metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m914-m915

Bis[4,5-di­methyl-2-(2-pyrid­yl)-1H-imidazole-κ2N2,N3](1H-imidazole-κN3)copper(II) bis­­(perchlorate)

aThe Key Laboratory of Nuclear Medicine, Ministry of Health P. R. China, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China, and bDepartment of Chemistry & Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: lcy_hotmail@yahoo.com.cn

(Received 1 December 2007; accepted 9 June 2008; online 13 June 2008)

In the title complex, [Cu(C3H4N2)(C10H11N3)2](ClO4)2, the CuII cation has a distorted trigonal-bipyramidal geometry defined by a CuN2N′2N′′ donor set. The imidazole ligand is disordered over two orientations of equal occupancy. Two of the perchlorate ion sites are located on a twofold rotation axis, and one of is disordered over two sites of equal occupancy. In the crystal structure there is a two-dimensional infinite network of hydrogen-bonded mol­ecules parallel to the ab plane.

Related literature

For related literature, see: Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Huang et al. (2004[Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218-13219.]); Huang et al. (2005[Huang, X.-C., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2005). Chem. Commun. pp. 2232-2234.]); Kapinos et al. (1998[Kapinos, L. E., Song, B. & Sigel, H. (1998). Inorg. Chim. Acta, 280, 50-56.]); Matthews et al. (1998[Matthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hull, M. N. S. & Lockhart, J. C. (1998). Inorg. Chem. 37, 199-207.]); Tan et al. (1997[Tan, X.-S., Sun, J., Hu, C.-H., Fu, D.-G., Xiang, D.-F., Zheng, P.-J. & Tang, W.-X. (1997). Inorg. Chim. Acta, 257, 203-210.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3H4N2)(C10H11N3)2](ClO4)2

  • Mr = 676.96

  • Tetragonal, P 41 21 2

  • a = 14.6374 (5) Å

  • c = 27.3945 (14) Å

  • V = 5869.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.74, Tmax = 0.79

  • 32170 measured reflections

  • 5775 independent reflections

  • 5315 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.117

  • S = 1.08

  • 5775 reflections

  • 410 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2433 Friedel pairs

  • Flack parameter: 0.013 (17)

Table 1
Selected geometric parameters (Å, °)

Cu1—N5 1.977 (3)
Cu1—N2 1.990 (3)
Cu1—N7 2.007 (3)
Cu1—N1 2.129 (3)
Cu1—N4 2.137 (3)
N5—Cu1—N2 170.20 (15)
N5—Cu1—N7 94.06 (14)
N2—Cu1—N7 95.74 (15)
N5—Cu1—N1 94.06 (13)
N2—Cu1—N1 80.10 (13)
N7—Cu1—N1 127.46 (14)
N5—Cu1—N4 79.52 (13)
N2—Cu1—N4 94.82 (13)
N7—Cu1—N4 123.73 (14)
N1—Cu1—N4 108.79 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O12 0.86 2.16 3.001 (8) 166
N3—H3A⋯O14i 0.86 2.15 2.980 (10) 162
N6—H6⋯O21i 0.86 2.15 3.009 (5) 175
Symmetry code: (i) y, x, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole is ubiquitous in biology and chemistry. It is therefore of interest to synthesize ligands containing imidazole and related heterocyclic system (Tan et al., 1997; Kapinos et al., 1998; Matthews et al., 1998). Imidazole and its derivatives are an important class of heterocycle with N-donor atoms, therefore the investigation of mixed-ligand complexes of a variety of transitional metal ions with imidazole and its derivatives has attracted considerable interest in recent years. The copper-imidazole systems have demonstrated capacities for construction of inorganic-organic hybrid supramolecular isomers (Huang et al., 2004; Huang et al., 2005), and also have profound effects on functions in biological systems (Holm et al., 1996). We report here the crystal structure of the title compound, a mixed-ligand CuII complex.

The crystal structure of the title compound contains distorted CuII complexes in which individual Cu centres exist in a CuN2N'2N'' donor set that defines a distorted trigonal bipyramid geometry. The two N atoms of pyridyl rings and the N atom of imidazole coordinate in a plane around the Cu atom. The N atoms of the two imidazole rings distribute in the axial positions; the Cu1—N2 distance is 1.990 (3) Å. The imidazole ligand is not a ordered system, and the imidazole ring is disordered over two orientations. Two of the perchlorate ion sites (containing Cl1 and Cl2) are located on a twofold rotation axis, and one of these (containing Cl1) displays disorder.

The N3 atom of 4,5-dimethyl-2-(2-pyridyl)imidazole form two hydrogen bonds with the O atom of perchlorate. The N6 atom and N8 atom also each form a hydrogen bond with the O atom of perchlorate; details are presented in Table 2. A two-dimensional infinite network of hydrogen-bonded molecules is present in the structure, running parallel to the ab-plane.

Related literature top

For related literature, see: Holm et al. (1996); Huang et al. (2004); Huang et al. (2005); Kapinos et al. (1998); Matthews et al. (1998); Tan et al. (1997).

Experimental top

The title complex was synthesized by the reaction of 4,5-dimethyl-2- (2-pyridyl)imidazole (0.52 g, 3.0 mmol) and imidazole (0.10 g, 1.5 mmol) with copper(II) perchlorate (0.50 g, 1.5 mmol) dissolved in the methanol (20 ml). Single crystals of (I) suitable for X-ray diffraction were obtained by evaporation of the methanol solution at room temperature.

Refinement top

All H atoms were allowed to ride on their parent atoms at distances of 0.96Å (methyl H), 0.93Å (pyridyl H), 0.93Å (imidazole H) and 0.86Å (N—H imidazole), and with Uiso(H) values of 1.2–1.5 times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: CrystalClear (Rigaku, 2005); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the complex in (I), showing the atomic labelling. Displacement ellipsoids are shown at the 50% probability level. H atoms, counter ions and one disorder component have been omitted for clarity.
Bis[4,5-dimethyl-2-(2-pyridyl)-1H-imidazole-κ2N2,N3](1H- imidazole-κN3)copper(II) bis(perchlorate) top
Crystal data top
[Cu(C3H4N2)(C10H11N3)2](ClO4)2Dx = 1.532 Mg m3
Mr = 676.96Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 8320 reflections
Hall symbol: P 4abw 2nwθ = 2.5–23.8°
a = 14.6374 (5) ŵ = 0.99 mm1
c = 27.3945 (14) ÅT = 293 K
V = 5869.4 (4) Å3Bipyramid, green
Z = 80.32 × 0.26 × 0.24 mm
F(000) = 2776
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5775 independent reflections
Radiation source: sealed tube5315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1814
Tmin = 0.74, Tmax = 0.79k = 1818
32170 measured reflectionsl = 3327
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.049P)2 + 5.1204P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5775 reflectionsΔρmax = 0.54 e Å3
410 parametersΔρmin = 0.64 e Å3
0 restraintsAbsolute structure: Flack (1983), 2433 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (17)
Crystal data top
[Cu(C3H4N2)(C10H11N3)2](ClO4)2Z = 8
Mr = 676.96Mo Kα radiation
Tetragonal, P41212µ = 0.99 mm1
a = 14.6374 (5) ÅT = 293 K
c = 27.3945 (14) Å0.32 × 0.26 × 0.24 mm
V = 5869.4 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5315 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.79Rint = 0.048
32170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.54 e Å3
S = 1.08Δρmin = 0.64 e Å3
5775 reflectionsAbsolute structure: Flack (1983), 2433 Friedel pairs
410 parametersAbsolute structure parameter: 0.013 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.49074 (3)0.81891 (3)0.002420 (17)0.04289 (13)
C10.5381 (3)0.7035 (3)0.09104 (15)0.0491 (10)
H1A0.56980.75440.10230.059*
C20.5351 (3)0.6266 (3)0.12011 (16)0.0560 (11)
H2A0.56490.62580.15010.067*
C30.4875 (3)0.5508 (3)0.10421 (17)0.0590 (12)
H3B0.48480.49850.12340.071*
C40.4438 (3)0.5534 (3)0.05947 (17)0.0547 (10)
H4A0.41040.50370.04820.066*
C50.4516 (3)0.6338 (3)0.03163 (14)0.0406 (8)
C60.4098 (3)0.6474 (3)0.01525 (14)0.0434 (9)
C70.3344 (3)0.6321 (3)0.08455 (16)0.0555 (11)
C80.3702 (3)0.7184 (3)0.08219 (16)0.0531 (11)
C90.2772 (4)0.5869 (4)0.1227 (2)0.0822 (17)
H9A0.26380.52540.11280.123*
H9B0.22130.62020.12670.123*
H9C0.30990.58590.15310.123*
C100.3611 (5)0.7958 (5)0.1173 (2)0.0863 (19)
H10A0.32580.77640.14500.129*
H10B0.33090.84600.10160.129*
H10C0.42060.81470.12800.129*
C110.6139 (3)0.7685 (3)0.09316 (16)0.0532 (11)
H11A0.56410.73590.10510.064*
C120.6937 (3)0.7703 (3)0.12029 (17)0.0557 (11)
H12A0.69760.73940.14990.067*
C130.7668 (3)0.8185 (3)0.10272 (17)0.0579 (12)
H13A0.82090.82100.12050.070*
C140.7602 (3)0.8632 (3)0.05894 (17)0.0551 (11)
H14A0.80980.89500.04620.066*
C150.6777 (3)0.8597 (2)0.03390 (15)0.0412 (8)
C160.6608 (2)0.9028 (2)0.01296 (14)0.0383 (8)
C170.6694 (3)0.9807 (3)0.08144 (15)0.0502 (9)
C180.5849 (3)0.9440 (3)0.07755 (15)0.0479 (10)
C190.7111 (4)1.0404 (4)0.1201 (2)0.0766 (16)
H19A0.66711.05150.14540.115*
H19B0.76361.01040.13380.115*
H19C0.72941.09750.10590.115*
C200.5027 (4)0.9551 (4)0.1099 (2)0.0757 (16)
H20A0.51890.99070.13800.114*
H20B0.45500.98560.09210.114*
H20C0.48150.89610.12010.114*
C210.4109 (4)1.0078 (3)0.0069 (2)0.0658 (13)0.50
H21A0.46791.03570.00900.079*0.50
C220.2631 (3)0.9850 (4)0.0016 (2)0.075 (5)0.50
H22A0.20040.99500.00010.090*0.50
N80.3313 (4)1.0509 (4)0.00487 (19)0.069 (3)0.50
H8A0.32331.10910.00550.083*0.50
C230.3044 (3)0.9069 (5)0.0015 (2)0.0707 (14)0.50
H23A0.27510.85070.00100.085*0.50
N70.3958 (2)0.9177 (2)0.00537 (13)0.0492 (8)0.50
C23'0.4109 (4)1.0078 (3)0.0069 (2)0.0658 (13)0.50
H21B0.46791.03570.00900.079*0.50
N8'0.2631 (3)0.9850 (4)0.0016 (2)0.075 (3)0.50
H8'A0.20510.99420.00000.090*0.50
N7'0.3958 (2)0.9177 (2)0.00537 (13)0.0492 (8)0.50
C21'0.3044 (3)0.9069 (5)0.0015 (2)0.0707 (14)0.50
H23B0.27510.85070.00100.085*0.50
C22'0.3313 (4)1.0509 (4)0.00487 (19)0.069 (3)0.50
H22B0.32261.11380.00550.083*0.50
N10.4977 (2)0.7080 (2)0.04776 (12)0.0412 (7)
N20.4179 (2)0.7263 (2)0.03865 (12)0.0463 (8)
N30.3601 (2)0.5891 (2)0.04254 (14)0.0514 (9)
H3A0.34680.53380.03470.062*
N40.6058 (2)0.8120 (2)0.05027 (12)0.0420 (7)
N50.5794 (2)0.8946 (2)0.03395 (12)0.0419 (7)
N60.7161 (2)0.9535 (2)0.04085 (13)0.0481 (8)
H60.77200.96680.03430.058*
Cl10.32257 (8)0.32257 (8)0.00000.0702 (5)
O110.2532 (6)0.2691 (6)0.0184 (2)0.081 (3)0.50
O120.2849 (7)0.4105 (5)0.0068 (4)0.084 (2)0.50
O130.3603 (6)0.2882 (6)0.0403 (3)0.089 (3)0.50
O140.3877 (6)0.3325 (6)0.0371 (3)0.080 (2)0.50
Cl20.99578 (7)0.99578 (7)0.00000.0583 (4)
O210.9987 (3)0.9145 (2)0.02515 (14)0.0775 (11)
O221.0050 (3)1.0666 (3)0.03420 (14)0.0815 (12)
Cl30.66607 (8)0.15608 (7)0.02360 (4)0.0550 (3)
O310.7316 (3)0.1668 (3)0.01093 (13)0.0798 (12)
O320.6524 (3)0.2387 (3)0.04837 (15)0.0804 (12)
O330.6871 (3)0.0867 (3)0.05352 (15)0.0864 (13)
O340.5931 (3)0.1353 (3)0.00339 (17)0.0867 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0378 (2)0.0426 (3)0.0483 (2)0.00376 (19)0.0047 (2)0.0029 (2)
C10.043 (2)0.059 (3)0.046 (2)0.0063 (19)0.0089 (18)0.0013 (19)
C20.050 (3)0.074 (3)0.044 (2)0.003 (2)0.0059 (19)0.011 (2)
C30.069 (3)0.054 (3)0.054 (3)0.003 (2)0.006 (2)0.015 (2)
C40.056 (3)0.045 (2)0.063 (3)0.0016 (19)0.001 (2)0.010 (2)
C50.0354 (19)0.046 (2)0.041 (2)0.0006 (16)0.0021 (16)0.0004 (17)
C60.041 (2)0.046 (2)0.043 (2)0.0021 (17)0.0036 (17)0.0039 (17)
C70.049 (2)0.063 (3)0.055 (2)0.003 (2)0.005 (2)0.011 (2)
C80.048 (2)0.066 (3)0.046 (2)0.006 (2)0.0104 (19)0.002 (2)
C90.084 (4)0.086 (4)0.077 (4)0.002 (3)0.033 (3)0.025 (3)
C100.099 (5)0.092 (4)0.068 (3)0.016 (4)0.025 (3)0.022 (3)
C110.059 (3)0.047 (2)0.054 (3)0.007 (2)0.007 (2)0.014 (2)
C120.061 (3)0.049 (2)0.057 (3)0.001 (2)0.015 (2)0.006 (2)
C130.061 (3)0.054 (3)0.059 (3)0.007 (2)0.023 (2)0.004 (2)
C140.043 (2)0.057 (3)0.066 (3)0.0044 (19)0.005 (2)0.006 (2)
C150.040 (2)0.0344 (18)0.049 (2)0.0007 (16)0.0077 (17)0.0044 (16)
C160.0306 (18)0.0389 (19)0.045 (2)0.0029 (15)0.0010 (15)0.0024 (16)
C170.055 (2)0.046 (2)0.050 (2)0.0019 (19)0.0063 (19)0.0026 (18)
C180.047 (2)0.049 (2)0.048 (2)0.0022 (18)0.0001 (18)0.0077 (18)
C190.065 (3)0.079 (4)0.086 (4)0.009 (3)0.021 (3)0.025 (3)
C200.072 (3)0.095 (4)0.060 (3)0.003 (3)0.010 (3)0.025 (3)
C210.083 (4)0.044 (2)0.071 (3)0.003 (2)0.005 (3)0.005 (2)
C220.055 (9)0.089 (11)0.081 (8)0.02 (11)0.01 (11)0.02 (13)
N80.070 (7)0.068 (7)0.070 (6)0.02 (10)0.01 (9)0.02 (9)
C230.046 (3)0.095 (4)0.071 (3)0.006 (3)0.008 (3)0.011 (3)
N70.0397 (18)0.0479 (19)0.060 (2)0.0012 (14)0.0002 (17)0.0015 (17)
C23'0.083 (4)0.044 (2)0.071 (3)0.003 (2)0.005 (3)0.005 (2)
N8'0.055 (6)0.089 (6)0.081 (3)0.02 (10)0.01 (9)0.02 (11)
N7'0.0397 (18)0.0479 (19)0.060 (2)0.0012 (14)0.0002 (17)0.0015 (17)
C21'0.046 (3)0.095 (4)0.071 (3)0.006 (3)0.008 (3)0.011 (3)
C22'0.070 (6)0.068 (6)0.070 (3)0.02 (11)0.01 (11)0.02 (10)
N10.0327 (16)0.0462 (18)0.0449 (17)0.0019 (14)0.0006 (14)0.0035 (14)
N20.0441 (19)0.051 (2)0.0436 (17)0.0092 (15)0.0047 (15)0.0012 (16)
N30.050 (2)0.0419 (18)0.062 (2)0.0091 (15)0.0039 (17)0.0088 (17)
N40.0422 (17)0.0372 (17)0.0465 (18)0.0048 (14)0.0034 (14)0.0044 (14)
N50.0346 (16)0.0450 (18)0.0460 (17)0.0004 (13)0.0029 (14)0.0051 (14)
N60.0363 (17)0.049 (2)0.059 (2)0.0059 (14)0.0003 (16)0.0036 (16)
Cl10.0593 (6)0.0593 (6)0.0920 (13)0.0108 (8)0.0109 (8)0.0109 (8)
O110.078 (6)0.075 (5)0.090 (6)0.035 (4)0.034 (5)0.009 (5)
O120.102 (6)0.052 (4)0.098 (6)0.019 (4)0.015 (6)0.027 (5)
O130.099 (6)0.096 (6)0.072 (5)0.050 (5)0.016 (5)0.027 (4)
O140.095 (6)0.074 (5)0.072 (5)0.019 (5)0.031 (5)0.014 (4)
Cl20.0531 (5)0.0531 (5)0.0686 (9)0.0092 (6)0.0084 (6)0.0084 (6)
O210.094 (3)0.0521 (19)0.087 (2)0.0083 (19)0.043 (2)0.0116 (18)
O220.093 (3)0.074 (2)0.078 (2)0.033 (2)0.039 (2)0.0269 (19)
Cl30.0676 (7)0.0422 (5)0.0552 (6)0.0112 (5)0.0081 (5)0.0014 (4)
O310.072 (2)0.097 (3)0.070 (2)0.031 (2)0.0292 (18)0.037 (2)
O320.078 (2)0.064 (2)0.099 (3)0.0249 (19)0.039 (2)0.028 (2)
O330.085 (3)0.083 (3)0.092 (3)0.039 (2)0.035 (2)0.013 (2)
O340.095 (3)0.065 (2)0.101 (3)0.016 (2)0.024 (2)0.024 (2)
Geometric parameters (Å, º) top
Cu1—N51.977 (3)C18—N51.398 (5)
Cu1—N21.990 (3)C18—C201.503 (7)
Cu1—N72.007 (3)C19—H19A0.9600
Cu1—N12.129 (3)C19—H19B0.9600
Cu1—N42.137 (3)C19—H19C0.9600
C1—N11.327 (5)C20—H20A0.9600
C1—C21.380 (6)C20—H20B0.9600
C1—H1A0.9300C20—H20C0.9600
C2—C31.380 (7)C21—N81.326 (7)
C2—H2A0.9300C21—N71.338 (6)
C3—C41.383 (7)C21—H21A0.9300
C3—H3B0.9300C22—C231.293 (8)
C4—C51.407 (6)C22—N81.392 (8)
C4—H4A0.9300C22—H22A0.9300
C5—N11.352 (5)N8—H8A0.8600
C5—C61.437 (5)C23—N71.352 (6)
C6—N21.326 (5)C23—H23A0.9300
C6—N31.347 (5)N3—H3A0.8600
C7—N31.364 (6)N6—H60.8600
C7—C81.369 (6)Cl1—O131.334 (8)
C7—C91.493 (6)Cl1—O13i1.334 (8)
C8—N21.386 (5)Cl1—O11i1.378 (7)
C8—C101.492 (7)Cl1—O111.378 (7)
C9—H9A0.9600Cl1—O14i1.401 (8)
C9—H9B0.9600Cl1—O141.401 (8)
C9—H9C0.9600Cl1—O121.413 (8)
C10—H10A0.9600Cl1—O12i1.413 (8)
C10—H10B0.9600O11—O11i1.060 (15)
C10—H10C0.9600O11—O13i1.551 (10)
C11—N41.342 (5)O12—O14i1.135 (11)
C11—C121.385 (6)O12—O13i1.486 (11)
C11—H11A0.9300O13—O12i1.486 (11)
C12—C131.369 (7)O13—O14i1.515 (13)
C12—H12A0.9300O13—O11i1.551 (10)
C13—C141.369 (6)O14—O12i1.135 (11)
C13—H13A0.9300O14—O13i1.515 (13)
C14—C151.391 (6)Cl2—O21i1.375 (3)
C14—H14A0.9300Cl2—O211.375 (3)
C15—N41.340 (5)Cl2—O221.403 (3)
C15—C161.452 (5)Cl2—O22i1.403 (3)
C16—N51.327 (5)Cl3—O341.334 (4)
C16—N61.338 (5)Cl3—O331.341 (4)
C17—C181.353 (6)Cl3—O311.356 (3)
C17—N61.365 (5)Cl3—O321.402 (4)
C17—C191.504 (6)
N5—Cu1—N2170.20 (15)C23—C22—N8106.1 (4)
N5—Cu1—N794.06 (14)C23—C22—H22A127.0
N2—Cu1—N795.74 (15)N8—C22—H22A127.0
N5—Cu1—N194.06 (13)C21—N8—C22107.7 (5)
N2—Cu1—N180.10 (13)C21—N8—H8A126.2
N7—Cu1—N1127.46 (14)C22—N8—H8A126.2
N5—Cu1—N479.52 (13)C22—C23—N7111.1 (5)
N2—Cu1—N494.82 (13)C22—C23—H23A124.4
N7—Cu1—N4123.73 (14)N7—C23—H23A124.4
N1—Cu1—N4108.79 (13)C21—N7—C23106.3 (4)
N1—C1—C2122.9 (4)C21—N7—Cu1126.7 (3)
N1—C1—H1A118.6C23—N7—Cu1126.7 (4)
C2—C1—H1A118.6C1—N1—C5118.3 (3)
C1—C2—C3119.3 (4)C1—N1—Cu1129.5 (3)
C1—C2—H2A120.4C5—N1—Cu1112.2 (2)
C3—C2—H2A120.4C6—N2—C8107.4 (3)
C2—C3—C4119.4 (4)C6—N2—Cu1113.6 (3)
C2—C3—H3B120.3C8—N2—Cu1139.0 (3)
C4—C3—H3B120.3C6—N3—C7109.0 (4)
C3—C4—C5117.8 (4)C6—N3—H3A125.5
C3—C4—H4A121.1C7—N3—H3A125.5
C5—C4—H4A121.1C15—N4—C11118.1 (4)
N1—C5—C4122.4 (4)C15—N4—Cu1112.9 (3)
N1—C5—C6113.2 (3)C11—N4—Cu1129.0 (3)
C4—C5—C6124.4 (4)C16—N5—C18105.8 (3)
N2—C6—N3109.3 (4)C16—N5—Cu1114.9 (3)
N2—C6—C5120.9 (4)C18—N5—Cu1139.2 (3)
N3—C6—C5129.7 (4)C16—N6—C17108.8 (3)
N3—C7—C8106.2 (4)C16—N6—H6125.6
N3—C7—C9122.7 (4)C17—N6—H6125.6
C8—C7—C9131.0 (5)O13—Cl1—O13i177.0 (6)
C7—C8—N2108.1 (4)O13—Cl1—O11i69.8 (5)
C7—C8—C10129.4 (4)O13i—Cl1—O11i113.2 (5)
N2—C8—C10122.5 (4)O13—Cl1—O11113.2 (5)
C7—C9—H9A109.5O13i—Cl1—O1169.8 (5)
C7—C9—H9B109.5O11i—Cl1—O1145.3 (6)
H9A—C9—H9B109.5O13—Cl1—O14i67.2 (6)
C7—C9—H9C109.5O13i—Cl1—O14i111.0 (6)
H9A—C9—H9C109.5O11i—Cl1—O14i107.1 (5)
H9B—C9—H9C109.5O11—Cl1—O14i136.7 (5)
C8—C10—H10A109.5O13—Cl1—O14111.0 (6)
C8—C10—H10B109.5O13i—Cl1—O1467.2 (6)
H10A—C10—H10B109.5O11i—Cl1—O14136.7 (5)
C8—C10—H10C109.5O11—Cl1—O14107.1 (5)
H10A—C10—H10C109.5O14i—Cl1—O14112.7 (7)
H10B—C10—H10C109.5O13—Cl1—O12113.4 (6)
N4—C11—C12122.3 (4)O13i—Cl1—O1265.4 (6)
N4—C11—H11A118.8O11i—Cl1—O12113.7 (6)
C12—C11—H11A118.8O11—Cl1—O12106.2 (6)
C13—C12—C11118.7 (4)O14i—Cl1—O1247.6 (5)
C13—C12—H12A120.6O14—Cl1—O12105.5 (5)
C11—C12—H12A120.6O13—Cl1—O12i65.4 (6)
C12—C13—C14119.9 (4)O13i—Cl1—O12i113.4 (6)
C12—C13—H13A120.0O11i—Cl1—O12i106.2 (6)
C14—C13—H13A120.0O11—Cl1—O12i113.7 (6)
C13—C14—C15118.4 (4)O14i—Cl1—O12i105.5 (5)
C13—C14—H14A120.8O14—Cl1—O12i47.6 (5)
C15—C14—H14A120.8O12—Cl1—O12i136.7 (7)
N4—C15—C14122.4 (4)O11i—O11—Cl167.4 (3)
N4—C15—C16112.9 (3)O11i—O11—O13i119.0 (5)
C14—C15—C16124.6 (4)Cl1—O11—O13i53.8 (4)
N5—C16—N6110.2 (3)O14i—O12—Cl165.7 (6)
N5—C16—C15119.8 (3)O14i—O12—O13i118.1 (9)
N6—C16—C15130.0 (4)Cl1—O12—O13i54.7 (4)
C18—C17—N6106.2 (4)Cl1—O13—O12i59.8 (5)
C18—C17—C19131.2 (4)Cl1—O13—O14i58.5 (5)
N6—C17—C19122.6 (4)O12i—O13—O14i96.5 (6)
C17—C18—N5108.9 (4)Cl1—O13—O11i56.4 (4)
C17—C18—C20130.0 (4)O12i—O13—O11i94.5 (6)
N5—C18—C20120.9 (4)O14i—O13—O11i93.6 (7)
C17—C19—H19A109.5O12i—O14—Cl166.7 (6)
C17—C19—H19B109.5O12i—O14—O13i119.4 (8)
H19A—C19—H19B109.5Cl1—O14—O13i54.3 (4)
C17—C19—H19C109.5O21i—Cl2—O21107.7 (3)
H19A—C19—H19C109.5O21i—Cl2—O22113.3 (3)
H19B—C19—H19C109.5O21—Cl2—O22107.5 (2)
C18—C20—H20A109.5O21i—Cl2—O22i107.5 (2)
C18—C20—H20B109.5O21—Cl2—O22i113.3 (3)
H20A—C20—H20B109.5O22—Cl2—O22i107.7 (3)
C18—C20—H20C109.5O34—Cl3—O33110.5 (3)
H20A—C20—H20C109.5O34—Cl3—O31101.9 (3)
H20B—C20—H20C109.5O33—Cl3—O31110.6 (3)
N8—C21—N7108.8 (5)O34—Cl3—O32110.5 (2)
N8—C21—H21A125.6O33—Cl3—O32113.0 (3)
N7—C21—H21A125.6O31—Cl3—O32109.8 (3)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O120.862.163.001 (8)166
N3—H3A···O14i0.862.152.980 (10)162
N6—H6···O21i0.862.153.009 (5)175
Symmetry code: (i) y, x, z.

Experimental details

Crystal data
Chemical formula[Cu(C3H4N2)(C10H11N3)2](ClO4)2
Mr676.96
Crystal system, space groupTetragonal, P41212
Temperature (K)293
a, c (Å)14.6374 (5), 27.3945 (14)
V3)5869.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.74, 0.79
No. of measured, independent and
observed [I > 2σ(I)] reflections
32170, 5775, 5315
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.08
No. of reflections5775
No. of parameters410
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.64
Absolute structureFlack (1983), 2433 Friedel pairs
Absolute structure parameter0.013 (17)

Computer programs: SMART (Bruker, 2000), CrystalClear (Rigaku, 2005), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N51.977 (3)Cu1—N12.129 (3)
Cu1—N21.990 (3)Cu1—N42.137 (3)
Cu1—N72.007 (3)
N5—Cu1—N2170.20 (15)N7—Cu1—N1127.46 (14)
N5—Cu1—N794.06 (14)N5—Cu1—N479.52 (13)
N2—Cu1—N795.74 (15)N2—Cu1—N494.82 (13)
N5—Cu1—N194.06 (13)N7—Cu1—N4123.73 (14)
N2—Cu1—N180.10 (13)N1—Cu1—N4108.79 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O120.862.163.001 (8)166.0
N3—H3A···O14i0.862.152.980 (10)162.1
N6—H6···O21i0.862.153.009 (5)174.5
Symmetry code: (i) y, x, z.
 

Acknowledgements

We are grateful for the support provided by the National Natural Science Foundation of China (30570518), the Science Foundation of the Health Department of Jiangsu Province (H200401) and the High Technology Research and Development Program of Jiangsu Province (BG2007603).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHuang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218–13219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, X.-C., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2005). Chem. Commun. pp. 2232–2234.  Web of Science CSD CrossRef Google Scholar
First citationKapinos, L. E., Song, B. & Sigel, H. (1998). Inorg. Chim. Acta, 280, 50–56.  Web of Science CrossRef CAS Google Scholar
First citationMatthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hull, M. N. S. & Lockhart, J. C. (1998). Inorg. Chem. 37, 199–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, X.-S., Sun, J., Hu, C.-H., Fu, D.-G., Xiang, D.-F., Zheng, P.-J. & Tang, W.-X. (1997). Inorg. Chim. Acta, 257, 203–210.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m914-m915
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds