organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­hydroxy­benzaldehyde 4-methyl­thio­semicarbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 20 June 2008; accepted 21 June 2008; online 28 June 2008)

The planar mol­ecules of the title compound, C9H11N3O2S, are linked into a supra­molecualr chain via O—H⋯S hydrogen bonds. These chains are connected into a two-dimensional array via N—H⋯O hydrogen bonds; an intra­molecular O—H⋯N hydrogen bond is also present.

Related literature

For the medicinal activity of 2,5-dihydroxy­benzaldehyde thio­semicarbazone, see: Libermann et al. (1953[Libermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L. & Himbert, J. (1953). Bull. Soc. Chim. Fr. pp. 957-962.]); Taniyama & Tanaka (1965[Taniyama, H. & Tanaka, Y. (1965). Yakugaku Kenkyu, 36, 319-328.]); Xue et al. (2007[Xue, C.-B., Zhang, L., Luo, W.-C., Xie, X.-Y., Jiang, L. & Xiao, T. (2007). Bioorg. Med. Chem. 15, 2006-2015.]). For the structure of 2-hydroxy­benzaldehyde 4-methyl­thio­semicarbazone, see: Vrdoljak et al. (2005[Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717-1726.]). For the structure of 3,4-dihydroxy­benzaldehyde 4-ethyl­thio­semicarbazone, see: Kayed et al. (2008[Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824-o825.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Triclinic, [P \overline 1]

  • a = 5.9932 (4) Å

  • b = 8.5207 (6) Å

  • c = 10.3272 (6) Å

  • α = 78.552 (4)°

  • β = 74.181 (4)°

  • γ = 81.743 (4)°

  • V = 495.06 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 (2) K

  • 0.24 × 0.16 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.994

  • 4189 measured reflections

  • 2258 independent reflections

  • 1580 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.123

  • S = 1.03

  • 2258 reflections

  • 153 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N3 0.84 (3) 1.97 (2) 2.698 (3) 144 (3)
O2—H2o⋯S1i 0.84 (3) 2.46 (2) 3.182 (2) 144 (3)
N2—H2n⋯O1ii 0.84 (3) 2.47 (3) 3.111 (3) 134 (3)
Symmetry codes: (i) x+1, y+1, z-1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title compound (I, Fig. 1) possesses useful medicinal properties (Libermann et al., 1953; Taniyama & Tanaka, 1965; Xue et al., 2007). The molecules are linked into supramolecular chains by O-H···S hydrogen bonds involving the O2-hydroxy group, Table 1. The hydrogen-bonded chains are consolidated into a layer motif via N-NH···O hydrogen bond, involving the O1-hydroxy group. An intramolecular N-H···O hydrogen bond, also involving the O1-hydroxy group is also noted. In contrast, 2-hydroxybenzaldehyde 4-methylthiosemicarbazone, which features an intramolecular O–H···N hydrogen bond, adopts a chain structure (Vrdoljak et al., 2005) as it lacks a second hydroxy substituent for layer formation.

Related literature top

For the medicinal activity of 2,5-dihydroxybenzaldehyde thiosemicarbazone, see: Libermann et al. (1953); Taniyama & Tanaka (1965); Xue et al. (2007). For the structure of 2-hydroxybenzaldehyde 4-methylthiosemicarbazone, see: Vrdoljak et al. (2005). For the structur of 3,4-dihydroxybenzaldehyde 4-ethylthiosemicarbazone, see: Kayed et al. (2008).

Experimental top

4-Methylthiosemicarbazide (0.11 g, 1 mmol) and 2,5-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (10 ml) for 1 h. Slow evaporation of the solvent yielded yellow crystals of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5 Ueq(C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of O–H, N–H = 0.85±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of (I) at the 70% probability level showing atom labeling. Hydrogen atoms are drawn as spheres of arbitrary radii.
2,5-Dihydroxybenzaldehyde 4-methylthiosemicarbazone top
Crystal data top
C9H11N3O2SZ = 2
Mr = 225.27F(000) = 236
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9932 (4) ÅCell parameters from 558 reflections
b = 8.5207 (6) Åθ = 2.9–23.0°
c = 10.3272 (6) ŵ = 0.31 mm1
α = 78.552 (4)°T = 100 K
β = 74.181 (4)°Plate, yellow
γ = 81.743 (4)°0.24 × 0.16 × 0.02 mm
V = 495.06 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
2258 independent reflections
Radiation source: fine-focus sealed tube1580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.929, Tmax = 0.994k = 118
4189 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0471P)2]
where P = (Fo2 + 2Fc2)/3
2258 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.47 e Å3
Crystal data top
C9H11N3O2Sγ = 81.743 (4)°
Mr = 225.27V = 495.06 (6) Å3
Triclinic, P1Z = 2
a = 5.9932 (4) ÅMo Kα radiation
b = 8.5207 (6) ŵ = 0.31 mm1
c = 10.3272 (6) ÅT = 100 K
α = 78.552 (4)°0.24 × 0.16 × 0.02 mm
β = 74.181 (4)°
Data collection top
Bruker SMART APEX
diffractometer
2258 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1580 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.994Rint = 0.050
4189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0544 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
2258 reflectionsΔρmin = 0.47 e Å3
153 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44298 (12)0.47335 (9)0.72966 (7)0.0189 (2)
O11.3132 (3)0.8655 (2)0.47568 (18)0.0188 (4)
O21.2446 (3)1.1893 (2)0.03406 (18)0.0200 (5)
N10.8637 (4)0.5405 (3)0.7312 (2)0.0147 (5)
N20.7415 (4)0.6387 (3)0.5359 (2)0.0159 (5)
N30.9289 (4)0.7298 (3)0.4833 (2)0.0145 (5)
C10.8391 (5)0.4576 (3)0.8709 (2)0.0188 (6)
H1A0.98020.46330.89960.028*
H1B0.81600.34470.87630.028*
H1C0.70440.50880.93100.028*
C20.7001 (4)0.5552 (3)0.6642 (2)0.0134 (6)
C30.9368 (4)0.8121 (3)0.3637 (2)0.0136 (6)
H30.82130.80180.31940.016*
C41.1147 (4)0.9200 (3)0.2937 (2)0.0133 (6)
C51.2915 (4)0.9450 (3)0.3503 (2)0.0140 (6)
C61.4505 (5)1.0551 (3)0.2796 (2)0.0157 (6)
H61.56731.07450.31930.019*
C71.4389 (5)1.1372 (3)0.1504 (3)0.0153 (6)
H71.54961.21110.10160.018*
C81.2669 (4)1.1117 (3)0.0929 (2)0.0149 (6)
C91.1055 (4)1.0049 (3)0.1638 (2)0.0146 (6)
H90.98660.98870.12430.018*
H1o1.206 (4)0.805 (3)0.511 (3)0.048 (12)*
H2o1.352 (5)1.245 (4)0.082 (3)0.059 (13)*
H1n0.988 (3)0.581 (4)0.689 (3)0.032 (9)*
H2n0.640 (4)0.656 (4)0.491 (3)0.042 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0149 (4)0.0241 (4)0.0175 (3)0.0083 (3)0.0051 (3)0.0033 (3)
O10.0222 (11)0.0221 (12)0.0140 (9)0.0081 (9)0.0089 (8)0.0025 (8)
O20.0244 (11)0.0202 (12)0.0149 (9)0.0088 (9)0.0059 (8)0.0047 (8)
N10.0114 (12)0.0181 (13)0.0148 (11)0.0035 (10)0.0038 (9)0.0007 (9)
N20.0153 (12)0.0168 (13)0.0158 (11)0.0060 (10)0.0056 (9)0.0024 (9)
N30.0121 (11)0.0136 (12)0.0175 (11)0.0050 (9)0.0013 (9)0.0023 (9)
C10.0198 (15)0.0231 (16)0.0128 (12)0.0048 (12)0.0051 (11)0.0015 (11)
C20.0137 (13)0.0106 (14)0.0155 (12)0.0011 (11)0.0032 (10)0.0022 (11)
C30.0136 (13)0.0138 (14)0.0147 (12)0.0019 (11)0.0053 (10)0.0025 (11)
C40.0134 (13)0.0118 (14)0.0153 (12)0.0008 (10)0.0034 (10)0.0038 (11)
C50.0137 (13)0.0154 (15)0.0133 (12)0.0001 (11)0.0041 (10)0.0034 (11)
C60.0139 (13)0.0162 (15)0.0193 (13)0.0029 (11)0.0070 (10)0.0039 (11)
C70.0163 (14)0.0102 (14)0.0178 (13)0.0021 (11)0.0024 (10)0.0006 (11)
C80.0160 (14)0.0144 (15)0.0143 (12)0.0006 (11)0.0050 (10)0.0023 (11)
C90.0158 (14)0.0156 (15)0.0140 (12)0.0021 (11)0.0059 (10)0.0031 (11)
Geometric parameters (Å, º) top
S1—C21.695 (3)C1—H1B0.9800
O1—C51.367 (3)C1—H1C0.9800
O1—H1o0.84 (3)C3—C41.450 (4)
O2—C81.379 (3)C3—H30.9500
O2—H2o0.84 (3)C4—C51.401 (4)
N1—C21.325 (3)C4—C91.403 (3)
N1—C11.453 (3)C5—C61.388 (4)
N1—H1n0.84 (3)C6—C71.393 (3)
N2—C21.349 (3)C6—H60.9500
N2—N31.382 (3)C7—C81.383 (4)
N2—H2n0.84 (3)C7—H70.9500
N3—C31.286 (3)C8—C91.379 (4)
C1—H1A0.9800C9—H90.9500
C5—O1—H1O110 (2)C4—C3—H3118.6
C8—O2—H2O117 (3)C5—C4—C9118.9 (2)
C2—N1—C1123.8 (2)C5—C4—C3123.2 (2)
C2—N1—H1N117 (2)C9—C4—C3117.9 (2)
C1—N1—H1N119 (2)O1—C5—C6117.7 (2)
C2—N2—N3121.3 (2)O1—C5—C4122.3 (2)
C2—N2—H2N122 (2)C6—C5—C4120.0 (2)
N3—N2—H2N116 (2)C5—C6—C7120.1 (3)
C3—N3—N2114.5 (2)C5—C6—H6120.0
N1—C1—H1A109.5C7—C6—H6120.0
N1—C1—H1B109.5C8—C7—C6120.3 (2)
H1A—C1—H1B109.5C8—C7—H7119.9
N1—C1—H1C109.5C6—C7—H7119.9
H1A—C1—H1C109.5O2—C8—C9116.7 (2)
H1B—C1—H1C109.5O2—C8—C7123.3 (2)
N1—C2—N2118.2 (2)C9—C8—C7119.9 (2)
N1—C2—S1123.80 (19)C8—C9—C4120.8 (2)
N2—C2—S1118.0 (2)C8—C9—H9119.6
N3—C3—C4122.7 (2)C4—C9—H9119.6
N3—C3—H3118.6
C2—N2—N3—C3175.1 (2)C3—C4—C5—C6177.4 (2)
C1—N1—C2—N2178.3 (2)O1—C5—C6—C7178.8 (2)
C1—N1—C2—S12.5 (4)C4—C5—C6—C72.0 (4)
N3—N2—C2—N111.0 (4)C5—C6—C7—C81.1 (4)
N3—N2—C2—S1169.69 (19)C6—C7—C8—O2179.7 (2)
N2—N3—C3—C4177.5 (2)C6—C7—C8—C90.2 (4)
N3—C3—C4—C50.6 (4)O2—C8—C9—C4179.8 (2)
N3—C3—C4—C9179.5 (2)C7—C8—C9—C40.7 (4)
C9—C4—C5—O1179.3 (2)C5—C4—C9—C80.2 (4)
C3—C4—C5—O11.8 (4)C3—C4—C9—C8178.8 (2)
C9—C4—C5—C61.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N30.84 (3)1.97 (2)2.698 (3)144 (3)
O2—H2o···S1i0.84 (3)2.46 (2)3.182 (2)144 (3)
N2—H2n···O1ii0.84 (3)2.47 (3)3.111 (3)134 (3)
Symmetry codes: (i) x+1, y+1, z1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S
Mr225.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9932 (4), 8.5207 (6), 10.3272 (6)
α, β, γ (°)78.552 (4), 74.181 (4), 81.743 (4)
V3)495.06 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.24 × 0.16 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.929, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
4189, 2258, 1580
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.123, 1.03
No. of reflections2258
No. of parameters153
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N30.84 (3)1.97 (2)2.698 (3)144 (3)
O2—H2o···S1i0.84 (3)2.46 (2)3.182 (2)144 (3)
N2—H2n···O1ii0.84 (3)2.47 (3)3.111 (3)134 (3)
Symmetry codes: (i) x+1, y+1, z1; (ii) x1, y, z.
 

Acknowledgements

We thank the University of Malaya (P0265/2007 A) for supporting this study. KWT thanks the Ministry of Higher Education for a SLAI scholarship.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824–o825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLibermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L. & Himbert, J. (1953). Bull. Soc. Chim. Fr. pp. 957–962.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniyama, H. & Tanaka, Y. (1965). Yakugaku Kenkyu, 36, 319–328.  CAS Google Scholar
First citationVrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717–1726.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationXue, C.-B., Zhang, L., Luo, W.-C., Xie, X.-Y., Jiang, L. & Xiao, T. (2007). Bioorg. Med. Chem. 15, 2006–2015.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds