organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­benzo­yl)-2,7-di­meth­oxy­naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 28 May 2008; accepted 9 June 2008; online 19 June 2008)

In the title compound, C19H15ClO3, the dihedral angle between the naphthalene ring system and the benzene ring is 72.06 (7)°. The 4-chloro­phenyl group and the carbonyl group are almost coplanar. An inter­molecular C—H⋯O hydrogen bond is formed between an H atom of the 4-chloro­phenyl group and the O atom of one meth­oxy group, forming a zigzag chain along the a axis.

Related literature

For the structures of closely related compounds, see: Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.]); Nakaema, Okamoto et al. (2008[Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.]); Nakaema, Watanabe et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15ClO3

  • Mr = 326.76

  • Orthorhombic, P b c a

  • a = 6.6033 (3) Å

  • b = 16.0751 (7) Å

  • c = 30.2216 (12) Å

  • V = 3208.0 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.21 mm−1

  • T = 296 K

  • 0.40 × 0.15 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.617, Tmax = 0.801

  • 54984 measured reflections

  • 2919 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.11

  • 2919 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.93 2.58 3.401 (2) 148
Symmetry code: (i) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently we have reported the structure of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema, Okamoto et al., 2008) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema, Watanabe et al., 2008). As part of our ongoing studies on the formation reaction and structure of the aroylated naphthalene derivatives synthesis and crystal structure analysis of the title compound, (I), were performed. The title compound was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-chlorobenzoyl chloride.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is displayed in Fig. 1. In the molecule of (I), the interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 72.06 (7)°. The carbonyl group and the 4-chlorophenyl group are almost coplanar [O1—C11—C12—C17 torsion angle = -4.4 (2)°].

In the crystal structure, the molecular packing of (I) is mainly stabilized by van der Waals interaction. The molecules of (I) are aligned consecutively in stacks along the a axis (Fig. 2). Adjacent 4-chlorophenyl groups are exactly parallel, and the perpendicular distance between these planes is 3.660 (1) Å (Fig. 3). Figure 4 shows the herring-bone packing of the naphthalene ring in the crystal. The crystal packing is additionally stabilized by intermolecular C—H···O hydrogen bonding between the methoxy oxygen and a hydrogen atom of the nearby 4-chlorophenyl group of the adjacent molecule (C13—H13···O3i; Fig. 2 and Table 1).

Related literature top

For the structures of closely related compounds, see: Nakaema et al. (2007); Nakaema, Okamoto et al. (2008); Nakaema, Watanabe et al. (2008).

Experimental top

To a solution of 4-chlorobenzoyl chloride (77 mg, 0.44 mmol) and AlCl3 (64 mg, 0.48 mmol) in nitrobenzene (1.0 ml) was added a solution of 2,7-dimethoxynaphthalene (0.40 M in nitrobenzene, 1.0 ml, 0.40 mmol) drop-wise at 0 °C. The reaction mixture was stirred for 6 h at 0 °C and immediately poured into H2O (10 ml) and CHCl3 (5 ml). The aqueous layer was extracted with CHCl3 (3 × 5 ml). The combined organic layers were washed with aqueous 2 M NaOH (3 × 20 ml), brine (3 × 20 ml), and dried over MgSO4 for overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from hexanes to give the title compound as a colorless platelets (m.p. 394.5–394.8 K, yield 102 mg, 78%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 7.87 (d, 1H), 7.78 (d, 2H), 7.72 (d, 1H), 7.39 (d, 2H), 7.15 (d, 1H), 7.02 (dd, 1H), 6.78 (d, 1H), 3.79 (s, 3H), 3.73 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 196.7, 159.0, 155.0, 139.7, 136.5, 133.0, 131.3, 130.8, 129.7, 128.8, 124.4, 121.1, 117.1, 110.1, 102.0, 56.2, 55.2; IR (KBr): 1667, 1628, 1587, 1575, 1513, 1278, 1241, 1047.

Anal. Calcd for C19H15ClO3: C 69.84, H 4.63. Found: C 69.61, H 4.74.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The alignment of the molecules in the crystal structure, viewed along the a axis. H atoms are omitted.
[Figure 3] Fig. 3. The alignment of the molecules in the crystal structure, viewed in an oblique direction. H atoms are omitted.
[Figure 4] Fig. 4. The alignment of the molecules in the crystal structure, showing the herring-bone packing. H atoms are omitted.
1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene top
Crystal data top
C19H15ClO3Dx = 1.353 Mg m3
Mr = 326.76Melting point = 394.5–394.8 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 46869 reflections
a = 6.6033 (3) Åθ = 3.1–68.1°
b = 16.0751 (7) ŵ = 2.21 mm1
c = 30.2216 (12) ÅT = 296 K
V = 3208.0 (2) Å3Platelet, colorless
Z = 80.40 × 0.15 × 0.10 mm
F(000) = 1360
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2919 independent reflections
Radiation source: rotating anode2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.00 pixels mm-1θmax = 68.1°, θmin = 5.5°
ω scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.617, Tmax = 0.801l = 3636
54984 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.118H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.057P)2 + 0.6411P]
where P = (Fo2 + 2Fc2)/3
2919 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C19H15ClO3V = 3208.0 (2) Å3
Mr = 326.76Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 6.6033 (3) ŵ = 2.21 mm1
b = 16.0751 (7) ÅT = 296 K
c = 30.2216 (12) Å0.40 × 0.15 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2919 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2453 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.801Rint = 0.032
54984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.11Δρmax = 0.13 e Å3
2919 reflectionsΔρmin = 0.33 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.30817 (12)0.12548 (4)0.02595 (2)0.1046 (3)
O10.6267 (2)0.08777 (8)0.13581 (5)0.0831 (4)
O21.0971 (2)0.05318 (8)0.18610 (5)0.0795 (4)
O30.2593 (2)0.17844 (8)0.10247 (5)0.0867 (4)
C10.8299 (2)0.02580 (10)0.15836 (5)0.0558 (4)
C20.9962 (3)0.02106 (11)0.18585 (6)0.0631 (4)
C31.0529 (3)0.08948 (13)0.21247 (6)0.0725 (5)
H31.16550.08610.23080.087*
C40.9409 (3)0.16017 (12)0.21089 (6)0.0730 (5)
H40.98050.20530.22810.088*
C50.7672 (3)0.16779 (10)0.18420 (5)0.0616 (4)
C60.6488 (3)0.24079 (11)0.18207 (6)0.0725 (5)
H60.68630.28640.19910.087*
C70.4820 (3)0.24673 (11)0.15594 (6)0.0723 (5)
H70.40720.29570.15520.087*
C80.4234 (3)0.17821 (10)0.13003 (6)0.0644 (4)
C90.5338 (3)0.10614 (10)0.13091 (5)0.0588 (4)
H90.49280.06120.11370.071*
C100.7086 (2)0.09875 (10)0.15751 (5)0.0546 (4)
C110.7780 (2)0.04641 (10)0.12873 (6)0.0572 (4)
C120.9101 (2)0.06394 (9)0.09012 (5)0.0542 (4)
C131.0749 (3)0.01439 (10)0.07974 (6)0.0632 (4)
H131.10370.03190.09710.076*
C141.1968 (3)0.03274 (12)0.04398 (6)0.0718 (5)
H141.30740.00070.03720.086*
C151.1529 (3)0.10086 (11)0.01855 (6)0.0700 (5)
C160.9900 (4)0.15030 (13)0.02771 (7)0.0839 (6)
H160.96150.19610.01000.101*
C170.8687 (3)0.13182 (11)0.06334 (7)0.0736 (5)
H170.75730.16530.06950.088*
C181.2729 (3)0.06178 (17)0.21273 (7)0.0894 (6)
H18A1.33330.11520.20750.107*
H18B1.23630.05710.24340.107*
H18C1.36810.01880.20530.107*
C190.1263 (3)0.24781 (13)0.10308 (9)0.0925 (7)
H19A0.01390.23740.08370.111*
H19B0.19760.29650.09330.111*
H19C0.07750.25640.13260.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1391 (6)0.0859 (4)0.0887 (4)0.0050 (3)0.0444 (4)0.0088 (3)
O10.0689 (8)0.0647 (8)0.1156 (11)0.0185 (6)0.0228 (7)0.0237 (7)
O20.0751 (8)0.0765 (9)0.0869 (9)0.0094 (7)0.0210 (7)0.0126 (7)
O30.0830 (9)0.0638 (8)0.1132 (11)0.0160 (7)0.0117 (8)0.0033 (7)
C10.0563 (9)0.0530 (8)0.0580 (9)0.0081 (7)0.0046 (7)0.0055 (7)
C20.0620 (10)0.0644 (10)0.0630 (10)0.0064 (8)0.0019 (8)0.0055 (7)
C30.0746 (12)0.0808 (13)0.0622 (10)0.0154 (10)0.0051 (9)0.0111 (9)
C40.0908 (14)0.0668 (11)0.0613 (10)0.0239 (10)0.0043 (9)0.0148 (8)
C50.0772 (11)0.0532 (9)0.0544 (8)0.0148 (8)0.0137 (8)0.0073 (7)
C60.1007 (14)0.0491 (9)0.0677 (11)0.0127 (9)0.0175 (10)0.0101 (7)
C70.0923 (13)0.0464 (8)0.0781 (12)0.0022 (9)0.0210 (11)0.0005 (8)
C80.0694 (11)0.0526 (9)0.0711 (10)0.0012 (8)0.0096 (9)0.0029 (7)
C90.0645 (10)0.0483 (8)0.0636 (9)0.0046 (7)0.0062 (8)0.0052 (7)
C100.0628 (9)0.0472 (8)0.0539 (8)0.0094 (7)0.0117 (7)0.0028 (6)
C110.0539 (9)0.0465 (8)0.0711 (10)0.0030 (7)0.0005 (7)0.0041 (7)
C120.0574 (9)0.0442 (7)0.0611 (9)0.0014 (7)0.0045 (7)0.0021 (6)
C130.0671 (10)0.0543 (9)0.0681 (10)0.0097 (8)0.0017 (8)0.0088 (7)
C140.0748 (12)0.0653 (11)0.0752 (11)0.0092 (9)0.0109 (9)0.0003 (9)
C150.0908 (13)0.0565 (9)0.0628 (10)0.0047 (9)0.0110 (9)0.0016 (8)
C160.1138 (16)0.0636 (11)0.0742 (12)0.0172 (12)0.0141 (11)0.0208 (9)
C170.0850 (12)0.0592 (10)0.0766 (12)0.0206 (9)0.0066 (10)0.0143 (8)
C180.0724 (13)0.1075 (17)0.0884 (14)0.0130 (12)0.0139 (11)0.0099 (12)
C190.0852 (14)0.0726 (13)0.1198 (18)0.0214 (11)0.0122 (13)0.0190 (12)
Geometric parameters (Å, º) top
Cl1—C151.7366 (19)C8—C91.369 (2)
O1—C111.219 (2)C9—C101.412 (2)
O2—C21.367 (2)C9—H90.9300
O2—C181.419 (2)C11—C121.484 (2)
O3—C81.367 (2)C12—C131.384 (2)
O3—C191.420 (2)C12—C171.386 (2)
C1—C21.379 (2)C13—C141.380 (2)
C1—C101.420 (2)C13—H130.9300
C1—C111.506 (2)C14—C151.369 (3)
C2—C31.413 (2)C14—H140.9300
C3—C41.356 (3)C15—C161.366 (3)
C3—H30.9300C16—C171.375 (3)
C4—C51.408 (3)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.411 (3)C18—H18A0.9600
C5—C101.426 (2)C18—H18B0.9600
C6—C71.359 (3)C18—H18C0.9600
C6—H60.9300C19—H19A0.9600
C7—C81.406 (3)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C2—O2—C18119.13 (16)O1—C11—C1120.20 (15)
C8—O3—C19119.00 (17)C12—C11—C1118.69 (13)
C2—C1—C10120.37 (15)C13—C12—C17118.41 (16)
C2—C1—C11119.81 (15)C13—C12—C11122.07 (14)
C10—C1—C11119.82 (14)C17—C12—C11119.52 (15)
O2—C2—C1116.08 (14)C14—C13—C12120.88 (16)
O2—C2—C3123.20 (17)C14—C13—H13119.6
C1—C2—C3120.71 (17)C12—C13—H13119.6
C4—C3—C2119.21 (18)C15—C14—C13119.16 (17)
C4—C3—H3120.4C15—C14—H14120.4
C2—C3—H3120.4C13—C14—H14120.4
C3—C4—C5122.49 (16)C16—C15—C14121.23 (18)
C3—C4—H4118.8C16—C15—Cl1119.29 (15)
C5—C4—H4118.8C14—C15—Cl1119.48 (15)
C4—C5—C6123.35 (16)C15—C16—C17119.48 (17)
C4—C5—C10118.52 (17)C15—C16—H16120.3
C6—C5—C10118.12 (17)C17—C16—H16120.3
C7—C6—C5122.26 (16)C16—C17—C12120.83 (18)
C7—C6—H6118.9C16—C17—H17119.6
C5—C6—H6118.9C12—C17—H17119.6
C6—C7—C8119.47 (17)O2—C18—H18A109.5
C6—C7—H7120.3O2—C18—H18B109.5
C8—C7—H7120.3H18A—C18—H18B109.5
O3—C8—C9115.86 (15)O2—C18—H18C109.5
O3—C8—C7123.76 (16)H18A—C18—H18C109.5
C9—C8—C7120.37 (18)H18B—C18—H18C109.5
C8—C9—C10121.17 (15)O3—C19—H19A109.5
C8—C9—H9119.4O3—C19—H19B109.5
C10—C9—H9119.4H19A—C19—H19B109.5
C9—C10—C1122.75 (14)O3—C19—H19C109.5
C9—C10—C5118.59 (15)H19A—C19—H19C109.5
C1—C10—C5118.66 (15)H19B—C19—H19C109.5
O1—C11—C12121.07 (15)
C18—O2—C2—C1178.33 (18)C2—C1—C10—C52.5 (2)
C18—O2—C2—C32.9 (3)C11—C1—C10—C5176.81 (14)
C10—C1—C2—O2176.63 (15)C4—C5—C10—C9179.66 (15)
C11—C1—C2—O24.0 (2)C6—C5—C10—C91.1 (2)
C10—C1—C2—C32.2 (2)C4—C5—C10—C11.1 (2)
C11—C1—C2—C3177.18 (16)C6—C5—C10—C1178.16 (14)
O2—C2—C3—C4178.39 (17)C2—C1—C11—O1110.8 (2)
C1—C2—C3—C40.3 (3)C10—C1—C11—O169.8 (2)
C2—C3—C4—C51.1 (3)C2—C1—C11—C1271.3 (2)
C3—C4—C5—C6179.95 (17)C10—C1—C11—C12108.01 (17)
C3—C4—C5—C100.7 (3)O1—C11—C12—C13175.57 (17)
C4—C5—C6—C7179.79 (17)C1—C11—C12—C132.2 (2)
C10—C5—C6—C70.6 (3)O1—C11—C12—C174.4 (3)
C5—C6—C7—C80.1 (3)C1—C11—C12—C17177.83 (16)
C19—O3—C8—C9173.79 (17)C17—C12—C13—C140.9 (3)
C19—O3—C8—C77.0 (3)C11—C12—C13—C14179.13 (17)
C6—C7—C8—O3179.41 (17)C12—C13—C14—C150.2 (3)
C6—C7—C8—C90.3 (3)C13—C14—C15—C160.6 (3)
O3—C8—C9—C10178.92 (15)C13—C14—C15—Cl1178.88 (15)
C7—C8—C9—C100.3 (3)C14—C15—C16—C170.5 (3)
C8—C9—C10—C1178.25 (15)Cl1—C15—C16—C17178.95 (18)
C8—C9—C10—C51.0 (2)C15—C16—C17—C120.3 (3)
C2—C1—C10—C9178.27 (15)C13—C12—C17—C161.0 (3)
C11—C1—C10—C92.4 (2)C11—C12—C17—C16179.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.932.583.401 (2)148
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H15ClO3
Mr326.76
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)6.6033 (3), 16.0751 (7), 30.2216 (12)
V3)3208.0 (2)
Z8
Radiation typeCu Kα
µ (mm1)2.21
Crystal size (mm)0.40 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.617, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
54984, 2919, 2453
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.11
No. of reflections2919
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.33

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.932.583.401 (2)148
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was partially supported by the Shorai Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds