metal-organic compounds
Propane-1,2-diammonium bis(pyridine-2,6-dicarboxylato-κ3O,N,O′)nickelate(II) tetrahydrate
aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
The reaction of nickel(II) nitrate hexahydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2)[Ni(C7H3NO4)2]·4H2O or (p-1,2-daH2)[Ni(pydc)2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid). The geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. Considerable C=O⋯π stacking interactions are observed between the carboxylate C=O groups and the pyridine rings of the (pydc)2− fragments, with O⋯π distances of 3.1563 (12) and 3.2523 (12) Å and C=O⋯π angles of 95.14 (8) and 94.64 (8)°. In the a wide range of non-covalent interactions, consisting of hydrogen bonding [O—H⋯O, N—H⋯O and C—H⋯O, with D⋯A distances ranging from 2.712 (2) to 3.484 (2) Å], ion pairing, π–π [centroid-to-centroid distance = 3.4825 (8) Å] and C=O⋯π stacking, connect the various components to form a supramolecular structure.
Related literature
For related literature, see: Aghabozorg et al. (2007); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006); Aghabozorg, Heidari et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808016309/su2054sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016309/su2054Isup2.hkl
An aqueous solution of Ni(NO3)2.6H2O (290 mg, 1 mmol), propane-1,2-diamine (80 mg, 2 mmol) and pyridine-2,6-dicarboxylic acid (360 mg, 2 mmol) was added to each other in a 1:2:2 molar ratio, and the reaction mixture was heated at about 40°C for 5 h. Green crystals of the title compound were obtained from the solution after four weeks at room temperature.
The hydrogen atoms of the NH3 groups and the water molecules were located in difference Fourier maps. The H(C) atom positions were included in calculated positions and treated as riding atoms with Uiso(H) = 1.2Ueq(parent C or O atoms) and 1.5Ueq(parent N or C-methyl atoms).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. The crystal packing of the title compound as viewed approximately down b, with the hydrogen bonds shown as dashed lines. | |
Fig. 3. A layered packing diagram of the title compound. The space between the two layers of [Ni(pydc)2]2- fragments is filled with a layer of (p-1,2-daH2)2+ cations and water molecules. | |
Fig. 4. π–π Stacking interaction between two aromatic rings of (pydc)2- units, with centorid–centroid distance of 3.4825 (8) Å (1/2 - x, -1/2 + y, -1/2 + z); C–O···π Stacking interactions between C═O groups of carboxylate and the aromatic rings of pyridine-2,6-dicarboxylate with O···π distances of 3.1563 (12) Å for C13—O5···Cg1 (1/2 - x, 1/2 + y, -1/2 + z) and 3.2523 (12) Å for C6—O1···Cg2 (1/2 - x, -1/2 + y, 1/2 + z) [Cg1 and Cg2 are the centroids for rings N1/C1–C5 and N2/C8–C12, respectively]. |
(C3H12N2)[Ni(C7H3NO4)2]·4H2O | F(000) = 1120 |
Mr = 537.13 | Dx = 1.635 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 410 reflections |
a = 20.7598 (6) Å | θ = 3–29° |
b = 8.2582 (2) Å | µ = 0.96 mm−1 |
c = 12.7242 (4) Å | T = 100 K |
V = 2181.42 (11) Å3 | Prism, light-green |
Z = 4 | 0.26 × 0.22 × 0.11 mm |
Bruker APEXII CCD area-detector diffractometer | 6379 independent reflections |
Radiation source: fine-focus sealed tube | 6016 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 30.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −29→29 |
Tmin = 0.781, Tmax = 0.898 | k = −11→11 |
36654 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.03P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
6379 reflections | Δρmax = 0.34 e Å−3 |
310 parameters | Δρmin = −0.33 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with how many Friedel pairs? |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.004 (7) |
(C3H12N2)[Ni(C7H3NO4)2]·4H2O | V = 2181.42 (11) Å3 |
Mr = 537.13 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 20.7598 (6) Å | µ = 0.96 mm−1 |
b = 8.2582 (2) Å | T = 100 K |
c = 12.7242 (4) Å | 0.26 × 0.22 × 0.11 mm |
Bruker APEXII CCD area-detector diffractometer | 6379 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 6016 reflections with I > 2σ(I) |
Tmin = 0.781, Tmax = 0.898 | Rint = 0.035 |
36654 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.059 | Δρmax = 0.34 e Å−3 |
S = 1.01 | Δρmin = −0.33 e Å−3 |
6379 reflections | Absolute structure: Flack (1983), with how many Friedel pairs? |
310 parameters | Absolute structure parameter: 0.004 (7) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.230880 (7) | 0.50781 (2) | 0.25665 (2) | 0.00841 (4) | |
O1 | 0.36657 (5) | 0.27840 (12) | 0.44207 (8) | 0.0123 (2) | |
O2 | 0.30848 (5) | 0.35043 (12) | 0.30169 (8) | 0.0110 (2) | |
O3 | 0.15872 (5) | 0.68763 (13) | 0.28120 (8) | 0.0131 (2) | |
O4 | 0.10593 (5) | 0.81657 (13) | 0.41025 (9) | 0.0133 (2) | |
O5 | 0.35128 (5) | 0.74395 (13) | 0.04995 (8) | 0.0128 (2) | |
O6 | 0.30178 (5) | 0.66991 (13) | 0.19960 (8) | 0.0113 (2) | |
O7 | 0.15889 (5) | 0.32530 (12) | 0.24551 (9) | 0.0120 (2) | |
O8 | 0.09570 (5) | 0.20477 (13) | 0.12645 (9) | 0.0146 (2) | |
N1 | 0.23302 (5) | 0.53498 (17) | 0.41041 (11) | 0.0085 (2) | |
N2 | 0.22246 (6) | 0.48264 (15) | 0.10356 (12) | 0.0090 (3) | |
C1 | 0.27701 (7) | 0.45504 (17) | 0.46722 (12) | 0.0087 (2) | |
C2 | 0.28041 (8) | 0.47344 (19) | 0.57519 (13) | 0.0109 (3) | |
H2A | 0.3120 | 0.4178 | 0.6153 | 0.013* | |
C3 | 0.23594 (7) | 0.57630 (18) | 0.62343 (12) | 0.0112 (3) | |
H3A | 0.2371 | 0.5909 | 0.6975 | 0.013* | |
C4 | 0.18997 (7) | 0.65754 (17) | 0.56366 (11) | 0.0102 (3) | |
H4A | 0.1593 | 0.7270 | 0.5958 | 0.012* | |
C5 | 0.19040 (7) | 0.63384 (17) | 0.45558 (11) | 0.0088 (2) | |
C6 | 0.32098 (6) | 0.35197 (16) | 0.39952 (12) | 0.0096 (2) | |
C7 | 0.14761 (7) | 0.71970 (17) | 0.37710 (11) | 0.0102 (3) | |
C8 | 0.26305 (6) | 0.56135 (18) | 0.04015 (12) | 0.0095 (3) | |
C9 | 0.26076 (7) | 0.5380 (2) | −0.06858 (12) | 0.0105 (3) | |
H9A | 0.2901 | 0.5919 | −0.1140 | 0.013* | |
C10 | 0.21417 (7) | 0.43328 (18) | −0.10826 (11) | 0.0121 (3) | |
H10A | 0.2116 | 0.4147 | −0.1818 | 0.015* | |
C11 | 0.17109 (7) | 0.35526 (17) | −0.04071 (12) | 0.0110 (3) | |
H11A | 0.1385 | 0.2857 | −0.0673 | 0.013* | |
C12 | 0.17748 (6) | 0.38260 (17) | 0.06599 (12) | 0.0097 (2) | |
C13 | 0.30969 (6) | 0.66803 (17) | 0.10021 (12) | 0.0101 (3) | |
C14 | 0.14033 (7) | 0.29812 (17) | 0.15243 (12) | 0.0108 (3) | |
N3 | 0.54006 (6) | 0.43977 (15) | 0.30200 (10) | 0.0123 (2) | |
H3B | 0.5651 | 0.5201 | 0.3289 | 0.018* | |
H3C | 0.5010 | 0.4809 | 0.2837 | 0.018* | |
H3D | 0.5595 | 0.3971 | 0.2442 | 0.018* | |
N4 | 0.44676 (5) | 0.16524 (15) | 0.27970 (10) | 0.0118 (2) | |
H4B | 0.4502 | 0.2393 | 0.2270 | 0.018* | |
H4C | 0.4162 | 0.1982 | 0.3263 | 0.018* | |
H4D | 0.4354 | 0.0676 | 0.2523 | 0.018* | |
C15 | 0.53120 (7) | 0.31041 (17) | 0.38271 (12) | 0.0130 (3) | |
H15A | 0.4983 | 0.3459 | 0.4340 | 0.016* | |
H15B | 0.5722 | 0.2949 | 0.4212 | 0.016* | |
C16 | 0.51052 (7) | 0.14977 (17) | 0.33504 (12) | 0.0113 (2) | |
H16A | 0.5437 | 0.1154 | 0.2827 | 0.014* | |
C17 | 0.50526 (8) | 0.01962 (18) | 0.41937 (13) | 0.0174 (3) | |
H17A | 0.4940 | −0.0840 | 0.3866 | 0.026* | |
H17B | 0.4718 | 0.0499 | 0.4700 | 0.026* | |
H17C | 0.5466 | 0.0091 | 0.4558 | 0.026* | |
O1W | 0.42220 (5) | 0.59529 (14) | 0.30653 (9) | 0.0169 (2) | |
H1WA | 0.4295 | 0.6786 | 0.2735 | 0.020* | |
H1WB | 0.3837 | 0.5823 | 0.2945 | 0.020* | |
O2W | 0.06395 (6) | 0.74698 (19) | 0.13415 (10) | 0.0297 (3) | |
H2WA | 0.0821 | 0.6693 | 0.1612 | 0.036* | |
H2WB | 0.0882 | 0.7755 | 0.0867 | 0.036* | |
O3W | −0.03481 (5) | 0.15335 (15) | 0.09506 (9) | 0.0199 (2) | |
H3WA | 0.0027 | 0.1743 | 0.0800 | 0.024* | |
H3WB | −0.0520 | 0.1482 | 0.0372 | 0.024* | |
O4W | 0.44262 (5) | 0.86620 (13) | 0.18005 (9) | 0.0158 (2) | |
H4WA | 0.4731 | 0.8280 | 0.1474 | 0.019* | |
H4WB | 0.4180 | 0.8294 | 0.1357 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.00786 (7) | 0.01104 (7) | 0.00634 (7) | 0.00044 (6) | −0.00030 (7) | −0.00050 (7) |
O1 | 0.0097 (4) | 0.0146 (5) | 0.0125 (5) | 0.0032 (4) | −0.0006 (4) | 0.0011 (4) |
O2 | 0.0123 (4) | 0.0127 (5) | 0.0082 (5) | 0.0015 (4) | −0.0003 (4) | −0.0013 (4) |
O3 | 0.0121 (5) | 0.0174 (5) | 0.0097 (5) | 0.0037 (4) | −0.0006 (4) | 0.0003 (4) |
O4 | 0.0125 (5) | 0.0146 (5) | 0.0129 (5) | 0.0047 (4) | 0.0020 (4) | 0.0016 (4) |
O5 | 0.0110 (5) | 0.0154 (5) | 0.0121 (5) | −0.0025 (4) | 0.0019 (4) | −0.0005 (4) |
O6 | 0.0106 (5) | 0.0139 (5) | 0.0092 (5) | −0.0009 (4) | −0.0003 (4) | −0.0009 (4) |
O7 | 0.0115 (4) | 0.0165 (4) | 0.0081 (5) | −0.0015 (3) | 0.0002 (4) | 0.0010 (4) |
O8 | 0.0131 (5) | 0.0173 (5) | 0.0134 (5) | −0.0049 (4) | −0.0003 (4) | −0.0013 (4) |
N1 | 0.0095 (6) | 0.0079 (5) | 0.0080 (6) | −0.0005 (4) | −0.0004 (4) | −0.0014 (5) |
N2 | 0.0081 (5) | 0.0099 (5) | 0.0088 (6) | 0.0014 (4) | 0.0000 (5) | 0.0009 (5) |
C1 | 0.0084 (6) | 0.0083 (6) | 0.0095 (6) | −0.0008 (5) | −0.0002 (5) | 0.0010 (5) |
C2 | 0.0123 (6) | 0.0093 (6) | 0.0111 (7) | −0.0004 (5) | −0.0004 (5) | 0.0009 (5) |
C3 | 0.0136 (6) | 0.0122 (6) | 0.0080 (6) | −0.0017 (5) | 0.0010 (5) | −0.0003 (5) |
C4 | 0.0106 (6) | 0.0110 (6) | 0.0090 (6) | −0.0010 (5) | 0.0032 (5) | −0.0012 (5) |
C5 | 0.0074 (6) | 0.0098 (6) | 0.0094 (6) | −0.0007 (5) | 0.0001 (5) | 0.0019 (5) |
C6 | 0.0084 (6) | 0.0084 (6) | 0.0121 (6) | −0.0010 (4) | 0.0012 (5) | −0.0001 (5) |
C7 | 0.0090 (6) | 0.0102 (6) | 0.0114 (6) | −0.0010 (5) | −0.0005 (5) | 0.0012 (5) |
C8 | 0.0080 (6) | 0.0096 (6) | 0.0108 (7) | 0.0008 (5) | 0.0000 (5) | −0.0010 (5) |
C9 | 0.0135 (6) | 0.0098 (6) | 0.0081 (7) | 0.0006 (5) | 0.0003 (5) | 0.0022 (5) |
C10 | 0.0171 (7) | 0.0122 (6) | 0.0071 (6) | 0.0015 (5) | −0.0011 (5) | −0.0013 (5) |
C11 | 0.0112 (6) | 0.0105 (6) | 0.0112 (6) | 0.0007 (5) | −0.0015 (5) | −0.0004 (5) |
C12 | 0.0073 (6) | 0.0098 (6) | 0.0121 (6) | 0.0011 (5) | 0.0001 (5) | −0.0004 (5) |
C13 | 0.0083 (6) | 0.0096 (6) | 0.0125 (6) | 0.0015 (5) | −0.0007 (5) | −0.0010 (5) |
C14 | 0.0088 (6) | 0.0116 (6) | 0.0119 (6) | 0.0010 (5) | 0.0022 (5) | 0.0001 (5) |
N3 | 0.0108 (5) | 0.0121 (5) | 0.0141 (6) | −0.0006 (4) | −0.0012 (4) | −0.0033 (5) |
N4 | 0.0106 (5) | 0.0127 (5) | 0.0122 (6) | 0.0001 (4) | −0.0016 (4) | −0.0010 (4) |
C15 | 0.0127 (6) | 0.0143 (6) | 0.0119 (6) | −0.0011 (5) | −0.0011 (5) | −0.0020 (5) |
C16 | 0.0099 (6) | 0.0127 (6) | 0.0113 (6) | 0.0003 (5) | −0.0007 (5) | −0.0006 (5) |
C17 | 0.0204 (7) | 0.0153 (7) | 0.0164 (7) | 0.0027 (5) | −0.0024 (6) | 0.0026 (6) |
O1W | 0.0118 (5) | 0.0196 (5) | 0.0193 (6) | 0.0011 (4) | −0.0009 (4) | 0.0034 (4) |
O2W | 0.0140 (5) | 0.0595 (9) | 0.0155 (6) | −0.0035 (6) | −0.0019 (4) | 0.0121 (6) |
O3W | 0.0142 (5) | 0.0318 (6) | 0.0138 (5) | 0.0009 (5) | −0.0037 (4) | −0.0011 (5) |
O4W | 0.0139 (5) | 0.0171 (5) | 0.0163 (5) | −0.0014 (4) | −0.0006 (4) | −0.0047 (4) |
Ni1—N2 | 1.9668 (15) | C9—H9A | 0.9500 |
Ni1—N1 | 1.9698 (14) | C10—C11 | 1.398 (2) |
Ni1—O6 | 2.1178 (11) | C10—H10A | 0.9500 |
Ni1—O7 | 2.1273 (10) | C11—C12 | 1.383 (2) |
Ni1—O3 | 2.1324 (10) | C11—H11A | 0.9500 |
Ni1—O2 | 2.1477 (10) | C12—C14 | 1.514 (2) |
O1—C6 | 1.2483 (17) | N3—C15 | 1.4932 (19) |
O2—C6 | 1.2717 (18) | N3—H3B | 0.9100 |
O3—C7 | 1.2697 (18) | N3—H3C | 0.9100 |
O4—C7 | 1.2516 (17) | N3—H3D | 0.9100 |
O5—C13 | 1.2441 (18) | N4—C16 | 1.5048 (17) |
O6—C13 | 1.2754 (19) | N4—H4B | 0.9100 |
O7—C14 | 1.2655 (19) | N4—H4C | 0.9100 |
O8—C14 | 1.2498 (18) | N4—H4D | 0.9100 |
N1—C5 | 1.3340 (19) | C15—C16 | 1.5205 (19) |
N1—C1 | 1.3387 (19) | C15—H15A | 0.9900 |
N2—C12 | 1.335 (2) | C15—H15B | 0.9900 |
N2—C8 | 1.335 (2) | C16—C17 | 1.523 (2) |
C1—C2 | 1.384 (2) | C16—H16A | 1.0000 |
C1—C6 | 1.516 (2) | C17—H17A | 0.9800 |
C2—C3 | 1.397 (2) | C17—H17B | 0.9800 |
C2—H2A | 0.9500 | C17—H17C | 0.9800 |
C3—C4 | 1.393 (2) | O1W—H1WA | 0.8201 |
C3—H3A | 0.9500 | O1W—H1WB | 0.8200 |
C4—C5 | 1.389 (2) | O2W—H2WA | 0.8201 |
C4—H4A | 0.9500 | O2W—H2WB | 0.8198 |
C5—C7 | 1.5130 (19) | O3W—H3WA | 0.8200 |
C8—C9 | 1.398 (2) | O3W—H3WB | 0.8201 |
C8—C13 | 1.516 (2) | O4W—H4WA | 0.8201 |
C9—C10 | 1.392 (2) | O4W—H4WB | 0.8201 |
N2—Ni1—N1 | 176.17 (5) | C8—C9—H9A | 121.0 |
N2—Ni1—O6 | 77.83 (5) | C9—C10—C11 | 120.52 (14) |
N1—Ni1—O6 | 104.64 (5) | C9—C10—H10A | 119.7 |
N2—Ni1—O7 | 78.27 (5) | C11—C10—H10A | 119.7 |
N1—Ni1—O7 | 99.37 (5) | C12—C11—C10 | 117.85 (14) |
O6—Ni1—O7 | 155.96 (4) | C12—C11—H11A | 121.1 |
N2—Ni1—O3 | 98.99 (5) | C10—C11—H11A | 121.1 |
N1—Ni1—O3 | 77.94 (5) | N2—C12—C11 | 121.31 (14) |
O6—Ni1—O3 | 95.64 (4) | N2—C12—C14 | 112.42 (14) |
O7—Ni1—O3 | 90.55 (4) | C11—C12—C14 | 126.11 (13) |
N2—Ni1—O2 | 105.48 (5) | O5—C13—O6 | 126.37 (14) |
N1—Ni1—O2 | 77.70 (5) | O5—C13—C8 | 118.49 (13) |
O6—Ni1—O2 | 87.29 (4) | O6—C13—C8 | 115.14 (12) |
O7—Ni1—O2 | 96.66 (4) | O8—C14—O7 | 125.63 (14) |
O3—Ni1—O2 | 155.41 (4) | O8—C14—C12 | 118.02 (13) |
C6—O2—Ni1 | 114.09 (9) | O7—C14—C12 | 116.31 (12) |
C7—O3—Ni1 | 114.43 (9) | C15—N3—H3B | 109.5 |
C13—O6—Ni1 | 114.94 (9) | C15—N3—H3C | 109.5 |
C14—O7—Ni1 | 113.70 (9) | H3B—N3—H3C | 109.5 |
C5—N1—C1 | 121.44 (14) | C15—N3—H3D | 109.5 |
C5—N1—Ni1 | 118.86 (10) | H3B—N3—H3D | 109.5 |
C1—N1—Ni1 | 119.70 (10) | H3C—N3—H3D | 109.5 |
C12—N2—C8 | 121.75 (15) | C16—N4—H4B | 109.5 |
C12—N2—Ni1 | 118.82 (11) | C16—N4—H4C | 109.5 |
C8—N2—Ni1 | 119.39 (11) | H4B—N4—H4C | 109.5 |
N1—C1—C2 | 121.11 (14) | C16—N4—H4D | 109.5 |
N1—C1—C6 | 112.38 (13) | H4B—N4—H4D | 109.5 |
C2—C1—C6 | 126.50 (14) | H4C—N4—H4D | 109.5 |
C1—C2—C3 | 117.99 (14) | N3—C15—C16 | 112.62 (12) |
C1—C2—H2A | 121.0 | N3—C15—H15A | 109.1 |
C3—C2—H2A | 121.0 | C16—C15—H15A | 109.1 |
C4—C3—C2 | 120.40 (14) | N3—C15—H15B | 109.1 |
C4—C3—H3A | 119.8 | C16—C15—H15B | 109.1 |
C2—C3—H3A | 119.8 | H15A—C15—H15B | 107.8 |
C5—C4—C3 | 117.93 (13) | N4—C16—C15 | 111.16 (11) |
C5—C4—H4A | 121.0 | N4—C16—C17 | 109.06 (12) |
C3—C4—H4A | 121.0 | C15—C16—C17 | 110.80 (12) |
N1—C5—C4 | 121.13 (14) | N4—C16—H16A | 108.6 |
N1—C5—C7 | 113.07 (13) | C15—C16—H16A | 108.6 |
C4—C5—C7 | 125.70 (13) | C17—C16—H16A | 108.6 |
O1—C6—O2 | 125.06 (13) | C16—C17—H17A | 109.5 |
O1—C6—C1 | 118.90 (13) | C16—C17—H17B | 109.5 |
O2—C6—C1 | 116.03 (12) | H17A—C17—H17B | 109.5 |
O4—C7—O3 | 125.65 (13) | C16—C17—H17C | 109.5 |
O4—C7—C5 | 118.88 (13) | H17A—C17—H17C | 109.5 |
O3—C7—C5 | 115.46 (12) | H17B—C17—H17C | 109.5 |
N2—C8—C9 | 120.62 (14) | H1WA—O1W—H1WB | 101.2 |
N2—C8—C13 | 112.42 (13) | H2WA—O2W—H2WB | 104.5 |
C9—C8—C13 | 126.95 (13) | H3WA—O3W—H3WB | 102.4 |
C10—C9—C8 | 117.93 (14) | H4WA—O4W—H4WB | 89.5 |
C10—C9—H9A | 121.0 | ||
N2—Ni1—O2—C6 | 179.68 (10) | Ni1—N1—C5—C4 | −179.84 (10) |
N1—Ni1—O2—C6 | −2.52 (10) | C1—N1—C5—C7 | 176.61 (12) |
O6—Ni1—O2—C6 | 103.10 (10) | Ni1—N1—C5—C7 | −3.14 (16) |
O7—Ni1—O2—C6 | −100.70 (10) | C3—C4—C5—N1 | 0.7 (2) |
O3—Ni1—O2—C6 | 5.46 (16) | C3—C4—C5—C7 | −175.52 (13) |
N2—Ni1—O3—C7 | 173.26 (10) | Ni1—O2—C6—O1 | −175.13 (11) |
N1—Ni1—O3—C7 | −4.41 (10) | Ni1—O2—C6—C1 | 3.57 (15) |
O6—Ni1—O3—C7 | −108.21 (10) | N1—C1—C6—O1 | 175.89 (13) |
O7—Ni1—O3—C7 | 95.05 (10) | C2—C1—C6—O1 | −2.4 (2) |
O2—Ni1—O3—C7 | −12.39 (16) | N1—C1—C6—O2 | −2.89 (18) |
N2—Ni1—O6—C13 | −4.98 (10) | C2—C1—C6—O2 | 178.85 (14) |
N1—Ni1—O6—C13 | 178.04 (10) | Ni1—O3—C7—O4 | −177.39 (11) |
O7—Ni1—O6—C13 | 1.20 (16) | Ni1—O3—C7—C5 | 4.04 (15) |
O3—Ni1—O6—C13 | −102.99 (10) | N1—C5—C7—O4 | −179.55 (13) |
O2—Ni1—O6—C13 | 101.50 (10) | C4—C5—C7—O4 | −3.0 (2) |
N2—Ni1—O7—C14 | −6.39 (10) | N1—C5—C7—O3 | −0.87 (18) |
N1—Ni1—O7—C14 | 170.54 (10) | C4—C5—C7—O3 | 175.64 (13) |
O6—Ni1—O7—C14 | −12.55 (15) | C12—N2—C8—C9 | −1.7 (2) |
O3—Ni1—O7—C14 | 92.68 (10) | Ni1—N2—C8—C9 | 176.03 (11) |
O2—Ni1—O7—C14 | −110.88 (10) | C12—N2—C8—C13 | 179.89 (12) |
O6—Ni1—N1—C5 | 96.77 (11) | Ni1—N2—C8—C13 | −2.41 (16) |
O7—Ni1—N1—C5 | −84.54 (11) | N2—C8—C9—C10 | 1.3 (2) |
O3—Ni1—N1—C5 | 4.01 (11) | C13—C8—C9—C10 | 179.52 (14) |
O2—Ni1—N1—C5 | −179.38 (12) | C8—C9—C10—C11 | 0.3 (2) |
O6—Ni1—N1—C1 | −83.00 (12) | C9—C10—C11—C12 | −1.6 (2) |
O7—Ni1—N1—C1 | 95.70 (11) | C8—N2—C12—C11 | 0.3 (2) |
O3—Ni1—N1—C1 | −175.75 (12) | Ni1—N2—C12—C11 | −177.38 (10) |
O2—Ni1—N1—C1 | 0.86 (11) | C8—N2—C12—C14 | 175.92 (12) |
O6—Ni1—N2—C12 | −178.35 (11) | Ni1—N2—C12—C14 | −1.80 (16) |
O7—Ni1—N2—C12 | 4.21 (10) | C10—C11—C12—N2 | 1.3 (2) |
O3—Ni1—N2—C12 | −84.47 (11) | C10—C11—C12—C14 | −173.67 (13) |
O2—Ni1—N2—C12 | 97.96 (11) | Ni1—O6—C13—O5 | −174.76 (11) |
O6—Ni1—N2—C8 | 3.88 (10) | Ni1—O6—C13—C8 | 5.13 (15) |
O7—Ni1—N2—C8 | −173.56 (11) | N2—C8—C13—O5 | 177.84 (12) |
O3—Ni1—N2—C8 | 97.75 (11) | C9—C8—C13—O5 | −0.5 (2) |
O2—Ni1—N2—C8 | −79.81 (11) | N2—C8—C13—O6 | −2.06 (18) |
C5—N1—C1—C2 | −0.8 (2) | C9—C8—C13—O6 | 179.62 (14) |
Ni1—N1—C1—C2 | 179.00 (11) | Ni1—O7—C14—O8 | −174.94 (12) |
C5—N1—C1—C6 | −179.12 (12) | Ni1—O7—C14—C12 | 7.30 (15) |
Ni1—N1—C1—C6 | 0.63 (16) | N2—C12—C14—O8 | 178.05 (12) |
N1—C1—C2—C3 | 0.9 (2) | C11—C12—C14—O8 | −6.6 (2) |
C6—C1—C2—C3 | 179.00 (13) | N2—C12—C14—O7 | −4.02 (18) |
C1—C2—C3—C4 | −0.2 (2) | C11—C12—C14—O7 | 171.32 (14) |
C2—C3—C4—C5 | −0.6 (2) | N3—C15—C16—N4 | −61.32 (15) |
C1—N1—C5—C4 | −0.1 (2) | N3—C15—C16—C17 | 177.24 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4W | 0.82 | 1.97 | 2.788 (2) | 173 |
O1W—H1WB···O2 | 0.82 | 2.47 | 3.109 (2) | 135 |
O1W—H1WB···O6 | 0.82 | 2.21 | 2.912 (2) | 144 |
O2W—H2WA···O3 | 0.82 | 2.21 | 2.759 (2) | 125 |
N3—H3B···O4i | 0.91 | 1.90 | 2.795 (2) | 168 |
N3—H3C···O1W | 0.91 | 1.91 | 2.763 (2) | 155 |
N3—H3D···O8ii | 0.91 | 1.88 | 2.783 (2) | 176 |
O2W—H2WB···O1iii | 0.82 | 2.07 | 2.849 (2) | 160 |
N4—H4B···O3Wii | 0.91 | 1.92 | 2.812 (2) | 165 |
N4—H4C···O1 | 0.91 | 1.92 | 2.813 (2) | 168 |
N4—H4D···O4Wiv | 0.91 | 1.91 | 2.777 (2) | 160 |
O3W—H3WA···O8 | 0.82 | 2.03 | 2.771 (2) | 149 |
O3W—H3WB···O4v | 0.82 | 1.99 | 2.787 (2) | 166 |
O4W—H4WA···O2Wi | 0.82 | 1.99 | 2.749 (2) | 153 |
O4W—H4WB···O5 | 0.82 | 1.90 | 2.712 (2) | 171 |
C10—H10A···O6vi | 0.95 | 2.54 | 3.289 (2) | 136 |
C11—H11A···O1Wvi | 0.95 | 2.58 | 3.484 (2) | 160 |
C15—H15B···O5vii | 0.99 | 2.30 | 3.268 (2) | 164 |
C16—H16A···O7ii | 1.00 | 2.49 | 3.291 (2) | 137 |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x+1/2, −y+1/2, z; (iii) −x+1/2, y+1/2, z−1/2; (iv) x, y−1, z; (v) −x, −y+1, z−1/2; (vi) −x+1/2, y−1/2, z−1/2; (vii) −x+1, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C3H12N2)[Ni(C7H3NO4)2]·4H2O |
Mr | 537.13 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 20.7598 (6), 8.2582 (2), 12.7242 (4) |
V (Å3) | 2181.42 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.96 |
Crystal size (mm) | 0.26 × 0.22 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.781, 0.898 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36654, 6379, 6016 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.059, 1.01 |
No. of reflections | 6379 |
No. of parameters | 310 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.33 |
Absolute structure | Flack (1983), with how many Friedel pairs? |
Absolute structure parameter | 0.004 (7) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4W | 0.82 | 1.97 | 2.788 (2) | 173 |
O1W—H1WB···O2 | 0.82 | 2.47 | 3.109 (2) | 135 |
O1W—H1WB···O6 | 0.82 | 2.21 | 2.912 (2) | 144 |
O2W—H2WA···O3 | 0.82 | 2.21 | 2.759 (2) | 125 |
N3—H3B···O4i | 0.91 | 1.90 | 2.795 (2) | 168 |
N3—H3C···O1W | 0.91 | 1.91 | 2.763 (2) | 155 |
N3—H3D···O8ii | 0.91 | 1.88 | 2.783 (2) | 176 |
O2W—H2WB···O1iii | 0.82 | 2.07 | 2.849 (2) | 160 |
N4—H4B···O3Wii | 0.91 | 1.92 | 2.812 (2) | 165 |
N4—H4C···O1 | 0.91 | 1.92 | 2.813 (2) | 168 |
N4—H4D···O4Wiv | 0.91 | 1.91 | 2.777 (2) | 160 |
O3W—H3WA···O8 | 0.82 | 2.03 | 2.771 (2) | 149 |
O3W—H3WB···O4v | 0.82 | 1.99 | 2.787 (2) | 166 |
O4W—H4WA···O2Wi | 0.82 | 1.99 | 2.749 (2) | 153 |
O4W—H4WB···O5 | 0.82 | 1.90 | 2.712 (2) | 171 |
C10—H10A···O6vi | 0.95 | 2.54 | 3.289 (2) | 136 |
C11—H11A···O1Wvi | 0.95 | 2.58 | 3.484 (2) | 160 |
C15—H15B···O5vii | 0.99 | 2.30 | 3.268 (2) | 164 |
C16—H16A···O7ii | 1.00 | 2.49 | 3.291 (2) | 137 |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x+1/2, −y+1/2, z; (iii) −x+1/2, y+1/2, z−1/2; (iv) x, y−1, z; (v) −x, −y+1, z−1/2; (vi) −x+1/2, y−1/2, z−1/2; (vii) −x+1, −y+1, z+1/2. |
References
Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146. CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self-assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid (pydcH2), and benzene-1,2,4,5-tetracarboxylic acid (btcH4), to propane-1,3-diamine (pda), propane-1,2-diamine (p-1,2-da) and 1,10-phenanthroline, (phen). This work has resulted in the formation of some novel proton transfer compounds such as (pdaH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi & Ramezanipour, 2006), (pdaH2)2(btc).2H2O (Aghabozorg et al., 2007), (p-1,2-daH2)(pydcH)2.2H2O (Aghabozorg, Heidari et al., 2008) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, Manteghi & Sheshmani, 2008).
The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively. The NiII atom is six-coordinated by two pyridine-2,6-dicarboxylate, or (pydc)2-, groups, i.e. each (pydc)2- ligand is coordinated through one pyridine N atom and two carboxylate O atoms. As it can be seen, atoms N1 and N2 of the two (pydc)2- fragments occupy the axial positions, while atoms O2, O3, O6 and O7 form the equatorial plane [with Ni—O distances ranging from 2.1178 (11) to 2.1477 (10) Å]. The N1—Ni1—N2 angle [176.17 (5)°] deviates from linearity. Therefore, the geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. The O2—Ni1—O6 and O3—Ni1—O7 bond angles are equal to 87.26 (4)° and 90.55 (4)°, respectively. On the other hand, the torsion angles O3—Ni1—O7—C14 and O7—Ni1—O3—C7 are 92.68 (10)° and 95.05 (10)°, respectively, indicating that the two (pydc)2- units are almost perpendicular to one another. The O2—Ni1—O3 [155.41 (4)°] and O6—Ni1—O7 [155.96 (4)°] bond angles indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the Ni1 atom.
It is interesting to note that the crystal packing shows a layered structure. The space between the layers of [Ni(pydc)2]2- units is occupied by (p-1,2-daH2)2+ cations and uncoordinated water molecules, which bridge the [Ni(pydc)2]2- units via hydrogen bonds (Fig 3 and Table 1). A noticeable feature of the title compound is the presence of C═O···π stacking interactions, between C═O groups of the carboxylate with aromatic rings of pyridine-2,6-dicarboxylate, with O···π distances of 3.1563 (12) Å for C13–O5···Cg1 (1/2 - x, 1/2 + y, -1/2 + z) and 3.2523 (12) Å for C6–O1···Cg2 (1/2 - x, -1/2 + y, 1/2 + z) [Cg1 and Cg2 are the centroids of the rings N1/C1–C5 and N2/C8–C12, respectively]. There is also considerable π–π stacking interactions between the two aromatic rings of the (pydc)2- units, with a centorid–centroid distance of 3.4825 (8) Å (1/2 - x, -1/2 + y, -1/2 + z) [see Fig. 4]. In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding (of the type O—H···O, N—H···O and C—H···O with D···A ranging from 2.712 (2) Å to 3.484 (2) Å), ion pairing, π···π and C═ O···π stacking connect the various components to form a supramolecular structure.