metal-organic compounds
Tetrachlorido(4,4′-dimethyl-2,2′-bipyridine-κ2N,N′)platinum(IV)
aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: myousefi50@yahoo.com
The 4(C12H12N2)], contains one half-molecule; a twofold rotation axis passes through the Pt atom and the mid-point of the C—C bond linking the two rings. The PtIV atom is six-coordinated in an octahedral configuration by two N atoms of the 4,4′-dimethyl-2,2′-bipyridine ligand and four terminal Cl atoms. In the there are weak π–π interactions between pyridine rings, with a centroid–centroid distance of 4.365 (3) Å.
of the title compound, [PtClRelated literature
For related literature, see: Hedin (1886); Joergensen (1900); Bajusz et al. (1989); Vorobevdesyatovskii et al. (1991); Gaballa et al. (2003); Casas et al. (2005); Hambley (1986); Hafizovic et al. (2006); Delir Kheirollahi Nezhad et al. (2008); Crowder et al. (2004); Junicke et al. (1997); Khripun et al. (2006); Witkowski et al. (1997); Kuduk-Jaworska et al. (1988, 1990); Bokach et al. (2003); Kukushkin et al. (1998); Garnovskii et al. (2001); Luzyanin, Kukushkin et al. (2002); Gonzalez et al. (2002); Luzyanin, Haukka et al. (2002); Yousefi et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808016796/hk2470sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016796/hk2470Isup2.hkl
For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2' -bipyridine (0.11 g, 0.58 mmol) in methanol (10 ml) was added to a solution of H2PtCl6.6H2O, (0.30 g, 0.58 mmol) in methanol (10 ml) at room temperature. Crystals suitable for X-ray analysis were obtained by methanol diffusion in a solution of yellow precipitate in DMSO after one week (yield; 0.25 g, 82.8%).
H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) 1/2 - x, 1/2 - y, z]. |
[PtCl4(C12H12N2)] | F(000) = 976 |
Mr = 521.12 | Dx = 2.150 Mg m−3 |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 1510 reflections |
a = 6.9497 (7) Å | θ = 2.8–29.2° |
b = 13.3774 (13) Å | µ = 9.36 mm−1 |
c = 17.3195 (16) Å | T = 298 K |
V = 1610.2 (3) Å3 | Prism, yellow |
Z = 4 | 0.25 × 0.23 × 0.21 mm |
Stoe IPDS II diffractometer | 2157 independent reflections |
Radiation source: fine-focus sealed tube | 1779 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 0.15 mm pixels mm-1 | θmax = 29.2°, θmin = 2.8° |
rotation method scans | h = −6→9 |
Absorption correction: numerical shape of crystal determined optically | k = −18→17 |
Tmin = 0.172, Tmax = 0.275 | l = −23→18 |
5803 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0451P)2 + 3.1448P] where P = (Fo2 + 2Fc2)/3 |
2157 reflections | (Δ/σ)max = 0.007 |
87 parameters | Δρmax = 0.96 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
[PtCl4(C12H12N2)] | V = 1610.2 (3) Å3 |
Mr = 521.12 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 6.9497 (7) Å | µ = 9.36 mm−1 |
b = 13.3774 (13) Å | T = 298 K |
c = 17.3195 (16) Å | 0.25 × 0.23 × 0.21 mm |
Stoe IPDS II diffractometer | 2157 independent reflections |
Absorption correction: numerical shape of crystal determined optically | 1779 reflections with I > 2σ(I) |
Tmin = 0.172, Tmax = 0.275 | Rint = 0.049 |
5803 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.96 e Å−3 |
2157 reflections | Δρmin = −0.81 e Å−3 |
87 parameters |
Experimental. (X-SHAPE and X-RED; Stoe & Cie, 2005) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.2500 | 0.2500 | 0.451996 (14) | 0.02949 (11) | |
Cl1 | 0.0431 (2) | 0.38548 (12) | 0.45575 (10) | 0.0500 (4) | |
Cl2 | 0.0689 (2) | 0.17462 (12) | 0.35700 (8) | 0.0481 (3) | |
N1 | 0.4010 (6) | 0.3087 (3) | 0.5416 (2) | 0.0316 (9) | |
C1 | 0.3349 (8) | 0.2829 (4) | 0.6127 (3) | 0.0304 (10) | |
C2 | 0.4230 (8) | 0.3185 (4) | 0.6782 (3) | 0.0381 (11) | |
H2 | 0.3744 | 0.3015 | 0.7265 | 0.046* | |
C3 | 0.5850 (8) | 0.3801 (4) | 0.6728 (3) | 0.0399 (12) | |
C4 | 0.6800 (11) | 0.4197 (6) | 0.7439 (4) | 0.0578 (18) | |
H4A | 0.7228 | 0.3649 | 0.7753 | 0.069* | |
H4B | 0.5898 | 0.4595 | 0.7725 | 0.069* | |
H4C | 0.7884 | 0.4601 | 0.7296 | 0.069* | |
C5 | 0.6513 (9) | 0.4028 (5) | 0.5998 (4) | 0.0472 (14) | |
H5 | 0.7597 | 0.4429 | 0.5942 | 0.057* | |
C6 | 0.5593 (9) | 0.3668 (5) | 0.5349 (3) | 0.0424 (13) | |
H6 | 0.6065 | 0.3827 | 0.4862 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.03027 (15) | 0.03300 (16) | 0.02522 (16) | −0.00577 (10) | 0.000 | 0.000 |
Cl1 | 0.0429 (7) | 0.0431 (8) | 0.0638 (10) | 0.0050 (6) | 0.0091 (7) | 0.0049 (6) |
Cl2 | 0.0523 (8) | 0.0592 (8) | 0.0327 (6) | −0.0138 (7) | −0.0124 (6) | −0.0019 (6) |
N1 | 0.031 (2) | 0.035 (2) | 0.0283 (19) | −0.0121 (18) | −0.0011 (16) | −0.0041 (16) |
C1 | 0.031 (2) | 0.036 (2) | 0.024 (2) | −0.011 (2) | −0.0050 (19) | 0.0000 (18) |
C2 | 0.040 (3) | 0.044 (3) | 0.031 (2) | −0.007 (2) | −0.002 (2) | 0.004 (2) |
C3 | 0.035 (3) | 0.039 (3) | 0.046 (3) | −0.011 (2) | −0.007 (2) | −0.001 (2) |
C4 | 0.054 (4) | 0.070 (4) | 0.049 (4) | −0.021 (4) | −0.018 (3) | −0.005 (3) |
C5 | 0.036 (3) | 0.053 (4) | 0.053 (3) | −0.020 (3) | −0.006 (3) | −0.003 (3) |
C6 | 0.040 (3) | 0.052 (3) | 0.035 (2) | −0.020 (3) | 0.007 (2) | −0.001 (2) |
Pt1—N1 | 2.031 (4) | C2—H2 | 0.9300 |
Pt1—N1i | 2.031 (4) | C3—C5 | 1.380 (9) |
Pt1—Cl2 | 2.3038 (13) | C3—C4 | 1.494 (8) |
Pt1—Cl2i | 2.3038 (13) | C4—H4A | 0.9600 |
Pt1—Cl1i | 2.3146 (16) | C4—H4B | 0.9600 |
Pt1—Cl1 | 2.3146 (16) | C4—H4C | 0.9600 |
C1—N1 | 1.359 (6) | C5—C6 | 1.379 (8) |
C1—C2 | 1.374 (7) | C5—H5 | 0.9300 |
C1—C1i | 1.472 (10) | C6—N1 | 1.352 (7) |
C2—C3 | 1.398 (7) | C6—H6 | 0.9300 |
N1—Pt1—N1i | 80.4 (2) | C3—C2—H2 | 119.7 |
N1—Pt1—Cl2 | 175.58 (12) | C5—C3—C2 | 117.4 (5) |
N1i—Pt1—Cl2 | 95.40 (13) | C5—C3—C4 | 122.0 (5) |
N1—Pt1—Cl2i | 95.40 (13) | C2—C3—C4 | 120.6 (6) |
N1i—Pt1—Cl2i | 175.58 (12) | C3—C4—H4A | 109.5 |
Cl2—Pt1—Cl2i | 88.85 (8) | C3—C4—H4B | 109.5 |
N1—Pt1—Cl1i | 87.72 (14) | H4A—C4—H4B | 109.5 |
N1i—Pt1—Cl1i | 89.81 (14) | C3—C4—H4C | 109.5 |
Cl2—Pt1—Cl1i | 90.96 (6) | H4A—C4—H4C | 109.5 |
Cl2i—Pt1—Cl1i | 91.34 (6) | H4B—C4—H4C | 109.5 |
N1—Pt1—Cl1 | 89.81 (14) | C6—C5—C3 | 121.0 (5) |
N1i—Pt1—Cl1 | 87.72 (14) | C6—C5—H5 | 119.5 |
Cl2—Pt1—Cl1 | 91.34 (6) | C3—C5—H5 | 119.5 |
Cl2i—Pt1—Cl1 | 90.96 (6) | N1—C6—C5 | 120.6 (5) |
Cl1i—Pt1—Cl1 | 176.78 (8) | N1—C6—H6 | 119.7 |
N1—C1—C2 | 120.6 (5) | C5—C6—H6 | 119.7 |
N1—C1—C1i | 115.0 (3) | C6—N1—C1 | 119.9 (4) |
C2—C1—C1i | 124.4 (3) | C6—N1—Pt1 | 125.3 (3) |
C1—C2—C3 | 120.5 (5) | C1—N1—Pt1 | 114.8 (3) |
C1—C2—H2 | 119.7 | ||
N1—C1—C2—C3 | −1.5 (9) | C1i—C1—N1—C6 | −178.3 (6) |
C1i—C1—C2—C3 | 179.4 (7) | C2—C1—N1—Pt1 | −179.3 (4) |
C1—C2—C3—C5 | −0.1 (9) | C1i—C1—N1—Pt1 | −0.1 (8) |
C1—C2—C3—C4 | 179.4 (6) | N1i—Pt1—N1—C6 | 178.1 (6) |
C2—C3—C5—C6 | 0.7 (10) | Cl1i—Pt1—N1—C6 | 87.9 (5) |
C4—C3—C5—C6 | −178.8 (7) | Cl1—Pt1—N1—C6 | −94.2 (5) |
C3—C5—C6—N1 | 0.3 (10) | N1i—Pt1—N1—C1 | 0.0 (3) |
C5—C6—N1—C1 | −2.0 (9) | Cl2i—Pt1—N1—C1 | 178.7 (4) |
C5—C6—N1—Pt1 | −179.9 (5) | Cl1i—Pt1—N1—C1 | −90.2 (4) |
C2—C1—N1—C6 | 2.6 (9) | Cl1—Pt1—N1—C1 | 87.8 (4) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [PtCl4(C12H12N2)] |
Mr | 521.12 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 298 |
a, b, c (Å) | 6.9497 (7), 13.3774 (13), 17.3195 (16) |
V (Å3) | 1610.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.36 |
Crystal size (mm) | 0.25 × 0.23 × 0.21 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Numerical shape of crystal determined optically |
Tmin, Tmax | 0.172, 0.275 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5803, 2157, 1779 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.097, 1.16 |
No. of reflections | 2157 |
No. of parameters | 87 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.96, −0.81 |
Computer programs: X-AREA (Stoe & Cie, 2005), X-AREA, X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Pt1—N1 | 2.031 (4) | Pt1—Cl1 | 2.3146 (16) |
Pt1—Cl2 | 2.3038 (13) | ||
N1—Pt1—N1i | 80.4 (2) | Cl2—Pt1—Cl1i | 90.96 (6) |
N1—Pt1—Cl2 | 175.58 (12) | N1—Pt1—Cl1 | 89.81 (14) |
N1—Pt1—Cl2i | 95.40 (13) | Cl2—Pt1—Cl1 | 91.34 (6) |
Cl2—Pt1—Cl2i | 88.85 (8) | Cl1i—Pt1—Cl1 | 176.78 (8) |
N1—Pt1—Cl1i | 87.72 (14) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
Acknowledgements
We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Bajusz, S., Janaky, T., Csernus, V. J., Bokser, L., Fedeke, M., Srkalovic, G., Redding, T. W. & Schally, A. V. (1989). Proc. Natl Acad. Sci. USA, 86, 6313–6317. CrossRef CAS PubMed Web of Science Google Scholar
Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560–7568. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casas, J. S., Castineiras, A., Parajo, Y., Sanchez, A., Gonzalez, A. S. & Sordo, J. (2005). Polyhedron, 24, 1196–1202. Web of Science CSD CrossRef CAS Google Scholar
Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72–78. Web of Science CSD CrossRef PubMed CAS Google Scholar
Delir Kheirollahi Nezhad, P., Azadbakht, F., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m575–m576. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem. 629, 703–710. Web of Science CSD CrossRef CAS Google Scholar
Garnovskii, D. A., Kukushkin, V. Y., Haukka, M., Wagner, G. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Dalton Trans, pp. 560–566. CrossRef Google Scholar
Gonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem. 41, 470–478. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hambley, T. W. (1986). Acta Cryst. C42, 49–51. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hedin, S. G. (1886). Acta Univ. Lund. 22, 1–6. Google Scholar
Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437–439. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kuduk-Jaworska, J., Kubiak, M., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1990). Acta Cryst. C46, 2046–2049. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Joergensen, S. M. (1900). Z. Anorg. Chem. 25, 353–377. Google Scholar
Junicke, H., Schenzel, K., Heinemann, F. W., Pelz, K., Bogel, H. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 603–607. CSD CrossRef CAS Web of Science Google Scholar
Khripun, A. V., Selivanov, S. I., Kukushkin, V. Y. & Haukka, M. (2006). Inorg. Chim. Acta, 359, 320–326. Web of Science CSD CrossRef CAS Google Scholar
Kukushkin, V. Y., Pakhomova, T. B., Kukushkin, Y. N., Herrmann, R., Wagner, G. & Pombeiro, A. J. L. (1998). Inorg. Chem. 37, 6511–6517. Web of Science CSD CrossRef PubMed CAS Google Scholar
Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans, pp. 1882–1887. CrossRef Google Scholar
Luzyanin, K. V., Kukushkin, V. Y., Kuznetsov, M. L., Garnovskii, D. A., Haukka, M. & Pombeiro, A. J. L. (2002). Inorg. Chem. 41, 2981–2986. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Vorobevdesyatovskii, N. V., Barinov, A. A., Lukin, Y. N., Sokolov, V. V., Demidov, V. N. & Kuptsov, A. Y. (1991). Zh. Obshch. Khim. 61, 709–716. CAS Google Scholar
Witkowski, H., Freisinger, E. & Lippert, B. (1997). Chem. Commun. pp. 1315–1316. CSD CrossRef Web of Science Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2869–m2870. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amine platinum(IV) complexes have been known since the end of the last century (Hedin, 1886; Joergensen, 1900). Some of them have cancerostatic properties from which new interest aroused in these complexes (Bajusz et al., 1989; Vorobevdesyatovskii et al., 1991). Due to the kinetic inertness of hexachloro -platinate(IV), cis- and trans-[PtC14L2] complexes (L=N, O, P, S donor ligand) were mainly prepared by oxidation reactions of the corresponding platinum(II) complexes [PtCl2L2] (Hedin, 1886; Joergensen, 1900).
Several PtIV complexes, with formula, [PtCl4(N-N)], such as [PtCl4- (bipyi)], (II), (Gaballa et al., 2003), [PtCl4(Me2bim)], (III), (Casas et al., 2005), [PtCl4(bipy)], (IV), (Hambley, 1986), [PtCl4(dcbipy)].H2O, (V), (Hafizovic et al., 2006), [PtCl4{pz(py)2}], (VI), (Delir Kheirollahi Nezhad et al., 2008) and [PtCl4(dpk)], (VII), (Crowder et al., 2004) [where bipyi is 2,2'-bi-pyrimidinyl, Me2bim is 1,1'-dimethyl- 2,2'-bi-imidazolyl, bipy is 2,2'-bipyridine, dcbipy is 2,2'- bipyridine-5,5'-dicarboxylic acid, pz(py)2 is 2,3-bis(2-pyridyl)pyrazine and dpk is bis(2-pyridyl)ketone] have been synthesized and characterized by single-crystal X-ray diffraction methods.
There are also several PtIV complexes, with formula, [PtCl4L2], such as cis- and trans-[PtCl4(py)2], (VIII), (Junicke et al., 1997), cis- and trans-[PtCl4(PzH)2], (IX), (Khripun et al., 2006), trans-[PtCl4(NH3)2](1-Mu), (X), (Witkowski et al., 1997), trans-[PtCl4(1-Prim)2], (XI), (Kuduk-Jaworska et al., 1988), cis-[PtCl4(1-Etim)2], (XII), (Kuduk-Jaworska et al., 1990), trans-[PtCl4{NH=C(NMe2)OH}2], (XIII), (Bokach et al., 2003), trans-[PtCl4{NH=C(Me)ON=CMe2}2], (XIV), (Kukushkin et al., 1998), cis-[PtCl4{NH=C(Et)N=CPh2}2], (XV), (Garnovskii et al., 2001), trans- [PtCl4{NH=C(Et)ON=C(OH)Ph}2].2DMSO, (XVI), (Luzyanin, Kukushkin et al., 2002), trans-[PtCl4{NH=C(OMe)But}2], (XVII), (Gonzalez et al., 2002), trans-[PtCl4{NH=C(OH)Et}2], (XVIII), (Luzyanin, Haukka et al., 2002) and trans- [PtCl4(pz)2], (XIX), (Yousefi et al., 2007) [where PzH is pyrazole, 1-Mu is 1-methyluracil, 1-Prim is 1-propylimidazole, 1-Etim is 1-ethylimidazoyl and Pz is pyrazine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of (I) (Fig. 1) contains one-half molecule. The PtIV atom is six-coordinated in octahedral configuration (Table 1) by two N atoms of 4,4'-dimethyl-2,2'-bipyridine ligand and four terminal Cl atoms. The Pt-Cl and Pt-N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (II), (III), (V) and (VI).
In the crystal structure, weak π—π interactions between pyridine rings [symmetry code: 3/2 - x, 1/2 - y, z] may be effective in the stabilization of the structure, with a centroid-centroid distance of 4.365 (3) Å.