organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzimidazol-1-yl)-1-phenyl­ethanone

aZonguldak Karaelmas University, Department of Chemistry, 67100 Zonguldak, Turkey, bSouthampton University, Department of Chemistry, Southampton SO17 1BJ, England, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 18 June 2008; accepted 24 June 2008; online 28 June 2008)

In the mol­ecule of the title compound, C15H12N2O, the planar benzimidazole system is oriented at a dihedral angle of 80.43 (5)° with respect to the phenyl ring. In the crystal structure, non-classical inter­molecular C—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane.

Related literature

For general backgroud, see: Göker et al. (2002[Göker, H., Kuş, C., Boykin, D. W., Yıldız, S. & Altanlar, N. (2002). Bioorg. Med. Chem. 10, 2589-2596.]); Özden et al. (2004[Özden, S., Karataş, H., Yıldız, S. & Göker, H. (2004). Arch. Pharm. 337, 556-562.]); Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.]); Schar et al. (1976[Schar, G., Kayser, F. H. & Dupont, M. C. (1976). Chemotheraphy, 22, 211-220.]). For related literature, see: Peeters et al. (1997[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1997). Bull. Soc. Chim. Belg. 88, 265-272.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Özel Güven et al. (2007[Özel Güven, Ö. el, Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463-o3464.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O

  • Mr = 236.27

  • Monoclinic, P 21

  • a = 5.0475 (2) Å

  • b = 11.2319 (6) Å

  • c = 10.3517 (5) Å

  • β = 96.620 (3)°

  • V = 582.96 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • 0.45 × 0.22 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.997

  • 6918 measured reflections

  • 2639 independent reflections

  • 2265 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.06

  • 2639 reflections

  • 212 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H81⋯N2i 0.95 (2) 2.43 (2) 3.355 (3) 165.2 (17)
C8—H82⋯O1ii 0.98 (2) 2.38 (2) 3.351 (3) 170.1 (17)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazoles have been shown to exhibit a large number of biological activities. Some of the substituted benzimidazole derivatives have highly potent antifungal (Göker et al., 2002) and antibacterial (Özden et al., 2004) activities. Recently, it has been reported that benzimidazole ring containing aryl ethers (Özel Güven et al., 2007a,b) similar to miconazole (Peeters et al., 1997) and econazole (Freer et al., 1986) structures have more antibacterial activities than antifungal activities (Schar et al., 1976). The crystal structure of oxime form of the benzimidazole substituted ketone has been reported previously (Özel Güven et al., 2007). We report herein the crystal structure of ketone, which is a starting material for biologically important molecules.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system is oriented with respect to the phenyl ring at a dihedral angle of 80.43 (5)°. Atoms C8 and C9 are -0.010 (2) Å and 0.044 (2) Å away from the ring planes of benzimidazole and phenyl, respectively. So, they are coplanar with the adjacent rings. The N1—C8—C9 [111.88 (15)°] and C8—C9—C10 [117.10 (15)°] bond angles are highly different from each other, while O1—C9—C8 [121.07 (16)°] and O1—C9—C10 [121.84 (17)°] bond angles are nearly equal. The N1—C1—N2 [114.25 (18)°], N2—C2—C7 [110.35 (17)°] and C2—C7—C6 [123.30 (18)°] bond angles are enlarged, while C5—C6—C7 [116.34 (19)°] bond angle is narrowed, probably due to the intermolecular C—H···N and C—H···O hydrogen bonds (Table 1).

In the crystal structure, non-classical intermolecular C—H···N and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to the a,b plane (Fig. 2), in which they seem to be effective in the stabilization of the crystal structure.

Related literature top

For general backgroud, see: Göker et al. (2002); Özden et al. (2004); Özel Güven et al. (2007a,b); Schar et al. (1976). For related literature, see: Peeters et al. (1997); Freer et al. (1986); Özel Güven et al. (2007).

Experimental top

The title compound, was synthesized by the reaction of 2-bromo-1-phenyl- ethanone (Özel Güven et al., 2007a) with 1H-benzimidazole. A solution of 2-bromo-1-phenylethanone (4.00 g, 20.10 mmol) in dioxane-ether (8 ml) was added to an ice-cold solution of benzimidazole (11.87 g, 100.5 mmol) in methanol (20 ml) over 60 min under argon atmosphere. The reaction mixture was warmed to ambient temperature and stirred for an additional 18 h, diluted with water (20 ml), and then extracted with chloroform. Organic extract was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and then chromatographed on neutral silica-gel column using chloroform-methanol as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ketone from a mixture of hexane/ethyl acetate (1:2) (yield; 2.85 g, 60%).

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged. H atoms were located in difference syntheses and refined isotropically [C—H = 0.95 (2)–1.06 (3) Å; Uiso(H) = 0.020 (5)–0.061 (9) Å2].

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-(1H-Benzimidazol-1-yl)-1-phenylethanone top
Crystal data top
C15H12N2OF(000) = 248
Mr = 236.27Dx = 1.346 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1379 reflections
a = 5.0475 (2) Åθ = 2.9–27.5°
b = 11.2319 (6) ŵ = 0.09 mm1
c = 10.3517 (5) ÅT = 120 K
β = 96.620 (3)°Plate, colorless
V = 582.96 (5) Å30.45 × 0.22 × 0.03 mm
Z = 2
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2639 independent reflections
Radiation source: fine-focus sealed tube2265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1414
Tmin = 0.962, Tmax = 0.997l = 1313
6918 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.019P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2639 reflectionsΔρmax = 0.23 e Å3
212 parametersΔρmin = 0.22 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.091 (14)
Crystal data top
C15H12N2OV = 582.96 (5) Å3
Mr = 236.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.0475 (2) ŵ = 0.09 mm1
b = 11.2319 (6) ÅT = 120 K
c = 10.3517 (5) Å0.45 × 0.22 × 0.03 mm
β = 96.620 (3)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2265 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.997Rint = 0.057
6918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.119All H-atom parameters refined
S = 1.06Δρmax = 0.23 e Å3
2639 reflectionsΔρmin = 0.22 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0968 (3)0.55671 (14)0.26162 (13)0.0288 (4)
N10.3784 (3)0.56655 (14)0.05460 (15)0.0236 (4)
N20.3592 (4)0.41520 (16)0.08838 (17)0.0301 (4)
C10.4848 (4)0.46224 (19)0.0180 (2)0.0265 (4)
H10.651 (6)0.432 (3)0.074 (3)0.048 (7)*
C20.1553 (4)0.49603 (17)0.12561 (19)0.0251 (4)
C30.0424 (4)0.49415 (19)0.2318 (2)0.0288 (5)
H30.051 (5)0.422 (2)0.291 (2)0.034 (6)*
C40.2249 (4)0.5857 (2)0.2443 (2)0.0315 (5)
H40.366 (5)0.584 (3)0.317 (3)0.045 (7)*
C50.2133 (4)0.67987 (19)0.1537 (2)0.0293 (5)
H50.340 (4)0.742 (2)0.168 (2)0.020 (5)*
C60.0171 (4)0.68387 (18)0.0477 (2)0.0258 (4)
H60.013 (5)0.753 (3)0.011 (3)0.048 (7)*
C70.1634 (4)0.59090 (17)0.03658 (18)0.0237 (4)
C80.4659 (4)0.63860 (18)0.16674 (18)0.0241 (4)
H810.481 (4)0.720 (2)0.143 (2)0.025 (5)*
H820.642 (4)0.609 (2)0.203 (2)0.025 (5)*
C90.2788 (4)0.62815 (17)0.27150 (18)0.0222 (4)
C100.3283 (4)0.70936 (18)0.38542 (18)0.0226 (4)
C110.5216 (4)0.79730 (19)0.39188 (18)0.0273 (5)
H110.646 (4)0.805 (2)0.326 (2)0.024 (5)*
C120.5582 (4)0.8738 (2)0.4985 (2)0.0310 (5)
H120.695 (5)0.934 (2)0.503 (2)0.031 (6)*
C130.3975 (4)0.8617 (2)0.5977 (2)0.0351 (5)
H130.420 (5)0.920 (3)0.678 (3)0.047 (7)*
C140.2068 (5)0.7743 (2)0.5926 (2)0.0352 (5)
H140.089 (6)0.761 (3)0.658 (3)0.061 (9)*
C150.1691 (4)0.69726 (19)0.4872 (2)0.0284 (5)
H150.036 (4)0.636 (2)0.481 (2)0.025 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (7)0.0341 (8)0.0215 (7)0.0053 (6)0.0026 (5)0.0005 (6)
N10.0279 (8)0.0236 (8)0.0200 (8)0.0005 (7)0.0049 (6)0.0003 (6)
N20.0377 (9)0.0257 (8)0.0282 (9)0.0016 (8)0.0098 (7)0.0009 (7)
C10.0316 (10)0.0239 (9)0.0249 (10)0.0013 (8)0.0071 (8)0.0010 (8)
C20.0276 (9)0.0245 (10)0.0245 (10)0.0034 (8)0.0085 (7)0.0015 (8)
C30.0341 (10)0.0313 (11)0.0219 (10)0.0098 (9)0.0075 (8)0.0055 (8)
C40.0300 (11)0.0417 (12)0.0230 (10)0.0051 (9)0.0034 (8)0.0013 (8)
C50.0303 (10)0.0336 (12)0.0244 (10)0.0019 (9)0.0052 (8)0.0009 (8)
C60.0297 (10)0.0265 (10)0.0222 (9)0.0016 (8)0.0072 (7)0.0015 (8)
C70.0271 (9)0.0276 (10)0.0170 (9)0.0050 (8)0.0045 (7)0.0006 (8)
C80.0269 (10)0.0256 (11)0.0200 (9)0.0007 (8)0.0029 (8)0.0002 (8)
C90.0210 (9)0.0241 (9)0.0207 (9)0.0012 (8)0.0003 (7)0.0034 (7)
C100.0249 (9)0.0246 (9)0.0173 (9)0.0043 (8)0.0022 (7)0.0027 (7)
C110.0293 (10)0.0311 (11)0.0218 (10)0.0011 (9)0.0041 (8)0.0027 (8)
C120.0378 (11)0.0294 (11)0.0248 (10)0.0045 (10)0.0001 (9)0.0017 (8)
C130.0464 (13)0.0341 (12)0.0248 (11)0.0012 (10)0.0043 (9)0.0040 (9)
C140.0414 (11)0.0437 (13)0.0222 (10)0.0004 (10)0.0101 (9)0.0020 (9)
C150.0297 (10)0.0311 (11)0.0243 (10)0.0029 (9)0.0032 (7)0.0015 (8)
Geometric parameters (Å, º) top
O1—C91.215 (2)C7—C21.406 (3)
N1—C11.361 (3)C8—H810.95 (3)
N1—C71.381 (2)C8—H820.98 (2)
N1—C81.442 (3)C9—C81.522 (3)
N2—C11.317 (3)C10—C91.489 (3)
N2—C21.393 (3)C10—C151.403 (3)
C1—H11.02 (3)C11—C101.384 (3)
C3—C21.398 (3)C11—C121.394 (3)
C3—C41.377 (3)C11—H110.99 (2)
C3—H31.01 (3)C12—H120.96 (3)
C4—H40.98 (3)C13—C121.386 (3)
C5—C41.410 (3)C13—C141.371 (3)
C5—H50.95 (2)C13—H131.06 (3)
C6—C51.391 (3)C14—C151.389 (3)
C6—C71.382 (3)C14—H140.96 (3)
C6—H60.99 (3)C15—H150.96 (2)
C1—N1—C7106.55 (16)N1—C8—H81111.1 (13)
C1—N1—C8127.82 (17)N1—C8—H82107.2 (13)
C7—N1—C8125.63 (16)C9—C8—H81109.4 (13)
C1—N2—C2103.83 (17)C9—C8—H82108.0 (13)
N1—C1—H1116.9 (16)H81—C8—H82109.1 (19)
N2—C1—N1114.25 (18)O1—C9—C8121.07 (16)
N2—C1—H1128.8 (16)O1—C9—C10121.84 (17)
N2—C2—C3130.22 (18)C10—C9—C8117.10 (15)
N2—C2—C7110.35 (17)C11—C10—C9121.91 (17)
C3—C2—C7119.43 (18)C11—C10—C15119.61 (18)
C2—C3—H3117.7 (14)C15—C10—C9118.47 (18)
C4—C3—C2118.14 (19)C10—C11—C12120.42 (18)
C4—C3—H3124.0 (14)C10—C11—H11122.1 (13)
C3—C4—C5121.5 (2)C12—C11—H11117.4 (13)
C3—C4—H4118.4 (17)C13—C12—C11119.4 (2)
C5—C4—H4120.1 (17)C13—C12—H12120.8 (15)
C6—C5—C4121.3 (2)C11—C12—H12119.8 (15)
C6—C5—H5120.4 (13)C12—C13—H13120.3 (15)
C4—C5—H5118.3 (13)C14—C13—C12120.7 (2)
C5—C6—H6118.1 (15)C14—C13—H13119.0 (15)
C7—C6—C5116.34 (19)C13—C14—C15120.5 (2)
C7—C6—H6125.5 (15)C13—C14—H14125 (2)
N1—C7—C2105.01 (16)C15—C14—H14115 (2)
N1—C7—C6131.69 (17)C10—C15—H15118.6 (13)
C6—C7—C2123.30 (18)C14—C15—C10119.4 (2)
N1—C8—C9111.88 (15)C14—C15—H15122.0 (13)
C7—N1—C1—N20.3 (2)N1—C7—C2—N20.66 (19)
C8—N1—C1—N2178.87 (18)N1—C7—C2—C3179.80 (17)
C1—N1—C7—C20.21 (18)C6—C7—C2—N2179.13 (17)
C1—N1—C7—C6179.6 (2)C6—C7—C2—C30.4 (3)
C8—N1—C7—C2179.44 (17)O1—C9—C8—N17.0 (2)
C8—N1—C7—C60.3 (3)C10—C9—C8—N1172.76 (16)
C1—N1—C8—C9105.9 (2)C11—C10—C9—O1174.63 (18)
C7—N1—C8—C973.2 (2)C11—C10—C9—C85.1 (3)
C2—N2—C1—N10.7 (2)C15—C10—C9—O13.9 (3)
C1—N2—C2—C3179.7 (2)C15—C10—C9—C8176.38 (17)
C1—N2—C2—C70.8 (2)C9—C10—C15—C14178.14 (19)
C4—C3—C2—N2178.8 (2)C11—C10—C15—C140.4 (3)
C4—C3—C2—C70.7 (3)C10—C11—C12—C130.6 (3)
C2—C3—C4—C50.6 (3)C12—C11—C10—C9178.37 (18)
C6—C5—C4—C30.2 (3)C12—C11—C10—C150.1 (3)
C5—C6—C7—N1179.7 (2)C14—C13—C12—C111.1 (3)
C5—C6—C7—C20.0 (3)C12—C13—C14—C150.8 (3)
C7—C6—C5—C40.1 (3)C13—C14—C15—C100.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H81···N2i0.95 (2)2.43 (2)3.355 (3)165.2 (17)
C8—H82···O1ii0.98 (2)2.38 (2)3.351 (3)170.1 (17)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12N2O
Mr236.27
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)5.0475 (2), 11.2319 (6), 10.3517 (5)
β (°) 96.620 (3)
V3)582.96 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.22 × 0.03
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.962, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6918, 2639, 2265
Rint0.057
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.06
No. of reflections2639
No. of parameters212
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H81···N2i0.95 (2)2.43 (2)3.355 (3)165.2 (17)
C8—H82···O1ii0.98 (2)2.38 (2)3.351 (3)170.1 (17)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge Zonguldak Karaelmas University Research Fund (grant No: 2004–13-02–16).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGöker, H., Kuş, C., Boykin, D. W., Yıldız, S. & Altanlar, N. (2002). Bioorg. Med. Chem. 10, 2589–2596.  Web of Science PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzden, S., Karataş, H., Yıldız, S. & Göker, H. (2004). Arch. Pharm. 337, 556–562.  Google Scholar
First citationÖzel Güven, Ö. el, Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463–o3464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1997). Bull. Soc. Chim. Belg. 88, 265–272.  CrossRef Google Scholar
First citationSchar, G., Kayser, F. H. & Dupont, M. C. (1976). Chemotheraphy, 22, 211–220.  CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds