organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(2-Pyridylmeth­­oxy)-1,10-phenanthrolin-1-ium perchlorate methanol solvate

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: zhangshiguo1970@yahoo.com.cn

(Received 13 June 2008; accepted 3 July 2008; online 9 July 2008)

In the title organic salt, C18H14N3O+·ClO4·CH4O, there is a ππ stacking inter­action between neighbouring 1,10-phenanthroline rings and the relevant distances are 3.5453 (18) Å for the centroid–centroid distance and 3.354 Å for the perpendicular distance. There is also a relatively close contact between a C—H bond and a symmetry-related pyridine ring. There are classical N—H⋯O and O—H⋯N hydrogen bonds and non-classical C—H⋯O hydrogen bonds involving the cation, methanol solvent mol­ecule and perchlorate anion.

Related literature

For a related structure, see: Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N3O+·ClO4·CH4O

  • Mr = 419.81

  • Triclinic, [P \overline 1]

  • a = 7.0765 (15) Å

  • b = 10.597 (2) Å

  • c = 14.164 (3) Å

  • α = 110.003 (3)°

  • β = 94.999 (3)°

  • γ = 105.304 (3)°

  • V = 944.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.38 × 0.31 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.912, Tmax = 0.957

  • 5027 measured reflections

  • 3504 independent reflections

  • 2695 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.164

  • S = 1.05

  • 3504 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O6 0.81 1.85 2.648 (3) 167
O6—H5⋯N3 0.89 1.85 2.738 (4) 175
C3—H3⋯O2 0.93 2.32 3.238 (5) 170
C13—H13B⋯O6 0.97 2.58 3.405 (4) 143
C8—H8⋯Cg3i 0.93 2.81 3.650 (2) 151
Symmetry code: (i) -x+1, -y, -z+1. Cg3 is the centroid of the pyridine ring

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu et al., 2008) and we have tried to prepare a complex containing Manganese(II) and iron(III) metallic ions and 2-((pyridin-2-yl)methoxy)-1,10-phenanthroline ligand, but we obtained the title organic salt.

Fig. 1 shows the structure, revealing that one of N atoms from phenanthroline ring was protonated and it was turned into a cation. There is a π-π stacking interaction involving symmetry-related 1,10-phenanthroline rings, the relevant distances being Cg1···Cg2i = 3.5453 (18) Å and Cg1···Cg2iperp = 3.354 Å and α = 1.09°; there also exits interaction between C8-H8 bond and pyridine ring and the relevant distance is H8···Cg3ii = 2.81 Å for H8 atom to the centroid of the pyridine ring and H8···Cg3iiperp = 2.803 Å for the perpendicular distance from H8 atom to the pyridine ring plane [symmetry code: (i) -X, -Y, 1-Z; (ii) 1-X, -Y, 1-Z; Cg1, Cg2 and Cg3 are the centroids of the N2/C6C7C10-C12 ring, C4-C9 ring and N3/C14-C18 rings, respectively; Cg1···Cg2iperp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between ring plane Cg1 and ring plane Cg2i; ]. There exist N-H···O and O-H···N classic hydrogen bonds and C-H···O non-classic hydrogen bonds (Fig. 1 and Table 1) in the asymmetric unit.

Related literature top

For a related structure, see: Liu et al. (2008).

Experimental top

10 ml methanol solution of 2-((pyridin-2-yl)methoxy)-1,10-phenanthroline (0.1200 g, 0.418 mmol) was added into 20 ml methanol solution containing FeCl3.6H2O (0.0565 g, 0.209 mmol) and Mn(ClO4)2.6H2O (0.0757 g, 0.209 mmol), and the mixed solution was stirred for half a hour. Yellow single crystals were obtained after the solution had been allowed to stand at room temperature for three days.

Refinement top

Nitrigen-bound H atom and Oxygen-bound H atom were located in a difference Fourier map, then placed in calculated positions with N—H = 0.81 Å and O—H = 0.89 Å and refined as riding with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with with C—H = 0.97 Å for methyl, C—H = 0.96 Å for methylene and C—H = 0.93 Å for other H atoms, and refined as riding with Uiso = 1.5Ueq(C) for methyl H and Uiso = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Structure of title organic salt with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The classic hydrogen bonds are shown as dashed lines and non-classic hydrogen bonds as double dashed lines.
[Figure 2] Fig. 2. The packing and π-π stacking interaction (dashed lines) and C—H···π interaction (dashed lines), the methanol molecule and perchlorate anion have been omitted for clarity.
9-(2-Pyridylmethoxy)-1,10-phenanthrolin-1-ium perchlorate methanol solvate top
Crystal data top
C18H14N3O+·ClO4·CH4OZ = 2
Mr = 419.81F(000) = 436
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0765 (15) ÅCell parameters from 1588 reflections
b = 10.597 (2) Åθ = 3.0–25.9°
c = 14.164 (3) ŵ = 0.25 mm1
α = 110.003 (3)°T = 298 K
β = 94.999 (3)°Block, yellow
γ = 105.304 (3)°0.38 × 0.31 × 0.18 mm
V = 944.1 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3504 independent reflections
Radiation source: fine-focus sealed tube2695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.912, Tmax = 0.957k = 1212
5027 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0858P)2 + 0.2952P]
where P = (Fo2 + 2Fc2)/3
3504 reflections(Δ/σ)max = 0.002
263 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H14N3O+·ClO4·CH4Oγ = 105.304 (3)°
Mr = 419.81V = 944.1 (3) Å3
Triclinic, P1Z = 2
a = 7.0765 (15) ÅMo Kα radiation
b = 10.597 (2) ŵ = 0.25 mm1
c = 14.164 (3) ÅT = 298 K
α = 110.003 (3)°0.38 × 0.31 × 0.18 mm
β = 94.999 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3504 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2695 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.957Rint = 0.020
5027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
3504 reflectionsΔρmin = 0.23 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2377 (5)0.4244 (3)0.6774 (2)0.0530 (7)
H10.22920.47750.74350.064*
C20.2448 (5)0.4829 (3)0.6041 (3)0.0613 (8)
H20.23930.57440.62040.074*
C30.2598 (5)0.4057 (3)0.5080 (2)0.0546 (7)
H30.26630.44500.45840.066*
C40.2655 (4)0.2661 (3)0.4831 (2)0.0430 (6)
C50.2549 (4)0.2104 (3)0.55982 (18)0.0374 (6)
C60.2521 (3)0.0678 (3)0.53855 (18)0.0349 (5)
C70.2587 (4)0.0143 (3)0.43867 (19)0.0402 (6)
C80.2705 (4)0.0441 (3)0.3616 (2)0.0471 (7)
H80.27500.01200.29550.057*
C90.2753 (4)0.1789 (3)0.3827 (2)0.0485 (7)
H90.28510.21530.33150.058*
C100.2529 (4)0.1564 (3)0.4190 (2)0.0443 (6)
H100.25920.21510.35410.053*
C110.2382 (4)0.2049 (3)0.4948 (2)0.0455 (6)
H110.23330.29760.48310.055*
C120.2304 (4)0.1128 (3)0.59278 (19)0.0386 (6)
C130.2012 (4)0.0886 (3)0.7665 (2)0.0490 (7)
H13A0.11730.14800.79560.059*
H13B0.14260.01600.76520.059*
C140.4068 (4)0.0208 (3)0.8319 (2)0.0460 (7)
C150.5178 (5)0.1004 (3)0.8526 (2)0.0557 (8)
H150.46530.19860.82650.067*
C160.7067 (5)0.0345 (4)0.9121 (3)0.0692 (9)
H160.78330.08680.92700.083*
C170.7788 (6)0.1094 (4)0.9488 (3)0.0753 (10)
H170.90610.15700.98900.090*
C180.6621 (6)0.1827 (4)0.9257 (3)0.0720 (10)
H180.71320.28080.95110.086*
C190.2308 (7)0.3748 (4)0.9157 (3)0.0887 (12)
H19A0.24830.35430.97620.133*
H19B0.11070.40000.91020.133*
H19C0.34310.45210.91970.133*
Cl10.20777 (12)0.45705 (7)0.21213 (5)0.0541 (3)
N10.2429 (3)0.2941 (2)0.65502 (16)0.0419 (5)
H40.23620.26940.70320.050*
N20.2387 (3)0.0189 (2)0.61631 (15)0.0377 (5)
N30.4780 (4)0.1207 (3)0.86832 (19)0.0580 (7)
O10.2091 (3)0.17350 (18)0.66282 (14)0.0476 (5)
O20.2322 (8)0.5077 (4)0.3177 (2)0.1432 (16)
O30.2709 (7)0.5724 (3)0.1857 (3)0.1279 (13)
O40.3128 (7)0.3648 (4)0.1769 (3)0.1583 (17)
O50.0081 (6)0.3882 (4)0.1659 (3)0.1494 (16)
O60.2165 (4)0.2545 (2)0.82875 (15)0.0664 (6)
H50.30720.21510.84170.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0681 (19)0.0396 (14)0.0503 (16)0.0211 (14)0.0085 (14)0.0135 (12)
C20.080 (2)0.0411 (15)0.068 (2)0.0208 (15)0.0100 (17)0.0261 (15)
C30.0631 (19)0.0527 (17)0.0588 (18)0.0173 (15)0.0088 (15)0.0356 (15)
C40.0392 (14)0.0474 (15)0.0473 (15)0.0123 (12)0.0085 (12)0.0248 (12)
C50.0343 (13)0.0415 (13)0.0373 (13)0.0109 (11)0.0062 (10)0.0170 (11)
C60.0291 (12)0.0387 (13)0.0363 (13)0.0085 (10)0.0057 (10)0.0156 (10)
C70.0315 (13)0.0474 (14)0.0397 (14)0.0116 (11)0.0057 (10)0.0149 (11)
C80.0455 (15)0.0615 (17)0.0344 (13)0.0174 (13)0.0117 (11)0.0169 (12)
C90.0496 (16)0.0619 (18)0.0435 (15)0.0187 (14)0.0125 (12)0.0298 (13)
C100.0430 (15)0.0437 (14)0.0389 (14)0.0149 (12)0.0062 (11)0.0064 (11)
C110.0461 (15)0.0361 (13)0.0488 (16)0.0137 (12)0.0051 (12)0.0100 (12)
C120.0339 (13)0.0379 (13)0.0434 (14)0.0105 (11)0.0031 (11)0.0162 (11)
C130.0567 (17)0.0508 (16)0.0479 (16)0.0167 (14)0.0156 (13)0.0276 (13)
C140.0619 (18)0.0460 (15)0.0369 (14)0.0193 (13)0.0143 (12)0.0211 (12)
C150.075 (2)0.0495 (16)0.0492 (17)0.0266 (15)0.0100 (15)0.0215 (13)
C160.078 (2)0.080 (2)0.060 (2)0.039 (2)0.0054 (17)0.0305 (18)
C170.072 (2)0.082 (3)0.061 (2)0.019 (2)0.0055 (17)0.0218 (19)
C180.085 (3)0.0527 (18)0.065 (2)0.0110 (18)0.0040 (18)0.0188 (16)
C190.124 (4)0.088 (3)0.057 (2)0.051 (3)0.022 (2)0.0168 (19)
Cl10.0777 (6)0.0433 (4)0.0435 (4)0.0249 (4)0.0107 (3)0.0149 (3)
N10.0504 (13)0.0393 (11)0.0388 (12)0.0157 (10)0.0074 (10)0.0173 (9)
N20.0398 (12)0.0377 (11)0.0367 (11)0.0126 (9)0.0070 (9)0.0152 (9)
N30.0745 (18)0.0465 (14)0.0524 (15)0.0183 (13)0.0056 (13)0.0201 (11)
O10.0615 (12)0.0371 (9)0.0455 (11)0.0141 (9)0.0073 (9)0.0189 (8)
O20.287 (5)0.119 (3)0.0502 (16)0.101 (3)0.037 (2)0.0340 (17)
O30.204 (4)0.087 (2)0.108 (2)0.035 (2)0.043 (2)0.0598 (19)
O40.217 (4)0.144 (3)0.135 (3)0.143 (3)0.026 (3)0.015 (2)
O50.096 (3)0.119 (3)0.166 (4)0.003 (2)0.004 (2)0.010 (3)
O60.0970 (17)0.0684 (14)0.0451 (12)0.0420 (13)0.0156 (11)0.0226 (10)
Geometric parameters (Å, º) top
C1—N11.318 (3)C13—O11.451 (3)
C1—C21.377 (4)C13—C141.500 (4)
C1—H10.9300C13—H13A0.9700
C2—C31.357 (4)C13—H13B0.9700
C2—H20.9300C14—N31.340 (4)
C3—C41.411 (4)C14—C151.377 (4)
C3—H30.9300C15—C161.375 (5)
C4—C51.402 (4)C15—H150.9300
C4—C91.426 (4)C16—C171.362 (5)
C5—N11.361 (3)C16—H160.9300
C5—C61.431 (3)C17—C181.363 (5)
C6—N21.368 (3)C17—H170.9300
C6—C71.397 (3)C18—N31.337 (4)
C7—C101.423 (4)C18—H180.9300
C7—C81.425 (4)C19—O61.410 (4)
C8—C91.346 (4)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C10—C111.340 (4)Cl1—O41.368 (3)
C10—H100.9300Cl1—O31.375 (3)
C11—C121.413 (4)Cl1—O21.383 (3)
C11—H110.9300Cl1—O51.388 (4)
C12—N21.303 (3)N1—H40.8111
C12—O11.354 (3)O6—H50.8900
N1—C1—C2120.9 (3)C14—C13—H13A109.5
N1—C1—H1119.6O1—C13—H13B109.5
C2—C1—H1119.6C14—C13—H13B109.5
C3—C2—C1119.4 (3)H13A—C13—H13B108.1
C3—C2—H2120.3N3—C14—C15121.6 (3)
C1—C2—H2120.3N3—C14—C13116.9 (3)
C2—C3—C4120.3 (3)C15—C14—C13121.5 (3)
C2—C3—H3119.9C16—C15—C14119.8 (3)
C4—C3—H3119.9C16—C15—H15120.1
C5—C4—C3118.2 (2)C14—C15—H15120.1
C5—C4—C9119.1 (2)C17—C16—C15118.4 (3)
C3—C4—C9122.7 (2)C17—C16—H16120.8
N1—C5—C4118.6 (2)C15—C16—H16120.8
N1—C5—C6120.4 (2)C16—C17—C18119.2 (3)
C4—C5—C6121.0 (2)C16—C17—H17120.4
N2—C6—C7123.9 (2)C18—C17—H17120.4
N2—C6—C5118.3 (2)N3—C18—C17123.4 (3)
C7—C6—C5117.8 (2)N3—C18—H18118.3
C6—C7—C10116.8 (2)C17—C18—H18118.3
C6—C7—C8120.5 (2)O6—C19—H19A109.5
C10—C7—C8122.7 (2)O6—C19—H19B109.5
C9—C8—C7121.2 (2)H19A—C19—H19B109.5
C9—C8—H8119.4O6—C19—H19C109.5
C7—C8—H8119.4H19A—C19—H19C109.5
C8—C9—C4120.4 (2)H19B—C19—H19C109.5
C8—C9—H9119.8O4—Cl1—O3111.0 (3)
C4—C9—H9119.8O4—Cl1—O2111.7 (2)
C11—C10—C7119.4 (2)O3—Cl1—O2107.0 (2)
C11—C10—H10120.3O4—Cl1—O5108.2 (3)
C7—C10—H10120.3O3—Cl1—O5107.6 (3)
C10—C11—C12119.0 (2)O2—Cl1—O5111.2 (3)
C10—C11—H11120.5C1—N1—C5122.6 (2)
C12—C11—H11120.5C1—N1—H4113.1
N2—C12—O1121.1 (2)C5—N1—H4124.3
N2—C12—C11124.7 (2)C12—N2—C6116.2 (2)
O1—C12—C11114.2 (2)C18—N3—C14117.6 (3)
O1—C13—C14110.5 (2)C12—O1—C13119.09 (19)
O1—C13—H13A109.5C19—O6—H5109.6
N1—C1—C2—C30.8 (5)C7—C10—C11—C120.5 (4)
C1—C2—C3—C40.8 (5)C10—C11—C12—N20.8 (4)
C2—C3—C4—C50.1 (4)C10—C11—C12—O1177.9 (2)
C2—C3—C4—C9178.2 (3)O1—C13—C14—N3115.5 (3)
C3—C4—C5—N11.1 (4)O1—C13—C14—C1563.9 (3)
C9—C4—C5—N1179.2 (2)N3—C14—C15—C160.0 (4)
C3—C4—C5—C6177.5 (2)C13—C14—C15—C16179.3 (3)
C9—C4—C5—C60.6 (4)C14—C15—C16—C170.2 (5)
N1—C5—C6—N20.5 (3)C15—C16—C17—C180.2 (5)
C4—C5—C6—N2179.1 (2)C16—C17—C18—N30.0 (6)
N1—C5—C6—C7178.1 (2)C2—C1—N1—C50.1 (4)
C4—C5—C6—C70.5 (4)C4—C5—N1—C11.1 (4)
N2—C6—C7—C100.6 (4)C6—C5—N1—C1177.5 (2)
C5—C6—C7—C10179.1 (2)O1—C12—N2—C6177.3 (2)
N2—C6—C7—C8179.3 (2)C11—C12—N2—C61.3 (4)
C5—C6—C7—C80.8 (4)C7—C6—N2—C120.6 (3)
C6—C7—C8—C90.1 (4)C5—C6—N2—C12178.0 (2)
C10—C7—C8—C9179.9 (3)C17—C18—N3—C140.2 (5)
C7—C8—C9—C41.0 (4)C15—C14—N3—C180.2 (4)
C5—C4—C9—C81.3 (4)C13—C14—N3—C18179.2 (3)
C3—C4—C9—C8176.7 (3)N2—C12—O1—C131.8 (3)
C6—C7—C10—C111.1 (4)C11—C12—O1—C13179.4 (2)
C8—C7—C10—C11178.8 (2)C14—C13—O1—C1290.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O60.811.852.648 (3)167
O6—H5···N30.891.852.738 (4)175
C3—H3···O20.932.323.238 (5)170
C13—H13B···O60.972.583.405 (4)143
C8—H8···Cg3i0.932.813.650 (2)151
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H14N3O+·ClO4·CH4O
Mr419.81
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0765 (15), 10.597 (2), 14.164 (3)
α, β, γ (°)110.003 (3), 94.999 (3), 105.304 (3)
V3)944.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.38 × 0.31 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.912, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
5027, 3504, 2695
Rint0.020
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.164, 1.05
No. of reflections3504
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O60.811.852.648 (3)167
O6—H5···N30.891.852.738 (4)175
C3—H3···O20.932.323.238 (5)170
C13—H13B···O60.972.583.405 (4)143
C8—H8···Cg3i0.932.813.650 (2)151
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. Y2007B26).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds