metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m917-m918

Bis(N,N-di­ethyl­di­thio­carbamato)(1,10-phenanthroline)cobalt(III) tetra­fluorido­borate

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: pdw.boyd@auckland.ac.nz

(Received 15 April 2008; accepted 8 June 2008; online 13 June 2008)

The cationic complex in the structure of the title compound, [Co(Et2NCS2)2(C12H8N2)]BF4, has a CoIII atom with a distorted octa­hedral coordination formed by four S atoms of two diethyl­dithio­carbamate and two N atoms of 1,10-phenanthroline ligands. The crystal structure features head-to-tail stacking of the phenanthroline ligands. The tetra­fluorido­borate anions are positioned in the channels between the cation stacks running along the a axis, and form weak C—H⋯F interactions.

Related literature

For other bis­(dialkyl­dithio­carbamato)L2cobalt(III) complexes (L2 = bis­monodentate or bidentate ligands), see: Bhardwaj & Aftab (1990[Bhardwaj, V. K. & Aftab, S. (1990). J. Nepal Chem. Soc. 9, 10-15.]); Deplano & Trogu (1982[Deplano, P. & Trogu, E. F. (1982). Inorg. Chim. Acta, 61, 261-264.]); Deplano et al. (1983[Deplano, P., Trogu, E. F. & Lai, A. (1983). Inorg. Chim. Acta, 68, 147-152.]); Hendrickson et al. (1975[Hendrickson, A. R., Martin, R. L. & Taylor, D. (1975). J. Chem. Soc. Dalton Trans. pp. 2183-2187.]); Holah & Murphy (1971[Holah, D. G. & Murphy, C. N. (1971). Can. J. Chem. 49, 2726-2732.]); McCleverty et al. (1977[McCleverty, J. A., McLuckie, S., Morrison, N. J., Bailey, N. A. & Walker, N. W. (1977). J. Chem. Soc. Dalton Trans. pp. 359-365.]); Okuno et al. (1989[Okuno, M., Kita, M., Kashiwabara, K. & Fujita, J. (1989). Chem. Lett. 18, 1643-1646.]); Hodgson et al. (2008[Hodgson, M. C., Brothers, P. J., Clark, G. R. & Ware, D. C. (2008). J. Inorg. Biochem. 102, 789-797.]); Ware et al. (1998[Ware, D. C., Palmer, H. R., Pruijn, F. B., Anderson, R. F., Brothers, P. J., Denny, W. A. & Wilson, W. R. (1998). Anti-Cancer Drug Des. 13, 81-103.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H10NS2)2(C12H8N2)]BF4

  • Mr = 622.46

  • Monoclinic, P 21 /n

  • a = 8.0064 (1) Å

  • b = 16.3421 (3) Å

  • c = 21.0927 (3) Å

  • β = 95.013 (1)°

  • V = 2749.24 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 203 (2) K

  • 0.38 × 0.12 × 0.06 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.761, Tmax = 0.944

  • 16341 measured reflections

  • 5982 independent reflections

  • 4410 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.099

  • S = 1.07

  • 5982 reflections

  • 325 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co—S1 2.2805 (8)
Co—S2 2.2432 (8)
Co—S3 2.2590 (9)
Co—S4 2.2658 (8)
Co—N1 1.989 (2)
Co—N2 1.991 (2)
N1—Co—N2 82.86 (9)
N1—Co—S2 171.16 (7)
N2—Co—S2 94.35 (7)
N1—Co—S3 93.48 (7)
N2—Co—S3 165.93 (7)
S2—Co—S3 91.18 (3)
N1—Co—S4 93.98 (7)
N2—Co—S4 89.75 (7)
S2—Co—S4 94.39 (3)
S3—Co—S4 76.91 (3)
N1—Co—S1 95.48 (7)
N2—Co—S1 97.99 (7)
S2—Co—S1 76.56 (3)
S3—Co—S1 95.87 (3)
S4—Co—S1 168.45 (3)

Table 2
C-H⋯F contacts (Å, °)

D—H A D—H H⋯A D⋯A D—H.·A
C10—H10A F1i 0.94 2.31 3.169 (4) 151
C2—H2A F2ii 0.94 2.43 3.281 (4) 151
C6—H6A F4iv 0.94 2.44 3.053 (4) 123
Symmetry codes (i) x, y, -1+z; (ii) [-{\script{1\over 2}}+x, {\script{1\over 2}}-y, -{\script{1\over 2}}+z]; (iii) 1-x, 1-y, 1-z; (iv) [{\script{1\over 2}}-x, -{\script{1\over 2}}+y, {\script{1\over 2}}-z.]

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The reaction of the bimetallic cobalt(III) complex [Co2(Et2NCS2)5]BF4 (Hendrickson et al., 1975) with bidentate neutral and anionic ligands (L) has provided a convenient route for the preparation of mixed ligand cobalt(III) bisdithiocarbamate complexes such as [Co(Et2NCS2)2L]BF4 (McCleverty et al., 1977; Deplano & Trogu, 1982; Deplano et al., 1983; Ware et al., 1998; Hodgson et al., 2008). Several papers on the preparation of diimine complexes with L=2,2'-bipyridine or 1,10-phenantholine have been published (Holah & Murphy, 1971; Okuno et al., 1989; Bhardwaj & Aftab, 1990; Hodgson et al., 2008). In the present communication the crystal structure of [Co(Et2NCS2)2L]BF4 (L=1,10-phenanthroline)(I), formed by reaction of [Co2((C2H5)2NCS2)5]BF4 with 1,10-phenanthroline, is reported.

The molecular structure of (I) is shown in Fig. 1. The Co atom has a distorted octahedral coordination formed by four S atoms of two dithiocarbamate and two N atoms of 1,10-phenanthroline ligands (Table 1).

The crystal packing of the title compound (Fig. 2) features head-to-tail cationic complexes assembled in the crystal via stacking of the phenanthroline ligands in an alternating mode (interplanar distance is 3.57 Å). The tetrafluoroborate anions are located in the channels between the cation stacks running along the a axis of the structure and are held in position by many C—H···F interactions between phenanthroline C—H bonds and the F atoms of the tetrafluoroborate anion, (Table 2).

Related literature top

For other bis(dialkyldithiocarbamato)L2cobalt(III) complexes (L2= bismonodentate or bidentate ligands), see: Bhardwaj & Aftab (1990); Deplano & Trogu (1982); Deplano et al. (1983); Hendrickson et al. (1975); Holah & Murphy (1971); McCleverty et al. (1977); Okuno et al. (1989); Hodgson et al. (2008); Ware et al. (1998).

Experimental top

The complex(I) was prepared by reaction of equimolar amounts of [Co2((C2H5)2NCS2)5]BF4 (Hendrickson et al., 1975) and 1,10-phenanthroline in dichloromethane solution at room temperature following the same procedure to that reported for the synthesis of the analogous dimethyldithiocarbamate complex (Hodgson et al., 2008). Crystals were grown from a dichloromethane solution.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene groups and 1.5Ueq(C) for methyl groups. In the case of the methyl groups, protons were rotated to fit the H-atom positions to the observed electron density. SHELXL97 retraints SIMU and DELU (Sheldrick, 2008) were applied to the thermal parameters for the fluorine atoms of the tetrafluoroborate anions.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of (I) showing 50% probability displacement ellipsoids; the H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing stacking of phenanthroline ligands as well as the channels between cation stacks occupied by the BF4- ions.
Bis(N,N-diethyldithiocarbamato)(1,10-phenanthroline)cobalt(III) tetrafluoridoborate top
Crystal data top
[Co(C5H10NS2)2(C12H8N2)]BF4F(000) = 1280
Mr = 622.46Dx = 1.504 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0064 (1) ÅCell parameters from 8163 reflections
b = 16.3421 (3) Åθ = 1.9–27.5°
c = 21.0927 (3) ŵ = 0.97 mm1
β = 95.013 (1)°T = 203 K
V = 2749.24 (7) Å3Needle, red
Z = 40.38 × 0.12 × 0.06 mm
Data collection top
Siemens SMART CCD
diffractometer
5982 independent reflections
Radiation source: fine-focus sealed tube4410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.761, Tmax = 0.944k = 1920
16341 measured reflectionsl = 1727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.023P)2 + 3.5289P]
where P = (Fo2 + 2Fc2)/3
5982 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.49 e Å3
24 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Co(C5H10NS2)2(C12H8N2)]BF4V = 2749.24 (7) Å3
Mr = 622.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0064 (1) ŵ = 0.97 mm1
b = 16.3421 (3) ÅT = 203 K
c = 21.0927 (3) Å0.38 × 0.12 × 0.06 mm
β = 95.013 (1)°
Data collection top
Siemens SMART CCD
diffractometer
5982 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4410 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.944Rint = 0.025
16341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04624 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.49 e Å3
5982 reflectionsΔρmin = 0.44 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.18850 (5)0.24157 (2)0.017869 (19)0.02837 (11)
S10.08717 (9)0.25666 (4)0.01750 (4)0.03400 (18)
S20.18002 (9)0.36489 (4)0.02902 (4)0.03424 (18)
S30.16723 (10)0.29916 (5)0.11419 (4)0.03561 (19)
S40.45935 (9)0.25371 (5)0.05787 (4)0.03378 (18)
N10.1650 (3)0.12827 (14)0.05041 (11)0.0287 (5)
N20.2630 (3)0.18340 (14)0.05766 (11)0.0296 (5)
N30.1280 (3)0.39591 (15)0.08739 (13)0.0369 (6)
N40.4748 (3)0.31052 (16)0.17814 (13)0.0405 (6)
C10.1077 (4)0.10206 (19)0.10422 (15)0.0360 (7)
H1A0.06600.14060.13190.043*
C20.1072 (4)0.01878 (19)0.12111 (16)0.0405 (8)
H2A0.06490.00240.15930.049*
C30.1684 (4)0.03832 (18)0.08182 (16)0.0372 (7)
H3A0.17020.09390.09320.045*
C40.2289 (4)0.01328 (17)0.02424 (15)0.0310 (6)
C50.2980 (4)0.06714 (17)0.02050 (16)0.0359 (7)
H5A0.30550.12340.01150.043*
C60.3526 (4)0.03887 (18)0.07522 (16)0.0373 (7)
H6A0.39790.07580.10330.045*
C70.3427 (4)0.04682 (18)0.09137 (14)0.0319 (7)
C80.3982 (4)0.0808 (2)0.14704 (15)0.0397 (8)
H8A0.44250.04720.17760.048*
C90.3868 (4)0.1636 (2)0.15598 (15)0.0410 (8)
H9A0.42560.18720.19260.049*
C100.3178 (4)0.21330 (19)0.11098 (15)0.0368 (7)
H10A0.30970.26990.11860.044*
C110.2767 (3)0.10037 (16)0.04794 (14)0.0277 (6)
C120.2215 (3)0.07098 (16)0.01001 (13)0.0273 (6)
C210.0290 (4)0.34776 (17)0.05069 (15)0.0312 (7)
C220.3106 (4)0.38155 (19)0.09710 (17)0.0419 (8)
H22A0.33700.32810.07930.050*
H22B0.34550.38060.14280.050*
C230.4057 (5)0.4470 (3)0.0658 (3)0.0801 (15)
H23A0.52500.43620.07290.120*
H23B0.38100.49980.08390.120*
H23C0.37260.44740.02050.120*
C240.0615 (4)0.46964 (19)0.11725 (17)0.0438 (8)
H24A0.06000.47220.10680.053*
H24B0.11110.51840.09940.053*
C250.0982 (5)0.4703 (2)0.18846 (19)0.0620 (11)
H25A0.05240.51970.20570.093*
H25B0.21850.46890.19910.093*
H25C0.04720.42280.20650.093*
C310.3820 (4)0.29130 (17)0.12572 (15)0.0329 (7)
C320.4009 (5)0.3398 (2)0.23524 (16)0.0501 (9)
H32A0.29400.36700.22260.060*
H32B0.47590.38030.25700.060*
C330.3713 (6)0.2702 (3)0.2810 (2)0.0727 (13)
H33A0.32220.29190.31800.109*
H33B0.47720.24400.29440.109*
H33C0.29560.23050.25990.109*
C340.6587 (4)0.3015 (2)0.18175 (19)0.0574 (10)
H34A0.68720.25520.15520.069*
H34B0.70090.28940.22580.069*
C350.7437 (5)0.3778 (3)0.1599 (3)0.0833 (16)
H35A0.86400.36940.16300.125*
H35B0.71760.42360.18660.125*
H35C0.70390.38940.11600.125*
B0.8580 (6)0.1060 (2)0.25563 (19)0.0456 (10)
F10.7989 (3)0.11912 (17)0.31314 (12)0.0873 (8)
F20.9614 (4)0.16960 (17)0.24311 (15)0.0952 (9)
F30.9452 (5)0.03466 (17)0.25818 (16)0.1194 (13)
F40.7309 (5)0.1022 (2)0.21044 (15)0.1376 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0281 (2)0.02278 (19)0.0343 (2)0.00121 (16)0.00333 (16)0.00146 (17)
S10.0298 (4)0.0249 (4)0.0470 (5)0.0036 (3)0.0017 (3)0.0067 (3)
S20.0272 (4)0.0250 (4)0.0502 (5)0.0023 (3)0.0017 (3)0.0057 (3)
S30.0340 (4)0.0307 (4)0.0428 (5)0.0030 (3)0.0074 (3)0.0053 (3)
S40.0285 (4)0.0332 (4)0.0396 (4)0.0043 (3)0.0032 (3)0.0035 (3)
N10.0299 (13)0.0264 (12)0.0297 (13)0.0001 (10)0.0025 (10)0.0002 (10)
N20.0306 (13)0.0284 (13)0.0294 (13)0.0003 (10)0.0001 (10)0.0027 (10)
N30.0284 (13)0.0289 (13)0.0526 (17)0.0021 (10)0.0012 (12)0.0097 (12)
N40.0423 (16)0.0350 (14)0.0433 (16)0.0025 (12)0.0014 (13)0.0070 (12)
C10.0387 (17)0.0347 (16)0.0355 (17)0.0014 (13)0.0086 (14)0.0015 (14)
C20.0456 (19)0.0361 (17)0.0407 (19)0.0025 (14)0.0093 (15)0.0087 (15)
C30.0386 (18)0.0262 (15)0.0469 (19)0.0030 (13)0.0045 (15)0.0074 (14)
C40.0278 (15)0.0261 (14)0.0384 (17)0.0004 (11)0.0014 (13)0.0004 (13)
C50.0340 (17)0.0218 (14)0.052 (2)0.0013 (12)0.0013 (14)0.0027 (14)
C60.0373 (17)0.0304 (16)0.0441 (19)0.0002 (13)0.0030 (14)0.0093 (14)
C70.0290 (16)0.0328 (15)0.0333 (17)0.0006 (12)0.0001 (13)0.0030 (13)
C80.0390 (18)0.0471 (19)0.0328 (18)0.0015 (15)0.0021 (14)0.0047 (15)
C90.0430 (19)0.053 (2)0.0271 (16)0.0004 (15)0.0023 (14)0.0070 (15)
C100.0385 (18)0.0377 (17)0.0339 (17)0.0004 (14)0.0006 (14)0.0069 (14)
C110.0252 (14)0.0246 (14)0.0324 (16)0.0008 (11)0.0024 (12)0.0036 (12)
C120.0258 (14)0.0265 (14)0.0293 (16)0.0000 (11)0.0002 (12)0.0003 (12)
C210.0307 (16)0.0233 (14)0.0397 (17)0.0003 (11)0.0039 (13)0.0019 (13)
C220.0291 (16)0.0364 (17)0.059 (2)0.0033 (13)0.0038 (15)0.0119 (16)
C230.036 (2)0.089 (3)0.118 (4)0.004 (2)0.018 (2)0.035 (3)
C240.0381 (18)0.0285 (16)0.064 (2)0.0036 (13)0.0017 (16)0.0164 (16)
C250.074 (3)0.052 (2)0.062 (3)0.007 (2)0.015 (2)0.013 (2)
C310.0360 (17)0.0242 (14)0.0381 (17)0.0012 (12)0.0016 (14)0.0002 (13)
C320.065 (2)0.045 (2)0.040 (2)0.0035 (17)0.0006 (17)0.0140 (16)
C330.098 (4)0.071 (3)0.049 (2)0.013 (3)0.009 (2)0.002 (2)
C340.045 (2)0.063 (2)0.060 (2)0.0132 (18)0.0192 (18)0.022 (2)
C350.043 (2)0.075 (3)0.134 (5)0.010 (2)0.018 (3)0.037 (3)
B0.058 (3)0.041 (2)0.037 (2)0.0036 (19)0.0057 (19)0.0055 (18)
F10.100 (2)0.102 (2)0.0643 (16)0.0059 (16)0.0286 (15)0.0340 (15)
F20.091 (2)0.0754 (18)0.123 (2)0.0163 (15)0.0321 (18)0.0104 (17)
F30.179 (3)0.0618 (17)0.129 (3)0.0507 (19)0.080 (3)0.0205 (17)
F40.178 (3)0.130 (3)0.090 (2)0.036 (3)0.070 (2)0.003 (2)
Geometric parameters (Å, º) top
Co—S12.2805 (8)C8—C91.367 (5)
Co—S22.2432 (8)C8—H8A0.9400
Co—S32.2590 (9)C9—C101.400 (4)
Co—S42.2658 (8)C9—H9A0.9400
Co—N11.989 (2)C10—H10A0.9400
Co—N21.991 (2)C11—C121.419 (4)
S1—C211.726 (3)C22—C231.499 (5)
S2—C211.719 (3)C22—H22A0.9800
S3—C311.720 (3)C22—H22B0.9800
S4—C311.722 (3)C23—H23A0.9700
N1—C11.332 (4)C23—H23B0.9700
N1—C121.369 (3)C23—H23C0.9700
N2—C101.335 (4)C24—C251.505 (5)
N2—C111.375 (3)C24—H24A0.9800
N3—C211.319 (4)C24—H24B0.9800
N3—C221.477 (4)C25—H25A0.9700
N3—C241.480 (4)C25—H25B0.9700
N4—C311.315 (4)C25—H25C0.9700
N4—C321.468 (4)C32—C331.524 (5)
N4—C341.475 (4)C32—H32A0.9800
C1—C21.407 (4)C32—H32B0.9800
C1—H1A0.9400C33—H33A0.9700
C2—C31.367 (4)C33—H33B0.9700
C2—H2A0.9400C33—H33C0.9700
C3—C41.407 (4)C34—C351.512 (6)
C3—H3A0.9400C34—H34A0.9800
C4—C121.409 (4)C34—H34B0.9800
C4—C51.437 (4)C35—H35A0.9700
C5—C61.351 (4)C35—H35B0.9700
C5—H5A0.9400C35—H35C0.9700
C6—C71.442 (4)B—F41.333 (5)
C6—H6A0.9400B—F31.357 (5)
C7—C111.403 (4)B—F11.357 (5)
C7—C81.406 (4)B—F21.369 (5)
N1—Co—N282.86 (9)N1—C12—C4123.1 (3)
N1—Co—S2171.16 (7)N1—C12—C11116.7 (2)
N2—Co—S294.35 (7)C4—C12—C11120.2 (3)
N1—Co—S393.48 (7)N3—C21—S2125.5 (2)
N2—Co—S3165.93 (7)N3—C21—S1125.6 (2)
S2—Co—S391.18 (3)S2—C21—S1108.88 (16)
N1—Co—S493.98 (7)N3—C22—C23111.1 (3)
N2—Co—S489.75 (7)N3—C22—H22A109.4
S2—Co—S494.39 (3)C23—C22—H22A109.4
S3—Co—S476.91 (3)N3—C22—H22B109.4
N1—Co—S195.48 (7)C23—C22—H22B109.4
N2—Co—S197.99 (7)H22A—C22—H22B108.0
S2—Co—S176.56 (3)C22—C23—H23A109.5
S3—Co—S195.87 (3)C22—C23—H23B109.5
S4—Co—S1168.45 (3)H23A—C23—H23B109.5
C21—S1—Co86.45 (10)C22—C23—H23C109.5
C21—S2—Co87.84 (10)H23A—C23—H23C109.5
C31—S3—Co86.73 (11)H23B—C23—H23C109.5
C31—S4—Co86.48 (10)N3—C24—C25112.6 (3)
C1—N1—C12117.9 (2)N3—C24—H24A109.1
C1—N1—Co130.1 (2)C25—C24—H24A109.1
C12—N1—Co112.05 (18)N3—C24—H24B109.1
C10—N2—C11117.3 (3)C25—C24—H24B109.1
C10—N2—Co130.0 (2)H24A—C24—H24B107.8
C11—N2—Co112.17 (19)C24—C25—H25A109.5
C21—N3—C22121.6 (2)C24—C25—H25B109.5
C21—N3—C24121.0 (2)H25A—C25—H25B109.5
C22—N3—C24117.3 (2)C24—C25—H25C109.5
C31—N4—C32121.9 (3)H25A—C25—H25C109.5
C31—N4—C34120.5 (3)H25B—C25—H25C109.5
C32—N4—C34117.6 (3)N4—C31—S3125.8 (2)
N1—C1—C2122.4 (3)N4—C31—S4124.5 (2)
N1—C1—H1A118.8S3—C31—S4109.69 (17)
C2—C1—H1A118.8N4—C32—C33111.9 (3)
C3—C2—C1119.9 (3)N4—C32—H32A109.2
C3—C2—H2A120.1C33—C32—H32A109.2
C1—C2—H2A120.1N4—C32—H32B109.2
C2—C3—C4119.6 (3)C33—C32—H32B109.2
C2—C3—H3A120.2H32A—C32—H32B107.9
C4—C3—H3A120.2C32—C33—H33A109.5
C3—C4—C12117.2 (3)C32—C33—H33B109.5
C3—C4—C5124.8 (3)H33A—C33—H33B109.5
C12—C4—C5118.1 (3)C32—C33—H33C109.5
C6—C5—C4121.6 (3)H33A—C33—H33C109.5
C6—C5—H5A119.2H33B—C33—H33C109.5
C4—C5—H5A119.2N4—C34—C35112.0 (3)
C5—C6—C7121.3 (3)N4—C34—H34A109.2
C5—C6—H6A119.4C35—C34—H34A109.2
C7—C6—H6A119.4N4—C34—H34B109.2
C11—C7—C8117.6 (3)C35—C34—H34B109.2
C11—C7—C6117.9 (3)H34A—C34—H34B107.9
C8—C7—C6124.5 (3)C34—C35—H35A109.5
C9—C8—C7118.9 (3)C34—C35—H35B109.5
C9—C8—H8A120.5H35A—C35—H35B109.5
C7—C8—H8A120.5C34—C35—H35C109.5
C8—C9—C10120.4 (3)H35A—C35—H35C109.5
C8—C9—H9A119.8H35B—C35—H35C109.5
C10—C9—H9A119.8F4—B—F3110.3 (4)
N2—C10—C9122.5 (3)F4—B—F1110.0 (4)
N2—C10—H10A118.8F3—B—F1108.6 (3)
C9—C10—H10A118.8F4—B—F2109.5 (4)
N2—C11—C7123.2 (3)F3—B—F2110.0 (4)
N2—C11—C12115.8 (2)F1—B—F2108.4 (3)
C7—C11—C12121.0 (3)
N1—Co—S1—C21172.69 (12)C6—C7—C8—C9177.9 (3)
N2—Co—S1—C2189.16 (12)C7—C8—C9—C101.3 (5)
S2—Co—S1—C213.43 (10)C11—N2—C10—C90.0 (4)
S3—Co—S1—C2193.23 (10)Co—N2—C10—C9171.2 (2)
S4—Co—S1—C2142.5 (2)C8—C9—C10—N21.0 (5)
N2—Co—S2—C2193.75 (12)C10—N2—C11—C70.8 (4)
S3—Co—S2—C2199.20 (10)Co—N2—C11—C7173.5 (2)
S4—Co—S2—C21176.16 (10)C10—N2—C11—C12178.4 (2)
S1—Co—S2—C213.44 (10)Co—N2—C11—C125.7 (3)
N1—Co—S3—C3190.50 (12)C8—C7—C11—N20.6 (4)
N2—Co—S3—C3116.2 (3)C6—C7—C11—N2179.1 (3)
S2—Co—S3—C3197.02 (10)C8—C7—C11—C12178.6 (3)
S4—Co—S3—C312.78 (10)C6—C7—C11—C120.0 (4)
S1—Co—S3—C31173.62 (10)C1—N1—C12—C43.1 (4)
N1—Co—S4—C3189.87 (12)Co—N1—C12—C4175.6 (2)
N2—Co—S4—C31172.70 (12)C1—N1—C12—C11178.0 (3)
S2—Co—S4—C3192.96 (10)Co—N1—C12—C113.3 (3)
S3—Co—S4—C312.78 (10)C3—C4—C12—N12.5 (4)
S1—Co—S4—C3155.0 (2)C5—C4—C12—N1177.0 (3)
N2—Co—N1—C1176.5 (3)C3—C4—C12—C11178.6 (3)
S3—Co—N1—C117.1 (3)C5—C4—C12—C111.8 (4)
S4—Co—N1—C194.2 (3)N2—C11—C12—N11.6 (4)
S1—Co—N1—C179.1 (3)C7—C11—C12—N1177.6 (2)
N2—Co—N1—C124.96 (19)N2—C11—C12—C4179.4 (3)
S3—Co—N1—C12161.39 (18)C7—C11—C12—C41.4 (4)
S4—Co—N1—C1284.29 (18)C22—N3—C21—S2172.4 (2)
S1—Co—N1—C12102.36 (18)C24—N3—C21—S23.7 (4)
N1—Co—N2—C10177.3 (3)C22—N3—C21—S18.5 (4)
S2—Co—N2—C1011.1 (3)C24—N3—C21—S1175.3 (2)
S3—Co—N2—C10101.7 (4)Co—S2—C21—N3174.5 (3)
S4—Co—N2—C1083.3 (3)Co—S2—C21—S14.67 (14)
S1—Co—N2—C1088.1 (3)Co—S1—C21—N3174.6 (3)
N1—Co—N2—C115.82 (19)Co—S1—C21—S24.60 (14)
S2—Co—N2—C11177.39 (18)C21—N3—C22—C23110.7 (4)
S3—Co—N2—C1169.8 (4)C24—N3—C22—C2365.5 (4)
S4—Co—N2—C1188.22 (18)C21—N3—C24—C25124.4 (3)
S1—Co—N2—C11100.38 (18)C22—N3—C24—C2559.4 (4)
C12—N1—C1—C21.5 (4)C32—N4—C31—S31.8 (4)
Co—N1—C1—C2176.9 (2)C34—N4—C31—S3179.5 (3)
N1—C1—C2—C30.5 (5)C32—N4—C31—S4178.0 (2)
C1—C2—C3—C41.1 (5)C34—N4—C31—S40.7 (4)
C2—C3—C4—C120.4 (4)Co—S3—C31—N4176.0 (3)
C2—C3—C4—C5179.2 (3)Co—S3—C31—S43.78 (13)
C3—C4—C5—C6179.5 (3)Co—S4—C31—N4176.0 (3)
C12—C4—C5—C61.0 (4)Co—S4—C31—S33.77 (13)
C4—C5—C6—C70.4 (5)C31—N4—C32—C3393.6 (4)
C5—C6—C7—C110.9 (4)C34—N4—C32—C3385.1 (4)
C5—C6—C7—C8179.4 (3)C31—N4—C34—C3589.0 (4)
C11—C7—C8—C90.5 (4)C32—N4—C34—C3592.2 (4)

Experimental details

Crystal data
Chemical formula[Co(C5H10NS2)2(C12H8N2)]BF4
Mr622.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)203
a, b, c (Å)8.0064 (1), 16.3421 (3), 21.0927 (3)
β (°) 95.013 (1)
V3)2749.24 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.38 × 0.12 × 0.06
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.761, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
16341, 5982, 4410
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.099, 1.07
No. of reflections5982
No. of parameters325
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.44

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co—S12.2805 (8)Co—S42.2658 (8)
Co—S22.2432 (8)Co—N11.989 (2)
Co—S32.2590 (9)Co—N21.991 (2)
N1—Co—N282.86 (9)S2—Co—S494.39 (3)
N1—Co—S2171.16 (7)S3—Co—S476.91 (3)
N2—Co—S294.35 (7)N1—Co—S195.48 (7)
N1—Co—S393.48 (7)N2—Co—S197.99 (7)
N2—Co—S3165.93 (7)S2—Co—S176.56 (3)
S2—Co—S391.18 (3)S3—Co—S195.87 (3)
N1—Co—S493.98 (7)S4—Co—S1168.45 (3)
N2—Co—S489.75 (7)
C-H···F contacts in (I) (Å, deg) top
D-HAD-HH···AD···AD-H..A
C10-H10AF1i0.942.313.169 (4)151.2
C2-H2AF2ii0.942.433.281 (4)150.9
C6-H6AF4iv0.942.443.053 (4)122.9
Symmetry codes (i) x,y,-1+z (ii) -1/2+x,1/2-y,-1/2+z (iii) 1-x,1-y,1-z (iv) 1/2-x,-1/2+y,1/2-z
 

Acknowledgements

This work was supported by the University of Auckland Research Committee. We thank Janet Hope for her assistance in the preparation of the complex.

References

First citationBhardwaj, V. K. & Aftab, S. (1990). J. Nepal Chem. Soc. 9, 10–15.  CAS Google Scholar
First citationDeplano, P. & Trogu, E. F. (1982). Inorg. Chim. Acta, 61, 261–264.  CrossRef CAS Web of Science Google Scholar
First citationDeplano, P., Trogu, E. F. & Lai, A. (1983). Inorg. Chim. Acta, 68, 147–152.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHendrickson, A. R., Martin, R. L. & Taylor, D. (1975). J. Chem. Soc. Dalton Trans. pp. 2183–2187.  Google Scholar
First citationHodgson, M. C., Brothers, P. J., Clark, G. R. & Ware, D. C. (2008). J. Inorg. Biochem. 102, 789–797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolah, D. G. & Murphy, C. N. (1971). Can. J. Chem. 49, 2726–2732.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCleverty, J. A., McLuckie, S., Morrison, N. J., Bailey, N. A. & Walker, N. W. (1977). J. Chem. Soc. Dalton Trans. pp. 359–365.  CSD CrossRef Web of Science Google Scholar
First citationOkuno, M., Kita, M., Kashiwabara, K. & Fujita, J. (1989). Chem. Lett. 18, 1643–1646.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWare, D. C., Palmer, H. R., Pruijn, F. B., Anderson, R. F., Brothers, P. J., Denny, W. A. & Wilson, W. R. (1998). Anti-Cancer Drug Des. 13, 81–103.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m917-m918
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds