organic compounds
(1RS,4SR)-3-Dichloromethylene-1,4-dimethyl-2-oxabicyclo[2.2.2]oct-5-ene
aDepartment of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: andrew.tyrrell@chem.ox.ac.uk
X-ray crystallography was used to confirm the structure of the enantio-enriched title compound, C10H12Cl2O, a bicylic enol ether. A bridged boat-like structure is adopted and the dichloromethylene C atom is positioned significantly removed from the core bicyclic unit. In the molecules pack to form sheets approximately perpendicular to the a and c axes.
Related literature
For related literature, see: Yamabe et al. (1996); Machiguchi et al. (1999); Khanjin et al. (1999); Ussing et al. (2006); Robertson & Fowler (2006).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: Görbitz (1999) and DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536808017248/lh2637sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808017248/lh2637Isup2.hkl
The title compound was crystallized by concentration of a sample dissolved in petroleum ether. [α]D25-36.1 (CHCl3, c = 1.0).
Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C10H12Cl2O | F(000) = 456 |
Mr = 219.11 | Dx = 1.418 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 15784 reflections |
a = 9.3365 (1) Å | θ = 5–27° |
b = 9.6327 (2) Å | µ = 0.59 mm−1 |
c = 11.4259 (2) Å | T = 150 K |
β = 92.7347 (11)° | Prism, colourless |
V = 1026.43 (3) Å3 | 0.44 × 0.32 × 0.18 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2094 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 27.4°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −12→12 |
Tmin = 0.83, Tmax = 0.90 | k = −12→12 |
4320 measured reflections | l = −14→14 |
2321 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.093 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 0.71P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
2321 reflections | Δρmax = 0.36 e Å−3 |
118 parameters | Δρmin = −0.38 e Å−3 |
2 restraints |
C10H12Cl2O | V = 1026.43 (3) Å3 |
Mr = 219.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.3365 (1) Å | µ = 0.59 mm−1 |
b = 9.6327 (2) Å | T = 150 K |
c = 11.4259 (2) Å | 0.44 × 0.32 × 0.18 mm |
β = 92.7347 (11)° |
Nonius KappaCCD diffractometer | 2321 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 2094 reflections with I > 2σ(I) |
Tmin = 0.83, Tmax = 0.90 | Rint = 0.021 |
4320 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 2 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.36 e Å−3 |
2321 reflections | Δρmin = −0.38 e Å−3 |
118 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.02322 (16) | 0.72676 (17) | 0.56170 (14) | 0.0234 | |
O2 | 0.12271 (11) | 0.62312 (12) | 0.61475 (10) | 0.0217 | |
C3 | 0.26458 (15) | 0.64956 (16) | 0.59821 (13) | 0.0192 | |
C4 | 0.28716 (17) | 0.77747 (17) | 0.52291 (14) | 0.0230 | |
C5 | 0.21390 (19) | 0.89526 (18) | 0.58719 (15) | 0.0293 | |
C6 | 0.07027 (19) | 0.86685 (17) | 0.60962 (15) | 0.0274 | |
C7 | 0.04601 (18) | 0.72396 (18) | 0.43089 (14) | 0.0280 | |
C8 | 0.19575 (18) | 0.75082 (18) | 0.40893 (14) | 0.0267 | |
C9 | −0.12456 (17) | 0.6806 (2) | 0.59357 (17) | 0.0326 | |
C10 | 0.44060 (19) | 0.8143 (2) | 0.49372 (17) | 0.0339 | |
C11 | 0.35800 (16) | 0.56064 (17) | 0.64983 (14) | 0.0215 | |
Cl12 | 0.29697 (4) | 0.42007 (4) | 0.72783 (4) | 0.0295 | |
Cl13 | 0.54194 (4) | 0.56859 (5) | 0.64989 (4) | 0.0320 | |
H51 | 0.2631 | 0.9775 | 0.6123 | 0.0403* | |
H61 | 0.0073 | 0.9265 | 0.6509 | 0.0362* | |
H71 | −0.0214 | 0.7925 | 0.3907 | 0.0397* | |
H72 | 0.0158 | 0.6344 | 0.3998 | 0.0386* | |
H81 | 0.1990 | 0.8293 | 0.3587 | 0.0379* | |
H82 | 0.2347 | 0.6712 | 0.3675 | 0.0381* | |
H91 | −0.1917 | 0.7492 | 0.5652 | 0.0477* | |
H92 | −0.1261 | 0.6724 | 0.6804 | 0.0498* | |
H93 | −0.1529 | 0.5941 | 0.5590 | 0.0483* | |
H101 | 0.4319 | 0.8976 | 0.4440 | 0.0529* | |
H102 | 0.5032 | 0.8374 | 0.5608 | 0.0543* | |
H103 | 0.4864 | 0.7409 | 0.4472 | 0.0531* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0213 (7) | 0.0229 (7) | 0.0254 (8) | 0.0045 (6) | −0.0044 (6) | −0.0009 (6) |
O2 | 0.0175 (5) | 0.0225 (6) | 0.0251 (5) | 0.0016 (4) | 0.0005 (4) | 0.0041 (4) |
C3 | 0.0188 (7) | 0.0205 (7) | 0.0183 (7) | −0.0023 (5) | 0.0005 (5) | −0.0019 (6) |
C4 | 0.0257 (7) | 0.0220 (7) | 0.0209 (7) | −0.0043 (6) | −0.0022 (5) | 0.0018 (6) |
C5 | 0.0373 (8) | 0.0221 (8) | 0.0275 (8) | 0.0009 (7) | −0.0073 (7) | −0.0031 (7) |
C6 | 0.0339 (8) | 0.0229 (8) | 0.0251 (8) | 0.0055 (7) | −0.0030 (6) | −0.0032 (6) |
C7 | 0.0347 (8) | 0.0264 (8) | 0.0223 (8) | 0.0014 (7) | −0.0067 (6) | −0.0013 (6) |
C8 | 0.0352 (8) | 0.0268 (8) | 0.0178 (7) | −0.0025 (7) | −0.0026 (6) | 0.0010 (6) |
C9 | 0.0212 (8) | 0.0328 (9) | 0.0435 (10) | 0.0028 (7) | −0.0005 (7) | −0.0031 (8) |
C10 | 0.0309 (9) | 0.0345 (10) | 0.0360 (9) | −0.0126 (7) | −0.0013 (7) | 0.0072 (8) |
C11 | 0.0189 (7) | 0.0234 (7) | 0.0222 (7) | −0.0011 (6) | 0.0001 (5) | 0.0004 (6) |
Cl12 | 0.0292 (2) | 0.0261 (2) | 0.0329 (2) | −0.00012 (15) | −0.00257 (16) | 0.01006 (16) |
Cl13 | 0.0183 (2) | 0.0372 (3) | 0.0401 (3) | 0.00107 (15) | −0.00273 (16) | 0.00256 (18) |
C1—O2 | 1.4741 (18) | C7—C8 | 1.455 (2) |
C1—C6 | 1.514 (2) | C7—H71 | 1.008 |
C1—C7 | 1.520 (2) | C7—H72 | 0.970 |
C1—C9 | 1.511 (2) | C8—H81 | 0.950 |
O2—C3 | 1.3707 (17) | C8—H82 | 0.980 |
C3—C4 | 1.523 (2) | C9—H91 | 0.957 |
C3—C11 | 1.339 (2) | C9—H92 | 0.996 |
C4—C5 | 1.531 (2) | C9—H93 | 0.954 |
C4—C8 | 1.544 (2) | C10—H101 | 0.985 |
C4—C10 | 1.528 (2) | C10—H102 | 0.968 |
C5—C6 | 1.404 (3) | C10—H103 | 0.993 |
C5—H51 | 0.953 | C11—Cl12 | 1.7324 (16) |
C6—H61 | 0.962 | C11—Cl13 | 1.7190 (15) |
O2—C1—C6 | 106.78 (12) | C1—C7—H72 | 108.9 |
O2—C1—C7 | 106.10 (12) | C8—C7—H72 | 111.1 |
C6—C1—C7 | 108.65 (14) | H71—C7—H72 | 104.6 |
O2—C1—C9 | 105.44 (13) | C4—C8—C7 | 112.39 (13) |
C6—C1—C9 | 115.34 (14) | C4—C8—H81 | 110.2 |
C7—C1—C9 | 113.84 (14) | C7—C8—H81 | 107.7 |
C1—O2—C3 | 114.30 (12) | C4—C8—H82 | 109.5 |
O2—C3—C4 | 112.89 (12) | C7—C8—H82 | 109.0 |
O2—C3—C11 | 115.71 (13) | H81—C8—H82 | 107.9 |
C4—C3—C11 | 131.40 (14) | C1—C9—H91 | 107.8 |
C3—C4—C5 | 104.57 (13) | C1—C9—H92 | 108.7 |
C3—C4—C8 | 104.84 (12) | H91—C9—H92 | 110.5 |
C5—C4—C8 | 106.63 (13) | C1—C9—H93 | 113.3 |
C3—C4—C10 | 117.88 (14) | H91—C9—H93 | 107.4 |
C5—C4—C10 | 112.19 (14) | H92—C9—H93 | 109.1 |
C8—C4—C10 | 109.92 (13) | C4—C10—H101 | 105.3 |
C4—C5—C6 | 113.31 (14) | C4—C10—H102 | 114.7 |
C4—C5—H51 | 122.7 | H101—C10—H102 | 107.4 |
C6—C5—H51 | 123.9 | C4—C10—H103 | 112.5 |
C1—C6—C5 | 111.77 (14) | H101—C10—H103 | 107.3 |
C1—C6—H61 | 122.4 | H102—C10—H103 | 109.2 |
C5—C6—H61 | 125.8 | C3—C11—Cl12 | 120.21 (12) |
C1—C7—C8 | 110.31 (13) | C3—C11—Cl13 | 126.97 (12) |
C1—C7—H71 | 108.8 | Cl12—C11—Cl13 | 112.82 (9) |
C8—C7—H71 | 112.9 |
Experimental details
Crystal data | |
Chemical formula | C10H12Cl2O |
Mr | 219.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 9.3365 (1), 9.6327 (2), 11.4259 (2) |
β (°) | 92.7347 (11) |
V (Å3) | 1026.43 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.44 × 0.32 × 0.18 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.83, 0.90 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4320, 2321, 2094 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.093, 1.01 |
No. of reflections | 2321 |
No. of parameters | 118 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.38 |
Computer programs: COLLECT (Nonius, 2001), Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
Acknowledgements
The authors thank the Oxford Chemical Crystallography Service for use of instrumentation and Dr Amber L. Thompson for her advice.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khanjin, N. A., Snyder, J. P. & Menger, F. M. (1999). J. Am. Chem. Soc. 121, 11831–11846. Web of Science CrossRef CAS Google Scholar
Machiguchi, T., Hasegawa, T., Ishiwata, A., Terashima, S., Yamabe, S. & Minato, T. (1999). J. Am. Chem. Soc. 121, 4771–4786. Web of Science CrossRef CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Robertson, J. & Fowler, T. (2006). Org. Biomol. Chem. 4, 4307–4318. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ussing, B. R., Hang, C. & Singleton, D. A. (2006). J. Am. Chem. Soc. 128, 7594–7607. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
Yamabe, S., Dai, T., Minato, T., Machiguchi, T. & Hasegawa, T. (1996). J. Am. Chem. Soc. 118, 6518–6519. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The reaction between dienes and ketenes to produce cyclobutanones was long considered to be a textbook example of a [2 + 2] cycloaddition that could be understood in terms of a π2s + π2aWoodward–Hoffmann formalism. More recently, evidence has been presented for a stepwise hetero-Diels–Alder/Claisen rearrangement pathway (Yamabe et al., 1996) and it was reported that the periselectivity of these cycloadditions is responsive to the nature of the diene (Machiguchi et al., 1999). The situation is, however, more complex and a combined theoretical and experimental study of the reaction of cyclopentadiene with either dichloro- or diphenylketene revealed that both [4 + 2] and [2 + 2] adducts may be produced directly through parallel reaction pathways traversing a bifurcating energy surface (Ussing et al. 2006). Our studies sought to address certain mechanistic aspects of the Claisen rearrangement of bicyclic enol ethers structurally analogous to those produced in diene/ketene [4 + 2] cycloadditions (Robertson & Fowler, 2006); within this study, although crystals were obtained as a racemate, the title compound was prepared in an enantioenriched form in order to determine if access to non-racemic cyclobutanones could be achieved.
The relationship between computed distances of reacting termini and activation energies has been discussed for structurally similar Claisen precursors in the context of the mechanism of chorismate mutase (Khanjin et al., 1999). The molecular stucture (Fig. 1) shows the dichloromethylene carbon to be significantly removed from the carbon at C5 (3.5523 Å) and yet the title compound can be induced to undergo the Claisen rearrangement under mild thermal conditions to yield (1RS, 6SR)-8,8-dichloro-3,6-dimethylbicyclo[4.2.0]oct-3-en-7-one. Also of note are the sheets of molecules which form approximatedly perpendicular to the a- and c-axes as shown in Fig. 2 and Fig. 3.