metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m870-m871

2-(2-Pyrid­yl)pyridinium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O,N,O′)aluminate(III) trihydrate

aDepartment of Chemistry, Faculty of Science, Ilam University, Ilam, Iran, and bFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 11 May 2008; accepted 27 May 2008; online 7 June 2008)

The title compound, (C10H9N2)[Al(C7H3NO4)2]·3H2O or (2,2′-bipyH)[Al(pydc)2]·3H2O (where 2,2′-bipy is 2,2′-bipyridine and pydcH2 is pyridine-2,6-dicarboxylic acid), was synthesized by the reaction of aluminium(III) nitrate nona­hydrate with pyridine-2,6-dicarboxylic acid and 2,2′-bipyridine in a 1:2:4 molar ratio in aqueous solution. This compound is composed of an anionic complex, [Al(pydc)2], a protonated 2,2′-bipyridine mol­ecule as a counter-ion, (2,2′-bipyH)+, and three uncoordinated water mol­ecules. The anion is a six-coordinate complex, with the AlIII atom in a distorted octa­hedral geometry coordinated by two tridentate pyridine-2,6-dicarboxyl­ate groups. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, ππ stacking between two aromatic rings [centroid–centroid distance = 3.827 (10) Å], and C=O⋯π stacking [with distances of 3.2311 (13), 3.4924 (14) and 3.5731 (13) Å], connect the various components to form a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2007[Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985-o2986.], 2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006[Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174-o3176.]); Aghabozorg, Ghadermazi & Ramezanipour (2006[Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143-o1146.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H9N2)[Al(C7H3NO4)2]·3H2O

  • Mr = 568.43

  • Triclinic, [P \overline 1]

  • a = 9.3744 (13) Å

  • b = 10.9039 (16) Å

  • c = 13.005 (2) Å

  • α = 106.335 (7)°

  • β = 98.889 (7)°

  • γ = 97.521 (7)°

  • V = 1238.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 150 (2) K

  • 0.32 × 0.32 × 0.15 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.977

  • 25116 measured reflections

  • 4350 independent reflections

  • 3975 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.07

  • 4350 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1B⋯O2 0.85 1.98 2.8166 (14) 166
O1S—H1A⋯O3Si 0.85 1.92 2.7472 (18) 165
O2S—H2A⋯O1Sii 0.85 1.92 2.7650 (17) 175
O2S—H2B⋯O6 0.85 1.92 2.7703 (16) 174
O3S—H3B⋯O7 0.85 2.02 2.8647 (16) 170
O3S—H3A⋯O2Siii 0.85 1.94 2.7886 (18) 172
N3—H3C⋯O4iv 0.85 2.04 2.7312 (15) 138
N3—H3C⋯N4 0.85 2.31 2.6497 (19) 104
C12—H12⋯O1Si 0.95 2.46 3.372 (2) 160
C15—H15⋯O4iv 0.95 2.52 2.965 (2) 109
C16—H16⋯O2Siii 0.95 2.33 3.248 (2) 162
C17—H17⋯O1v 0.95 2.25 3.136 (2) 155
C18—H18⋯O8vi 0.95 2.50 3.331 (2) 146
C1—O1⋯Cg1vii 1.22 (1) 3.49 (1) 3.9906 (17) 105 (1)
C7—O4⋯Cg2vi 1.22 (1) 3.23 (1) 3.4319 (17) 89 (1)
C1—O1⋯Cg3vii 1.22 (1) 3.57 (1) 3.8161 (18) 92 (1)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) -x+1, -y+2, -z+1. Cg1, Cg2 and Cg3 are the centroids of the N1/C2–C6, N3/C15–C19 and N4/C20–C24 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Our research interests are centered on the preparation of water soluble proton transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylicacid, btcH4, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen), has occured. This work has resulted in the formation of some novel proton transfer compounds such as (pnH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi, Ramezanipour, 2006), (pnH2)2(btc).2H2O (Aghabozorg, et al., 2007) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi, Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, et al., 2008).

The molecular structure and the crystal packing diagram of the title compound, (2,2'-bipyH)[Al(pydc)2].3H2O, are shown in Figs. 1 and 2, respectively. The title compound is composed of an anionic complex, [Al(pydc)2]-, protonated 2,2'-bipyridine as a counter ion, (2,2'-bipyH)+, and three uncoordinated water molecules. The AlIII atom is six-coordinated by two pyridine-2,6-dicarboxylate, (pydc)2-, groups which act as a tridentate ligand through two O and one N atoms. The O5—Al1—O3 and O8—Al1—O2 angles (90.72 (5)° and 91.91 (5)°, repectively) and O5—Al1—O2—C1 and O5—Al1—O3—C7 torsion angles (-98.48 (10)° and 97.57 (10)°, respectively) show that these two (pydc)2- anions are almost perpendicular to one another. So the anionic complex has a distorted octahedral geometry around the AlIII atom. For balancing the anionic complex, a protonated 2,2'-bipyridinium cation, (2,2'-bipyH)+, is present. The O2—Al1—O3 [159.56 (5)°] and O5—Al1—O8 [159.66 (5)°] bond angles indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the AlIII atom.

In the crystal structure of the title compound, the spaces between two layers of [Al(pydc)2]- anions are filled with (2,2'-bipyH)+ cations and water molecules (Fig. 3). An important feature of the title compound is the presence of π-π and CO···π staking interactions. The π-π stacking between the aromatic rings of Cg1 (Cg1: N1/C2—C6) and Cg1 [-x, 1 - y, 1 - z], with distances of 3.8271 (10) Å , are observed in Fig. 4. The CO···π stacking interactions between C1 O1 and Cg1, C7O4 and Cg2 [Cg2 centroid of ring N3/C15—C19] and C1O1 and Cg3 [Cg3 centroid of ring N4/C20—C24] with O···π distances of 3.4924 (14) Å (1 - x, 1 - y, 1 - z), 3.2311 (13) Å (1 - x, 2 - y, 1 - z) and 3.5731 (15) Å (1 - x, 1 - y, 1 - z), respectively, are shown in Fig. 5. Intermolecular O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds, D···A ranging from 2.6497 (19) Å to 3.372 (2) Å (Table 1), appear to be effective in the stabilization of the crystal structure, resulting in the formation of an interesting supramolecular structure.

Related literature top

For related literature, see: Aghabozorg et al. (2007, 2008); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006). Cg1, Cg2 and Cg3 are the centroids of the N1/C2–C6, N3/C15–C19 and N4/C20–C24 rings, respectively.

Experimental top

A solution of Al(NO3)3.9H2O (187 mg, 0.5 mmol) in water (5 ml) was added to an aqueous solution of pyridine-2,6-dicarboxylic acid (167 mg, 1 mmol) and 2,2'-bipyridine (312 mg, 2 mmol) in water (10 ml) in a 1:2:4 molar ratio and refluxed for an hour. Colourless crystals of the title compound were obtained after allowing the mixture to stand for two months at room temperature

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.85 Å and C—H = 0.95 Å with Uiso(H) = 1.2Ueq(parent O or C-atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Uncoordinated water molecules are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound with hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. Layered diagram of the title compound. The space between the two layers of [Al(pydc)2]- fragments is filled with a layer of (2,2'-bipyH)+ cations and water molecules.
[Figure 4] Fig. 4. The π-π stacking between the aromatic rings of Cg1 (Cg1: N1/C2—C6) and Cg1i with distances of 3.8271 (10) Å (i = -x, 1 - y, 1 - z).
[Figure 5] Fig. 5. The CO···π stacking interactions between C1O1 and Cg1, C7O4 and Cg2 [Cg2 centroid of ring N3/C15—C19] and C1—O1 and Cg3 [Cg3 centroid of ring N4/C20—C24] with O···π distances of 3.4924 (14) Å (1 - x, 1 - y, 1 - z), 3.2311 (13) Å (1 - x, 2 - y, 1 - z) and 3.5731 (15) Å (1 - x, 1 - y, 1 - z), respectively.
2-(2-Pyridyl)pyridinium bis(pyridine-2,6-dicarboxylato-κ3O,N,O')aluminate(III) trihydrate top
Crystal data top
(C10H9N2)[Al(C7H3NO4)2]·3H2OZ = 2
Mr = 568.43F(000) = 588
Triclinic, P1Dx = 1.524 Mg m3
a = 9.3744 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9039 (16) ÅCell parameters from 14815 reflections
c = 13.005 (2) Åθ = 2.2–30.5°
α = 106.335 (7)°µ = 0.15 mm1
β = 98.889 (7)°T = 150 K
γ = 97.521 (7)°Block, colourless
V = 1238.9 (3) Å30.32 × 0.32 × 0.15 mm
Data collection top
Bruker SMART APEXII
diffractometer
4350 independent reflections
Radiation source: fine-focus sealed tube3975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 100 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.952, Tmax = 0.977l = 1515
25116 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.5394P]
where P = (Fo2 + 2Fc2)/3
4350 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
(C10H9N2)[Al(C7H3NO4)2]·3H2Oγ = 97.521 (7)°
Mr = 568.43V = 1238.9 (3) Å3
Triclinic, P1Z = 2
a = 9.3744 (13) ÅMo Kα radiation
b = 10.9039 (16) ŵ = 0.15 mm1
c = 13.005 (2) ÅT = 150 K
α = 106.335 (7)°0.32 × 0.32 × 0.15 mm
β = 98.889 (7)°
Data collection top
Bruker SMART APEXII
diffractometer
4350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3975 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.977Rint = 0.028
25116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
4350 reflectionsΔρmin = 0.27 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.21091 (4)0.51034 (4)0.27510 (3)0.01853 (11)
O1S0.48869 (13)0.28901 (11)0.14144 (10)0.0373 (3)
H1B0.44350.30800.19400.045*
H1A0.42520.24500.08450.045*
O10.42412 (12)0.30145 (11)0.43024 (9)0.0342 (3)
O2S0.31795 (13)0.11693 (11)0.13006 (10)0.0375 (3)
H2A0.38050.16700.13560.045*
H2B0.25500.16020.10690.045*
O20.32880 (11)0.38761 (10)0.30284 (8)0.0236 (2)
O3S0.67386 (15)0.84922 (12)0.06284 (10)0.0452 (3)
H3B0.63200.81940.10660.054*
H3A0.66900.92930.08640.054*
O30.09123 (10)0.64189 (9)0.30110 (8)0.0223 (2)
O40.01691 (11)0.76366 (10)0.42483 (9)0.0288 (2)
O50.03877 (10)0.37739 (9)0.21149 (8)0.0219 (2)
O60.10199 (11)0.24420 (10)0.05363 (9)0.0308 (3)
O70.52641 (12)0.71867 (11)0.19033 (10)0.0353 (3)
O80.38105 (11)0.63460 (10)0.28478 (8)0.0247 (2)
N10.20788 (12)0.53539 (11)0.42795 (9)0.0176 (2)
N20.21186 (12)0.48075 (11)0.12106 (9)0.0196 (2)
N30.80638 (13)0.94087 (11)0.48351 (10)0.0218 (3)
H3C0.85510.88500.49830.026*
N40.88910 (14)0.93496 (12)0.68605 (11)0.0281 (3)
C10.35290 (15)0.37505 (14)0.40033 (12)0.0225 (3)
C20.28187 (14)0.46620 (13)0.47934 (12)0.0198 (3)
C30.28675 (16)0.48476 (14)0.58962 (12)0.0242 (3)
H30.34000.43660.62730.029*
C40.21100 (16)0.57643 (15)0.64353 (12)0.0256 (3)
H40.21340.59180.71950.031*
C50.13182 (15)0.64574 (14)0.58781 (12)0.0230 (3)
H50.07850.70700.62420.028*
C60.13321 (14)0.62270 (13)0.47794 (11)0.0186 (3)
C70.06099 (14)0.68351 (13)0.39694 (12)0.0200 (3)
C80.00324 (15)0.32954 (13)0.10632 (11)0.0214 (3)
C90.10685 (15)0.39025 (13)0.04805 (11)0.0204 (3)
C100.10349 (17)0.36498 (15)0.06256 (12)0.0256 (3)
H100.02980.30010.11540.031*
C110.21247 (17)0.43838 (15)0.09363 (12)0.0283 (3)
H110.21280.42340.16920.034*
C120.32087 (17)0.53326 (15)0.01609 (13)0.0270 (3)
H120.39450.58360.03750.032*
C130.31778 (15)0.55176 (13)0.09321 (12)0.0218 (3)
C140.41978 (16)0.64420 (14)0.19568 (12)0.0242 (3)
C150.79042 (16)0.94582 (14)0.38086 (12)0.0263 (3)
H150.83730.89300.33010.032*
C160.70599 (16)1.02761 (14)0.34927 (13)0.0275 (3)
H160.69441.03290.27690.033*
C170.63797 (15)1.10235 (14)0.42492 (13)0.0263 (3)
H170.57821.15870.40400.032*
C180.65647 (15)1.09555 (14)0.53085 (13)0.0242 (3)
H180.60961.14700.58250.029*
C190.74391 (15)1.01321 (13)0.56095 (12)0.0212 (3)
C200.77715 (15)0.99738 (13)0.67040 (12)0.0235 (3)
C210.69590 (17)1.04216 (15)0.74973 (13)0.0291 (3)
H210.61901.08780.73610.035*
C220.72998 (19)1.01853 (17)0.84872 (13)0.0365 (4)
H220.67531.04610.90400.044*
C230.8444 (2)0.95436 (17)0.86625 (14)0.0374 (4)
H230.86980.93690.93370.045*
C240.92146 (19)0.91581 (16)0.78373 (14)0.0340 (4)
H241.00160.87350.79710.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0203 (2)0.0193 (2)0.0161 (2)0.00520 (16)0.00554 (16)0.00375 (17)
O1S0.0395 (6)0.0426 (7)0.0333 (6)0.0104 (5)0.0203 (5)0.0089 (5)
O10.0352 (6)0.0344 (6)0.0376 (7)0.0191 (5)0.0059 (5)0.0131 (5)
O2S0.0413 (7)0.0376 (7)0.0444 (7)0.0122 (5)0.0182 (5)0.0221 (6)
O20.0253 (5)0.0244 (5)0.0221 (5)0.0103 (4)0.0078 (4)0.0043 (4)
O3S0.0632 (8)0.0363 (7)0.0417 (7)0.0082 (6)0.0206 (6)0.0160 (6)
O30.0250 (5)0.0227 (5)0.0208 (5)0.0084 (4)0.0056 (4)0.0067 (4)
O40.0281 (5)0.0250 (6)0.0371 (6)0.0137 (5)0.0120 (5)0.0085 (5)
O50.0235 (5)0.0227 (5)0.0188 (5)0.0032 (4)0.0070 (4)0.0042 (4)
O60.0276 (6)0.0302 (6)0.0273 (6)0.0036 (5)0.0019 (5)0.0034 (5)
O70.0324 (6)0.0314 (6)0.0403 (7)0.0042 (5)0.0137 (5)0.0091 (5)
O80.0252 (5)0.0244 (5)0.0216 (5)0.0021 (4)0.0065 (4)0.0028 (4)
N10.0165 (5)0.0168 (6)0.0182 (6)0.0022 (4)0.0041 (4)0.0035 (5)
N20.0218 (6)0.0195 (6)0.0191 (6)0.0070 (5)0.0066 (5)0.0059 (5)
N30.0227 (6)0.0185 (6)0.0256 (6)0.0079 (5)0.0051 (5)0.0069 (5)
N40.0301 (7)0.0266 (7)0.0295 (7)0.0076 (5)0.0061 (5)0.0104 (6)
C10.0193 (7)0.0210 (7)0.0263 (8)0.0049 (6)0.0032 (6)0.0059 (6)
C20.0166 (6)0.0185 (7)0.0232 (7)0.0011 (5)0.0023 (5)0.0064 (6)
C30.0237 (7)0.0262 (8)0.0229 (7)0.0011 (6)0.0028 (6)0.0105 (6)
C40.0285 (8)0.0278 (8)0.0181 (7)0.0017 (6)0.0063 (6)0.0055 (6)
C50.0236 (7)0.0197 (7)0.0233 (8)0.0000 (6)0.0103 (6)0.0015 (6)
C60.0163 (6)0.0150 (7)0.0223 (7)0.0002 (5)0.0064 (5)0.0022 (6)
C70.0172 (6)0.0164 (7)0.0253 (8)0.0018 (5)0.0057 (6)0.0044 (6)
C80.0221 (7)0.0202 (7)0.0219 (8)0.0077 (6)0.0049 (6)0.0046 (6)
C90.0216 (7)0.0196 (7)0.0205 (7)0.0085 (6)0.0037 (6)0.0050 (6)
C100.0305 (8)0.0269 (8)0.0195 (7)0.0110 (6)0.0033 (6)0.0056 (6)
C110.0374 (8)0.0340 (9)0.0196 (7)0.0155 (7)0.0096 (6)0.0117 (7)
C120.0304 (8)0.0297 (8)0.0291 (8)0.0120 (6)0.0140 (6)0.0150 (7)
C130.0232 (7)0.0207 (7)0.0260 (8)0.0084 (6)0.0099 (6)0.0097 (6)
C140.0244 (7)0.0214 (7)0.0289 (8)0.0068 (6)0.0099 (6)0.0075 (6)
C150.0289 (8)0.0244 (8)0.0252 (8)0.0063 (6)0.0072 (6)0.0054 (6)
C160.0280 (8)0.0256 (8)0.0278 (8)0.0040 (6)0.0015 (6)0.0092 (6)
C170.0194 (7)0.0183 (7)0.0392 (9)0.0025 (6)0.0005 (6)0.0095 (6)
C180.0177 (7)0.0171 (7)0.0349 (9)0.0023 (5)0.0058 (6)0.0035 (6)
C190.0172 (6)0.0158 (7)0.0277 (8)0.0003 (5)0.0054 (6)0.0032 (6)
C200.0226 (7)0.0178 (7)0.0261 (8)0.0002 (6)0.0037 (6)0.0030 (6)
C210.0266 (8)0.0280 (8)0.0262 (8)0.0016 (6)0.0049 (6)0.0002 (6)
C220.0377 (9)0.0377 (10)0.0247 (8)0.0031 (7)0.0080 (7)0.0020 (7)
C230.0453 (10)0.0366 (9)0.0248 (8)0.0027 (8)0.0023 (7)0.0079 (7)
C240.0391 (9)0.0321 (9)0.0316 (9)0.0070 (7)0.0026 (7)0.0131 (7)
Geometric parameters (Å, º) top
Al1—O81.9162 (11)C3—H30.9500
Al1—O21.9178 (11)C4—C51.391 (2)
Al1—O51.9211 (11)C4—H40.9500
Al1—O31.9226 (10)C5—C61.382 (2)
Al1—N11.9341 (12)C5—H50.9500
Al1—N21.9390 (12)C6—C71.516 (2)
O1S—H1B0.8499C8—C91.516 (2)
O1S—H1A0.8501C9—C101.381 (2)
O1—C11.2153 (18)C10—C111.394 (2)
O2S—H2A0.8499C10—H100.9500
O2S—H2B0.8501C11—C121.393 (2)
O2—C11.3016 (18)C11—H110.9500
O3S—H3B0.8502C12—C131.384 (2)
O3S—H3A0.8499C12—H120.9500
O3—C71.2901 (17)C13—C141.518 (2)
O4—C71.2245 (17)C15—C161.371 (2)
O5—C81.2908 (17)C15—H150.9500
O6—C81.2251 (18)C16—C171.385 (2)
O7—C141.2265 (18)C16—H160.9500
O8—C141.2938 (18)C17—C181.386 (2)
N1—C21.3320 (18)C17—H170.9500
N1—C61.3364 (17)C18—C191.386 (2)
N2—C91.3320 (18)C18—H180.9500
N2—C131.3358 (18)C19—C201.473 (2)
N3—C151.3373 (19)C20—C211.393 (2)
N3—C191.3548 (18)C21—C221.381 (2)
N3—H3C0.8532C21—H210.9500
N4—C241.340 (2)C22—C231.379 (3)
N4—C201.3434 (19)C22—H220.9500
C1—C21.5157 (19)C23—C241.384 (2)
C2—C31.383 (2)C23—H230.9500
C3—C41.393 (2)C24—H240.9500
O8—Al1—O291.91 (5)O3—C7—C6113.16 (11)
O8—Al1—O5159.66 (5)O6—C8—O5126.52 (13)
O2—Al1—O592.30 (5)O6—C8—C9120.22 (13)
O8—Al1—O392.25 (5)O5—C8—C9113.26 (12)
O2—Al1—O3159.56 (5)N2—C9—C10120.48 (13)
O5—Al1—O390.72 (5)N2—C9—C8109.84 (12)
O8—Al1—N1101.41 (5)C10—C9—C8129.67 (13)
O2—Al1—N179.78 (5)C9—C10—C11117.41 (14)
O5—Al1—N198.92 (5)C9—C10—H10121.3
O3—Al1—N179.79 (5)C11—C10—H10121.3
O8—Al1—N279.79 (5)C12—C11—C10121.29 (14)
O2—Al1—N299.48 (5)C12—C11—H11119.4
O5—Al1—N279.89 (5)C10—C11—H11119.4
O3—Al1—N2100.95 (5)C13—C12—C11117.84 (14)
N1—Al1—N2178.59 (5)C13—C12—H12121.1
H1B—O1S—H1A107.3C11—C12—H12121.1
H2A—O2S—H2B99.0N2—C13—C12119.83 (14)
C1—O2—Al1119.04 (9)N2—C13—C14109.62 (12)
H3B—O3S—H3A101.0C12—C13—C14130.55 (13)
C7—O3—Al1118.80 (9)O7—C14—O8125.69 (14)
C8—O5—Al1118.65 (9)O7—C14—C13121.32 (13)
C14—O8—Al1119.08 (9)O8—C14—C13112.98 (12)
C2—N1—C6122.76 (12)N3—C15—C16119.62 (14)
C2—N1—Al1118.66 (9)N3—C15—H15120.2
C6—N1—Al1118.58 (9)C16—C15—H15120.2
C9—N2—C13123.14 (12)C15—C16—C17118.74 (14)
C9—N2—Al1118.34 (9)C15—C16—H16120.6
C13—N2—Al1118.52 (10)C17—C16—H16120.6
C15—N3—C19123.93 (12)C16—C17—C18120.49 (14)
C15—N3—H3C116.3C16—C17—H17119.8
C19—N3—H3C119.6C18—C17—H17119.8
C24—N4—C20116.89 (14)C17—C18—C19119.55 (13)
O1—C1—O2126.75 (13)C17—C18—H18120.2
O1—C1—C2120.76 (13)C19—C18—H18120.2
O2—C1—C2112.49 (12)N3—C19—C18117.66 (13)
N1—C2—C3120.37 (13)N3—C19—C20116.26 (12)
N1—C2—C1110.01 (12)C18—C19—C20126.07 (13)
C3—C2—C1129.62 (13)N4—C20—C21123.42 (14)
C2—C3—C4117.76 (13)N4—C20—C19114.72 (13)
C2—C3—H3121.1C21—C20—C19121.85 (14)
C4—C3—H3121.1C22—C21—C20118.29 (15)
C5—C4—C3120.97 (13)C22—C21—H21120.9
C5—C4—H4119.5C20—C21—H21120.9
C3—C4—H4119.5C23—C22—C21119.13 (15)
C6—C5—C4117.92 (13)C23—C22—H22120.4
C6—C5—H5121.0C21—C22—H22120.4
C4—C5—H5121.0C22—C23—C24118.73 (16)
N1—C6—C5120.20 (13)C22—C23—H23120.6
N1—C6—C7109.62 (12)C24—C23—H23120.6
C5—C6—C7130.17 (12)N4—C24—C23123.51 (16)
O4—C7—O3126.31 (13)N4—C24—H24118.2
O4—C7—C6120.53 (13)C23—C24—H24118.2
O8—Al1—O2—C1101.43 (10)C4—C5—C6—N10.6 (2)
O5—Al1—O2—C198.48 (10)C4—C5—C6—C7178.88 (13)
O3—Al1—O2—C10.2 (2)Al1—O3—C7—O4177.70 (11)
N1—Al1—O2—C10.17 (10)Al1—O3—C7—C62.38 (15)
N2—Al1—O2—C1178.61 (10)N1—C6—C7—O4177.78 (12)
O8—Al1—O3—C7102.56 (10)C5—C6—C7—O42.7 (2)
O2—Al1—O3—C70.96 (19)N1—C6—C7—O32.29 (16)
O5—Al1—O3—C797.57 (10)C5—C6—C7—O3177.20 (13)
N1—Al1—O3—C71.36 (10)Al1—O5—C8—O6179.47 (12)
N2—Al1—O3—C7177.41 (10)Al1—O5—C8—C90.78 (15)
O8—Al1—O5—C83.61 (19)C13—N2—C9—C100.3 (2)
O2—Al1—O5—C898.17 (10)Al1—N2—C9—C10179.53 (10)
O3—Al1—O5—C8102.05 (10)C13—N2—C9—C8179.09 (12)
N1—Al1—O5—C8178.18 (10)Al1—N2—C9—C81.05 (14)
N2—Al1—O5—C81.06 (10)O6—C8—C9—N2179.59 (13)
O2—Al1—O8—C1498.96 (10)O5—C8—C9—N20.18 (16)
O5—Al1—O8—C142.9 (2)O6—C8—C9—C100.2 (2)
O3—Al1—O8—C14101.06 (10)O5—C8—C9—C10179.52 (14)
N1—Al1—O8—C14178.91 (10)N2—C9—C10—C110.6 (2)
N2—Al1—O8—C140.33 (10)C8—C9—C10—C11178.64 (13)
O8—Al1—N1—C288.99 (10)C9—C10—C11—C120.2 (2)
O2—Al1—N1—C20.90 (10)C10—C11—C12—C130.5 (2)
O5—Al1—N1—C291.64 (10)C9—N2—C13—C120.5 (2)
O3—Al1—N1—C2179.24 (10)Al1—N2—C13—C12179.68 (10)
O8—Al1—N1—C690.13 (10)C9—N2—C13—C14179.37 (12)
O2—Al1—N1—C6179.98 (10)Al1—N2—C13—C140.49 (14)
O5—Al1—N1—C689.24 (10)C11—C12—C13—N20.9 (2)
O3—Al1—N1—C60.12 (10)C11—C12—C13—C14178.93 (14)
O8—Al1—N2—C9179.73 (11)Al1—O8—C14—O7179.45 (12)
O2—Al1—N2—C989.49 (10)Al1—O8—C14—C130.67 (15)
O5—Al1—N2—C91.17 (10)N2—C13—C14—O7179.40 (13)
O3—Al1—N2—C989.94 (10)C12—C13—C14—O70.4 (2)
O8—Al1—N2—C130.14 (10)N2—C13—C14—O80.72 (17)
O2—Al1—N2—C1390.38 (10)C12—C13—C14—O8179.47 (14)
O5—Al1—N2—C13178.96 (11)C19—N3—C15—C160.3 (2)
O3—Al1—N2—C1390.20 (10)N3—C15—C16—C170.6 (2)
Al1—O2—C1—O1179.55 (12)C15—C16—C17—C180.8 (2)
Al1—O2—C1—C21.03 (15)C16—C17—C18—C190.0 (2)
C6—N1—C2—C31.4 (2)C15—N3—C19—C181.1 (2)
Al1—N1—C2—C3177.65 (10)C15—N3—C19—C20178.35 (13)
C6—N1—C2—C1179.33 (12)C17—C18—C19—N30.9 (2)
Al1—N1—C2—C11.59 (14)C17—C18—C19—C20178.44 (13)
O1—C1—C2—N1178.90 (13)C24—N4—C20—C210.2 (2)
O2—C1—C2—N11.64 (16)C24—N4—C20—C19178.64 (13)
O1—C1—C2—C31.9 (2)N3—C19—C20—N413.58 (18)
O2—C1—C2—C3177.51 (13)C18—C19—C20—N4165.77 (13)
N1—C2—C3—C40.6 (2)N3—C19—C20—C21165.29 (13)
C1—C2—C3—C4179.71 (13)C18—C19—C20—C2115.4 (2)
C2—C3—C4—C50.7 (2)N4—C20—C21—C221.5 (2)
C3—C4—C5—C61.3 (2)C19—C20—C21—C22177.23 (14)
C2—N1—C6—C50.82 (19)C20—C21—C22—C231.3 (2)
Al1—N1—C6—C5178.27 (10)C21—C22—C23—C240.1 (2)
C2—N1—C6—C7179.64 (11)C20—N4—C24—C231.3 (2)
Al1—N1—C6—C71.28 (14)C22—C23—C24—N41.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1B···O20.851.982.8166 (14)166
O1S—H1A···O3Si0.851.922.7472 (18)165
O2S—H2A···O1Sii0.851.922.7650 (17)175
O2S—H2B···O60.851.922.7703 (16)174
O3S—H3B···O70.852.022.8647 (16)170
O3S—H3A···O2Siii0.851.942.7886 (18)172
N3—H3C···O4iv0.852.042.7312 (15)138
N3—H3C···N40.852.312.6497 (19)104
C12—H12···O1Si0.952.463.372 (2)160
C15—H15···O4iv0.952.522.965 (2)109
C16—H16···O2Siii0.952.333.248 (2)162
C17—H17···O1v0.952.253.136 (2)155
C18—H18···O8vi0.952.503.331 (2)146
C1—O1···Cg1vii1.22 (1)3.49 (1)3.9906 (17)105 (1)
C7—O4···Cg2vi1.23 (1)3.23 (1)3.4319 (17)89 (1)
C1—O1···Cg3vii1.22 (1)3.57 (1)3.8161 (18)92 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H9N2)[Al(C7H3NO4)2]·3H2O
Mr568.43
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.3744 (13), 10.9039 (16), 13.005 (2)
α, β, γ (°)106.335 (7), 98.889 (7), 97.521 (7)
V3)1238.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.32 × 0.32 × 0.15
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
25116, 4350, 3975
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.07
No. of reflections4350
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1B···O20.851.982.8166 (14)166.1
O1S—H1A···O3Si0.851.922.7472 (18)164.5
O2S—H2A···O1Sii0.851.922.7650 (17)174.7
O2S—H2B···O60.851.922.7703 (16)174.3
O3S—H3B···O70.852.022.8647 (16)170.1
O3S—H3A···O2Siii0.851.942.7886 (18)171.6
N3—H3C···O4iv0.852.042.7312 (15)137.6
N3—H3C···N40.852.312.6497 (19)104
C12—H12···O1Si0.952.463.372 (2)160
C15—H15···O4iv0.952.522.965 (2)109
C16—H16···O2Siii0.952.333.248 (2)162
C17—H17···O1v0.952.253.136 (2)155
C18—H18···O8vi0.952.503.331 (2)146
C1—O1···Cg1vii1.2153 (18)3.4924 (14)3.9906 (17)105.38 (10)
C7—O4···Cg2vi1.2245 (17)3.2311 (13)3.4319 (17)88.84 (9)
C1—O1···Cg3vii1.2153 (18)3.5731 (14)3.8161 (18)92.10 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x+1, y+1, z+1.
 

References

First citationAghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.  CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m870-m871
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds