. Chem. Int. Ed. 43, 5380–5382.  Web of Science CrossRef CAS Google Scholar
First citationTsuda, T., Nohira, T. & Ito, Y. (2001). Electrochim. Acta, 46, 1891–1897.  Web of Science CrossRef CAS Google Scholar
First citationZhao, D. B., Fei, Z. F., Scopelliti, R. & Dyson, P. J. (2004). Inorg. Chem. 43, 2197–2205.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds