metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m874-m875

Propane-1,2-di­ammonium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O,N,O′)nickelate(II) tetra­hydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 28 April 2008; accepted 29 May 2008; online 7 June 2008)

The reaction of nickel(II) nitrate hexa­hydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2)[Ni(C7H3NO4)2]·4H2O or (p-1,2-daH2)[Ni(pydc)2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid). The geometry of the resulting NiN2O4 coordination can be described as distorted octa­hedral. Considerable C=O⋯π stacking inter­actions are observed between the carboxyl­ate C=O groups and the pyridine rings of the (pydc)2− fragments, with O⋯π distances of 3.1563 (12) and 3.2523 (12) Å and C=O⋯π angles of 95.14 (8) and 94.64 (8)°. In the crystal structure, a wide range of non-covalent inter­actions, consisting of hydrogen bonding [O—H⋯O, N—H⋯O and C—H⋯O, with DA distances ranging from 2.712 (2) to 3.484 (2) Å], ion pairing, ππ [centroid-to-centroid distance = 3.4825 (8) Å] and C=O⋯π stacking, connect the various components to form a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2007[Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985-o2986.]); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006[Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174-o3176.]); Aghabozorg, Ghadermazi & Ramezanipour (2006[Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143-o1146.]); Aghabozorg, Heidari et al. (2008[Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045-o1046.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)[Ni(C7H3NO4)2]·4H2O

  • Mr = 537.13

  • Orthorhombic, P n a 21

  • a = 20.7598 (6) Å

  • b = 8.2582 (2) Å

  • c = 12.7242 (4) Å

  • V = 2181.42 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 100 (2) K

  • 0.26 × 0.22 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.781, Tmax = 0.898

  • 36654 measured reflections

  • 6379 independent reflections

  • 6016 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.01

  • 6379 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2846 Friedel pairs

  • Flack parameter: 0.004 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4W 0.82 1.97 2.788 (2) 173
O1W—H1WB⋯O2 0.82 2.47 3.109 (2) 135
O1W—H1WB⋯O6 0.82 2.21 2.912 (2) 144
O2W—H2WA⋯O3 0.82 2.21 2.759 (2) 125
N3—H3B⋯O4i 0.91 1.90 2.795 (2) 168
N3—H3C⋯O1W 0.91 1.91 2.763 (2) 155
N3—H3D⋯O8ii 0.91 1.88 2.783 (2) 176
O2W—H2WB⋯O1iii 0.82 2.07 2.849 (2) 160
N4—H4B⋯O3Wii 0.91 1.92 2.812 (2) 165
N4—H4C⋯O1 0.91 1.92 2.813 (2) 168
N4—H4D⋯O4Wiv 0.91 1.91 2.777 (2) 160
O3W—H3WA⋯O8 0.82 2.03 2.771 (2) 149
O3W—H3WB⋯O4v 0.82 1.99 2.787 (2) 166
O4W—H4WA⋯O2Wi 0.82 1.99 2.749 (2) 153
O4W—H4WB⋯O5 0.82 1.90 2.712 (2) 171
C10—H10A⋯O6vi 0.95 2.54 3.289 (2) 136
C11—H11A⋯O1Wvi 0.95 2.58 3.484 (2) 160
C15—H15B⋯O5vii 0.99 2.30 3.268 (2) 164
C16—H16A⋯O7ii 1.00 2.49 3.291 (2) 137
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x, -y+1, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self-assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid (pydcH2), and benzene-1,2,4,5-tetracarboxylic acid (btcH4), to propane-1,3-diamine (pda), propane-1,2-diamine (p-1,2-da) and 1,10-phenanthroline, (phen). This work has resulted in the formation of some novel proton transfer compounds such as (pdaH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi & Ramezanipour, 2006), (pdaH2)2(btc).2H2O (Aghabozorg et al., 2007), (p-1,2-daH2)(pydcH)2.2H2O (Aghabozorg, Heidari et al., 2008) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, Manteghi & Sheshmani, 2008).

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively. The NiII atom is six-coordinated by two pyridine-2,6-dicarboxylate, or (pydc)2-, groups, i.e. each (pydc)2- ligand is coordinated through one pyridine N atom and two carboxylate O atoms. As it can be seen, atoms N1 and N2 of the two (pydc)2- fragments occupy the axial positions, while atoms O2, O3, O6 and O7 form the equatorial plane [with Ni—O distances ranging from 2.1178 (11) to 2.1477 (10) Å]. The N1—Ni1—N2 angle [176.17 (5)°] deviates from linearity. Therefore, the geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. The O2—Ni1—O6 and O3—Ni1—O7 bond angles are equal to 87.26 (4)° and 90.55 (4)°, respectively. On the other hand, the torsion angles O3—Ni1—O7—C14 and O7—Ni1—O3—C7 are 92.68 (10)° and 95.05 (10)°, respectively, indicating that the two (pydc)2- units are almost perpendicular to one another. The O2—Ni1—O3 [155.41 (4)°] and O6—Ni1—O7 [155.96 (4)°] bond angles indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the Ni1 atom.

It is interesting to note that the crystal packing shows a layered structure. The space between the layers of [Ni(pydc)2]2- units is occupied by (p-1,2-daH2)2+ cations and uncoordinated water molecules, which bridge the [Ni(pydc)2]2- units via hydrogen bonds (Fig 3 and Table 1). A noticeable feature of the title compound is the presence of CO···π stacking interactions, between CO groups of the carboxylate with aromatic rings of pyridine-2,6-dicarboxylate, with O···π distances of 3.1563 (12) Å for C13–O5···Cg1 (1/2 - x, 1/2 + y, -1/2 + z) and 3.2523 (12) Å for C6–O1···Cg2 (1/2 - x, -1/2 + y, 1/2 + z) [Cg1 and Cg2 are the centroids of the rings N1/C1–C5 and N2/C8–C12, respectively]. There is also considerable ππ stacking interactions between the two aromatic rings of the (pydc)2- units, with a centorid–centroid distance of 3.4825 (8) Å (1/2 - x, -1/2 + y, -1/2 + z) [see Fig. 4]. In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding (of the type O—H···O, N—H···O and C—H···O with D···A ranging from 2.712 (2) Å to 3.484 (2) Å), ion pairing, π···π and C O···π stacking connect the various components to form a supramolecular structure.

Related literature top

For related literature, see: Aghabozorg et al. (2007); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006); Aghabozorg, Heidari et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008).

Experimental top

An aqueous solution of Ni(NO3)2.6H2O (290 mg, 1 mmol), propane-1,2-diamine (80 mg, 2 mmol) and pyridine-2,6-dicarboxylic acid (360 mg, 2 mmol) was added to each other in a 1:2:2 molar ratio, and the reaction mixture was heated at about 40°C for 5 h. Green crystals of the title compound were obtained from the solution after four weeks at room temperature.

Refinement top

The hydrogen atoms of the NH3 groups and the water molecules were located in difference Fourier maps. The H(C) atom positions were included in calculated positions and treated as riding atoms with Uiso(H) = 1.2Ueq(parent C or O atoms) and 1.5Ueq(parent N or C-methyl atoms).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound as viewed approximately down b, with the hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. A layered packing diagram of the title compound. The space between the two layers of [Ni(pydc)2]2- fragments is filled with a layer of (p-1,2-daH2)2+ cations and water molecules.
[Figure 4] Fig. 4. ππ Stacking interaction between two aromatic rings of (pydc)2- units, with centorid–centroid distance of 3.4825 (8) Å (1/2 - x, -1/2 + y, -1/2 + z); C–O···π Stacking interactions between CO groups of carboxylate and the aromatic rings of pyridine-2,6-dicarboxylate with O···π distances of 3.1563 (12) Å for C13—O5···Cg1 (1/2 - x, 1/2 + y, -1/2 + z) and 3.2523 (12) Å for C6—O1···Cg2 (1/2 - x, -1/2 + y, 1/2 + z) [Cg1 and Cg2 are the centroids for rings N1/C1–C5 and N2/C8–C12, respectively].
Propane-1,2-diammonium bis(pyridine-2,6-dicarboxylato-κ3O,N,O')nickelate(II) tetrahydrate top
Crystal data top
(C3H12N2)[Ni(C7H3NO4)2]·4H2OF(000) = 1120
Mr = 537.13Dx = 1.635 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 410 reflections
a = 20.7598 (6) Åθ = 3–29°
b = 8.2582 (2) ŵ = 0.96 mm1
c = 12.7242 (4) ÅT = 100 K
V = 2181.42 (11) Å3Prism, light-green
Z = 40.26 × 0.22 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6379 independent reflections
Radiation source: fine-focus sealed tube6016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2929
Tmin = 0.781, Tmax = 0.898k = 1111
36654 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.03P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6379 reflectionsΔρmax = 0.34 e Å3
310 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (7)
Crystal data top
(C3H12N2)[Ni(C7H3NO4)2]·4H2OV = 2181.42 (11) Å3
Mr = 537.13Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.7598 (6) ŵ = 0.96 mm1
b = 8.2582 (2) ÅT = 100 K
c = 12.7242 (4) Å0.26 × 0.22 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6379 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6016 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.898Rint = 0.035
36654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.34 e Å3
S = 1.01Δρmin = 0.33 e Å3
6379 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
310 parametersAbsolute structure parameter: 0.004 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.230880 (7)0.50781 (2)0.25665 (2)0.00841 (4)
O10.36657 (5)0.27840 (12)0.44207 (8)0.0123 (2)
O20.30848 (5)0.35043 (12)0.30169 (8)0.0110 (2)
O30.15872 (5)0.68763 (13)0.28120 (8)0.0131 (2)
O40.10593 (5)0.81657 (13)0.41025 (9)0.0133 (2)
O50.35128 (5)0.74395 (13)0.04995 (8)0.0128 (2)
O60.30178 (5)0.66991 (13)0.19960 (8)0.0113 (2)
O70.15889 (5)0.32530 (12)0.24551 (9)0.0120 (2)
O80.09570 (5)0.20477 (13)0.12645 (9)0.0146 (2)
N10.23302 (5)0.53498 (17)0.41041 (11)0.0085 (2)
N20.22246 (6)0.48264 (15)0.10356 (12)0.0090 (3)
C10.27701 (7)0.45504 (17)0.46722 (12)0.0087 (2)
C20.28041 (8)0.47344 (19)0.57519 (13)0.0109 (3)
H2A0.31200.41780.61530.013*
C30.23594 (7)0.57630 (18)0.62343 (12)0.0112 (3)
H3A0.23710.59090.69750.013*
C40.18997 (7)0.65754 (17)0.56366 (11)0.0102 (3)
H4A0.15930.72700.59580.012*
C50.19040 (7)0.63384 (17)0.45558 (11)0.0088 (2)
C60.32098 (6)0.35197 (16)0.39952 (12)0.0096 (2)
C70.14761 (7)0.71970 (17)0.37710 (11)0.0102 (3)
C80.26305 (6)0.56135 (18)0.04015 (12)0.0095 (3)
C90.26076 (7)0.5380 (2)0.06858 (12)0.0105 (3)
H9A0.29010.59190.11400.013*
C100.21417 (7)0.43328 (18)0.10826 (11)0.0121 (3)
H10A0.21160.41470.18180.015*
C110.17109 (7)0.35526 (17)0.04071 (12)0.0110 (3)
H11A0.13850.28570.06730.013*
C120.17748 (6)0.38260 (17)0.06599 (12)0.0097 (2)
C130.30969 (6)0.66803 (17)0.10021 (12)0.0101 (3)
C140.14033 (7)0.29812 (17)0.15243 (12)0.0108 (3)
N30.54006 (6)0.43977 (15)0.30200 (10)0.0123 (2)
H3B0.56510.52010.32890.018*
H3C0.50100.48090.28370.018*
H3D0.55950.39710.24420.018*
N40.44676 (5)0.16524 (15)0.27970 (10)0.0118 (2)
H4B0.45020.23930.22700.018*
H4C0.41620.19820.32630.018*
H4D0.43540.06760.25230.018*
C150.53120 (7)0.31041 (17)0.38271 (12)0.0130 (3)
H15A0.49830.34590.43400.016*
H15B0.57220.29490.42120.016*
C160.51052 (7)0.14977 (17)0.33504 (12)0.0113 (2)
H16A0.54370.11540.28270.014*
C170.50526 (8)0.01962 (18)0.41937 (13)0.0174 (3)
H17A0.49400.08400.38660.026*
H17B0.47180.04990.47000.026*
H17C0.54660.00910.45580.026*
O1W0.42220 (5)0.59529 (14)0.30653 (9)0.0169 (2)
H1WA0.42950.67860.27350.020*
H1WB0.38370.58230.29450.020*
O2W0.06395 (6)0.74698 (19)0.13415 (10)0.0297 (3)
H2WA0.08210.66930.16120.036*
H2WB0.08820.77550.08670.036*
O3W0.03481 (5)0.15335 (15)0.09506 (9)0.0199 (2)
H3WA0.00270.17430.08000.024*
H3WB0.05200.14820.03720.024*
O4W0.44262 (5)0.86620 (13)0.18005 (9)0.0158 (2)
H4WA0.47310.82800.14740.019*
H4WB0.41800.82940.13570.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00786 (7)0.01104 (7)0.00634 (7)0.00044 (6)0.00030 (7)0.00050 (7)
O10.0097 (4)0.0146 (5)0.0125 (5)0.0032 (4)0.0006 (4)0.0011 (4)
O20.0123 (4)0.0127 (5)0.0082 (5)0.0015 (4)0.0003 (4)0.0013 (4)
O30.0121 (5)0.0174 (5)0.0097 (5)0.0037 (4)0.0006 (4)0.0003 (4)
O40.0125 (5)0.0146 (5)0.0129 (5)0.0047 (4)0.0020 (4)0.0016 (4)
O50.0110 (5)0.0154 (5)0.0121 (5)0.0025 (4)0.0019 (4)0.0005 (4)
O60.0106 (5)0.0139 (5)0.0092 (5)0.0009 (4)0.0003 (4)0.0009 (4)
O70.0115 (4)0.0165 (4)0.0081 (5)0.0015 (3)0.0002 (4)0.0010 (4)
O80.0131 (5)0.0173 (5)0.0134 (5)0.0049 (4)0.0003 (4)0.0013 (4)
N10.0095 (6)0.0079 (5)0.0080 (6)0.0005 (4)0.0004 (4)0.0014 (5)
N20.0081 (5)0.0099 (5)0.0088 (6)0.0014 (4)0.0000 (5)0.0009 (5)
C10.0084 (6)0.0083 (6)0.0095 (6)0.0008 (5)0.0002 (5)0.0010 (5)
C20.0123 (6)0.0093 (6)0.0111 (7)0.0004 (5)0.0004 (5)0.0009 (5)
C30.0136 (6)0.0122 (6)0.0080 (6)0.0017 (5)0.0010 (5)0.0003 (5)
C40.0106 (6)0.0110 (6)0.0090 (6)0.0010 (5)0.0032 (5)0.0012 (5)
C50.0074 (6)0.0098 (6)0.0094 (6)0.0007 (5)0.0001 (5)0.0019 (5)
C60.0084 (6)0.0084 (6)0.0121 (6)0.0010 (4)0.0012 (5)0.0001 (5)
C70.0090 (6)0.0102 (6)0.0114 (6)0.0010 (5)0.0005 (5)0.0012 (5)
C80.0080 (6)0.0096 (6)0.0108 (7)0.0008 (5)0.0000 (5)0.0010 (5)
C90.0135 (6)0.0098 (6)0.0081 (7)0.0006 (5)0.0003 (5)0.0022 (5)
C100.0171 (7)0.0122 (6)0.0071 (6)0.0015 (5)0.0011 (5)0.0013 (5)
C110.0112 (6)0.0105 (6)0.0112 (6)0.0007 (5)0.0015 (5)0.0004 (5)
C120.0073 (6)0.0098 (6)0.0121 (6)0.0011 (5)0.0001 (5)0.0004 (5)
C130.0083 (6)0.0096 (6)0.0125 (6)0.0015 (5)0.0007 (5)0.0010 (5)
C140.0088 (6)0.0116 (6)0.0119 (6)0.0010 (5)0.0022 (5)0.0001 (5)
N30.0108 (5)0.0121 (5)0.0141 (6)0.0006 (4)0.0012 (4)0.0033 (5)
N40.0106 (5)0.0127 (5)0.0122 (6)0.0001 (4)0.0016 (4)0.0010 (4)
C150.0127 (6)0.0143 (6)0.0119 (6)0.0011 (5)0.0011 (5)0.0020 (5)
C160.0099 (6)0.0127 (6)0.0113 (6)0.0003 (5)0.0007 (5)0.0006 (5)
C170.0204 (7)0.0153 (7)0.0164 (7)0.0027 (5)0.0024 (6)0.0026 (6)
O1W0.0118 (5)0.0196 (5)0.0193 (6)0.0011 (4)0.0009 (4)0.0034 (4)
O2W0.0140 (5)0.0595 (9)0.0155 (6)0.0035 (6)0.0019 (4)0.0121 (6)
O3W0.0142 (5)0.0318 (6)0.0138 (5)0.0009 (5)0.0037 (4)0.0011 (5)
O4W0.0139 (5)0.0171 (5)0.0163 (5)0.0014 (4)0.0006 (4)0.0047 (4)
Geometric parameters (Å, º) top
Ni1—N21.9668 (15)C9—H9A0.9500
Ni1—N11.9698 (14)C10—C111.398 (2)
Ni1—O62.1178 (11)C10—H10A0.9500
Ni1—O72.1273 (10)C11—C121.383 (2)
Ni1—O32.1324 (10)C11—H11A0.9500
Ni1—O22.1477 (10)C12—C141.514 (2)
O1—C61.2483 (17)N3—C151.4932 (19)
O2—C61.2717 (18)N3—H3B0.9100
O3—C71.2697 (18)N3—H3C0.9100
O4—C71.2516 (17)N3—H3D0.9100
O5—C131.2441 (18)N4—C161.5048 (17)
O6—C131.2754 (19)N4—H4B0.9100
O7—C141.2655 (19)N4—H4C0.9100
O8—C141.2498 (18)N4—H4D0.9100
N1—C51.3340 (19)C15—C161.5205 (19)
N1—C11.3387 (19)C15—H15A0.9900
N2—C121.335 (2)C15—H15B0.9900
N2—C81.335 (2)C16—C171.523 (2)
C1—C21.384 (2)C16—H16A1.0000
C1—C61.516 (2)C17—H17A0.9800
C2—C31.397 (2)C17—H17B0.9800
C2—H2A0.9500C17—H17C0.9800
C3—C41.393 (2)O1W—H1WA0.8201
C3—H3A0.9500O1W—H1WB0.8200
C4—C51.389 (2)O2W—H2WA0.8201
C4—H4A0.9500O2W—H2WB0.8198
C5—C71.5130 (19)O3W—H3WA0.8200
C8—C91.398 (2)O3W—H3WB0.8201
C8—C131.516 (2)O4W—H4WA0.8201
C9—C101.392 (2)O4W—H4WB0.8201
N2—Ni1—N1176.17 (5)C8—C9—H9A121.0
N2—Ni1—O677.83 (5)C9—C10—C11120.52 (14)
N1—Ni1—O6104.64 (5)C9—C10—H10A119.7
N2—Ni1—O778.27 (5)C11—C10—H10A119.7
N1—Ni1—O799.37 (5)C12—C11—C10117.85 (14)
O6—Ni1—O7155.96 (4)C12—C11—H11A121.1
N2—Ni1—O398.99 (5)C10—C11—H11A121.1
N1—Ni1—O377.94 (5)N2—C12—C11121.31 (14)
O6—Ni1—O395.64 (4)N2—C12—C14112.42 (14)
O7—Ni1—O390.55 (4)C11—C12—C14126.11 (13)
N2—Ni1—O2105.48 (5)O5—C13—O6126.37 (14)
N1—Ni1—O277.70 (5)O5—C13—C8118.49 (13)
O6—Ni1—O287.29 (4)O6—C13—C8115.14 (12)
O7—Ni1—O296.66 (4)O8—C14—O7125.63 (14)
O3—Ni1—O2155.41 (4)O8—C14—C12118.02 (13)
C6—O2—Ni1114.09 (9)O7—C14—C12116.31 (12)
C7—O3—Ni1114.43 (9)C15—N3—H3B109.5
C13—O6—Ni1114.94 (9)C15—N3—H3C109.5
C14—O7—Ni1113.70 (9)H3B—N3—H3C109.5
C5—N1—C1121.44 (14)C15—N3—H3D109.5
C5—N1—Ni1118.86 (10)H3B—N3—H3D109.5
C1—N1—Ni1119.70 (10)H3C—N3—H3D109.5
C12—N2—C8121.75 (15)C16—N4—H4B109.5
C12—N2—Ni1118.82 (11)C16—N4—H4C109.5
C8—N2—Ni1119.39 (11)H4B—N4—H4C109.5
N1—C1—C2121.11 (14)C16—N4—H4D109.5
N1—C1—C6112.38 (13)H4B—N4—H4D109.5
C2—C1—C6126.50 (14)H4C—N4—H4D109.5
C1—C2—C3117.99 (14)N3—C15—C16112.62 (12)
C1—C2—H2A121.0N3—C15—H15A109.1
C3—C2—H2A121.0C16—C15—H15A109.1
C4—C3—C2120.40 (14)N3—C15—H15B109.1
C4—C3—H3A119.8C16—C15—H15B109.1
C2—C3—H3A119.8H15A—C15—H15B107.8
C5—C4—C3117.93 (13)N4—C16—C15111.16 (11)
C5—C4—H4A121.0N4—C16—C17109.06 (12)
C3—C4—H4A121.0C15—C16—C17110.80 (12)
N1—C5—C4121.13 (14)N4—C16—H16A108.6
N1—C5—C7113.07 (13)C15—C16—H16A108.6
C4—C5—C7125.70 (13)C17—C16—H16A108.6
O1—C6—O2125.06 (13)C16—C17—H17A109.5
O1—C6—C1118.90 (13)C16—C17—H17B109.5
O2—C6—C1116.03 (12)H17A—C17—H17B109.5
O4—C7—O3125.65 (13)C16—C17—H17C109.5
O4—C7—C5118.88 (13)H17A—C17—H17C109.5
O3—C7—C5115.46 (12)H17B—C17—H17C109.5
N2—C8—C9120.62 (14)H1WA—O1W—H1WB101.2
N2—C8—C13112.42 (13)H2WA—O2W—H2WB104.5
C9—C8—C13126.95 (13)H3WA—O3W—H3WB102.4
C10—C9—C8117.93 (14)H4WA—O4W—H4WB89.5
C10—C9—H9A121.0
N2—Ni1—O2—C6179.68 (10)Ni1—N1—C5—C4179.84 (10)
N1—Ni1—O2—C62.52 (10)C1—N1—C5—C7176.61 (12)
O6—Ni1—O2—C6103.10 (10)Ni1—N1—C5—C73.14 (16)
O7—Ni1—O2—C6100.70 (10)C3—C4—C5—N10.7 (2)
O3—Ni1—O2—C65.46 (16)C3—C4—C5—C7175.52 (13)
N2—Ni1—O3—C7173.26 (10)Ni1—O2—C6—O1175.13 (11)
N1—Ni1—O3—C74.41 (10)Ni1—O2—C6—C13.57 (15)
O6—Ni1—O3—C7108.21 (10)N1—C1—C6—O1175.89 (13)
O7—Ni1—O3—C795.05 (10)C2—C1—C6—O12.4 (2)
O2—Ni1—O3—C712.39 (16)N1—C1—C6—O22.89 (18)
N2—Ni1—O6—C134.98 (10)C2—C1—C6—O2178.85 (14)
N1—Ni1—O6—C13178.04 (10)Ni1—O3—C7—O4177.39 (11)
O7—Ni1—O6—C131.20 (16)Ni1—O3—C7—C54.04 (15)
O3—Ni1—O6—C13102.99 (10)N1—C5—C7—O4179.55 (13)
O2—Ni1—O6—C13101.50 (10)C4—C5—C7—O43.0 (2)
N2—Ni1—O7—C146.39 (10)N1—C5—C7—O30.87 (18)
N1—Ni1—O7—C14170.54 (10)C4—C5—C7—O3175.64 (13)
O6—Ni1—O7—C1412.55 (15)C12—N2—C8—C91.7 (2)
O3—Ni1—O7—C1492.68 (10)Ni1—N2—C8—C9176.03 (11)
O2—Ni1—O7—C14110.88 (10)C12—N2—C8—C13179.89 (12)
O6—Ni1—N1—C596.77 (11)Ni1—N2—C8—C132.41 (16)
O7—Ni1—N1—C584.54 (11)N2—C8—C9—C101.3 (2)
O3—Ni1—N1—C54.01 (11)C13—C8—C9—C10179.52 (14)
O2—Ni1—N1—C5179.38 (12)C8—C9—C10—C110.3 (2)
O6—Ni1—N1—C183.00 (12)C9—C10—C11—C121.6 (2)
O7—Ni1—N1—C195.70 (11)C8—N2—C12—C110.3 (2)
O3—Ni1—N1—C1175.75 (12)Ni1—N2—C12—C11177.38 (10)
O2—Ni1—N1—C10.86 (11)C8—N2—C12—C14175.92 (12)
O6—Ni1—N2—C12178.35 (11)Ni1—N2—C12—C141.80 (16)
O7—Ni1—N2—C124.21 (10)C10—C11—C12—N21.3 (2)
O3—Ni1—N2—C1284.47 (11)C10—C11—C12—C14173.67 (13)
O2—Ni1—N2—C1297.96 (11)Ni1—O6—C13—O5174.76 (11)
O6—Ni1—N2—C83.88 (10)Ni1—O6—C13—C85.13 (15)
O7—Ni1—N2—C8173.56 (11)N2—C8—C13—O5177.84 (12)
O3—Ni1—N2—C897.75 (11)C9—C8—C13—O50.5 (2)
O2—Ni1—N2—C879.81 (11)N2—C8—C13—O62.06 (18)
C5—N1—C1—C20.8 (2)C9—C8—C13—O6179.62 (14)
Ni1—N1—C1—C2179.00 (11)Ni1—O7—C14—O8174.94 (12)
C5—N1—C1—C6179.12 (12)Ni1—O7—C14—C127.30 (15)
Ni1—N1—C1—C60.63 (16)N2—C12—C14—O8178.05 (12)
N1—C1—C2—C30.9 (2)C11—C12—C14—O86.6 (2)
C6—C1—C2—C3179.00 (13)N2—C12—C14—O74.02 (18)
C1—C2—C3—C40.2 (2)C11—C12—C14—O7171.32 (14)
C2—C3—C4—C50.6 (2)N3—C15—C16—N461.32 (15)
C1—N1—C5—C40.1 (2)N3—C15—C16—C17177.24 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4W0.821.972.788 (2)173
O1W—H1WB···O20.822.473.109 (2)135
O1W—H1WB···O60.822.212.912 (2)144
O2W—H2WA···O30.822.212.759 (2)125
N3—H3B···O4i0.911.902.795 (2)168
N3—H3C···O1W0.911.912.763 (2)155
N3—H3D···O8ii0.911.882.783 (2)176
O2W—H2WB···O1iii0.822.072.849 (2)160
N4—H4B···O3Wii0.911.922.812 (2)165
N4—H4C···O10.911.922.813 (2)168
N4—H4D···O4Wiv0.911.912.777 (2)160
O3W—H3WA···O80.822.032.771 (2)149
O3W—H3WB···O4v0.821.992.787 (2)166
O4W—H4WA···O2Wi0.821.992.749 (2)153
O4W—H4WB···O50.821.902.712 (2)171
C10—H10A···O6vi0.952.543.289 (2)136
C11—H11A···O1Wvi0.952.583.484 (2)160
C15—H15B···O5vii0.992.303.268 (2)164
C16—H16A···O7ii1.002.493.291 (2)137
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x, y1, z; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z1/2; (vii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(C3H12N2)[Ni(C7H3NO4)2]·4H2O
Mr537.13
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)20.7598 (6), 8.2582 (2), 12.7242 (4)
V3)2181.42 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.26 × 0.22 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.781, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
36654, 6379, 6016
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.01
No. of reflections6379
No. of parameters310
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.33
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.004 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4W0.821.972.788 (2)173
O1W—H1WB···O20.822.473.109 (2)135
O1W—H1WB···O60.822.212.912 (2)144
O2W—H2WA···O30.822.212.759 (2)125
N3—H3B···O4i0.911.902.795 (2)168
N3—H3C···O1W0.911.912.763 (2)155
N3—H3D···O8ii0.911.882.783 (2)176
O2W—H2WB···O1iii0.822.072.849 (2)160
N4—H4B···O3Wii0.911.922.812 (2)165
N4—H4C···O10.911.922.813 (2)168
N4—H4D···O4Wiv0.911.912.777 (2)160
O3W—H3WA···O80.822.032.771 (2)149
O3W—H3WB···O4v0.821.992.787 (2)166
O4W—H4WA···O2Wi0.821.992.749 (2)153
O4W—H4WB···O50.821.902.712 (2)171
C10—H10A···O6vi0.952.543.289 (2)136
C11—H11A···O1Wvi0.952.583.484 (2)160
C15—H15B···O5vii0.992.303.268 (2)164
C16—H16A···O7ii1.002.493.291 (2)137
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x, y1, z; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z1/2; (vii) x+1, y+1, z+1/2.
 

References

First citationAghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.  CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m874-m875
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds