organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1526-o1527

Ethyl 4-(2-bromo-5-fluoro­phen­yl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 July 2008; accepted 12 July 2008; online 19 July 2008)

In the title mol­ecule, C20H18BrFN2O2S, the pyrimidine ring adopts a flattened envelope conformation. The halogenated benzene ring is orthogonal to the planar part of the pyrimidine ring [dihedral angle = 89.05 (4)°], while the other phenyl ring is oriented at an angle of 85.14 (5)°. The ethoxy group is disordered over two orientations with site occpancies of ca 0.869 (4) and 0.131 (4). Intra­molecular C—H⋯Br and C—H⋯O hydrogen bonds generate S(5) and S(6) ring motifs. The crystal structure is stabilized by inter­molecular N—H⋯S, C—H⋯F, C—H⋯O and C—H⋯Br hydrogen bonds.

Related literature

For the biological activity of pyrimidinone derivatives, see: Atwal (1990[Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1515.]); Matsuda & Hirao (1965[Matsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195-1197.]); Sadanandam et al. (1992[Sadanandam, Y. S., Shetty, M. M. & Diwan, P. V. (1992). Eur. J. Med. Chem. 27, 87-92.]). For the synthetic procedure, see: Steele et al. (1998[Steele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315-9318.]); Manjual et al. (2004[Manjual, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665-2671.]); Kappe (1993[Kappe, C. O. (1993). Tetrahedron, 49, 6937-6963.]); Wipf & Cunningham (1995[Wipf, P. & Cunningham, A. (1995). Tetrahedron Lett. 36, 7819-7822.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18BrFN2O2S

  • Mr = 449.33

  • Triclinic, [P \overline 1]

  • a = 10.0455 (1) Å

  • b = 10.2969 (1) Å

  • c = 10.3714 (1) Å

  • α = 64.286 (1)°

  • β = 83.110 (1)°

  • γ = 78.796 (1)°

  • V = 947.36 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 100 (2) K

  • 0.41 × 0.35 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.451, Tmax = 0.631

  • 30132 measured reflections

  • 5490 independent reflections

  • 4895 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.04

  • 5490 reflections

  • 267 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 0.85 2.51 3.327 (2) 162
C1—H1⋯F1ii 0.95 2.52 3.370 (2) 148
C7—H7⋯Br1 1.00 2.69 3.265 (2) 117
C20—H20⋯O1iii 0.95 2.44 3.368 (3) 164
C21—H21A⋯O2 0.98 2.11 2.737 (3) 120
C21—H21B⋯Br1iii 0.98 2.91 3.886 (2) 171
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y, -z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

3,4-Dihydropyrimidinones have drawn wide-spread attention due to their pharmaceutical applications. A variety of these derivatives have been screened for antihypertension (Atwal, 1990), antibacterial (Matsuda & Hirao, 1965) and anti-inflammatory activities (Sadanandam et al., 1992). The common synthetic routes to these compounds generally involve multi step transformations, which are essentially based on the Biginelli condensation methodology (Steele et al., 1998). These pyrimidinones are also associated with calcium channel blocking activity (Manjual et al., 2004). In 1893, Biginelli reported the first synthesis of dihydropyrimidines by a simple one-pot condensation reaction of ethyl acetoacetate, benzaldehyde and urea. In the following decades the original cyclo-condensation reaction has been extended widely to include variations in all three components, allowing access to a large number of muti functionalized dihydropyrimidinone derivatives (Kappe, 1993). Biginelli reaction has recently attracted a great deal of attention and several improved procedures for the preparation of dihydropyrimidinones have been reported within the past few years. Several solid-phase modifications of the Biginelli reaction suitable for the combinatorial chemistry have also been described (Wipf & Cunningham, 1995).

Bond lengths and angles in the title molecule (Fig. 1) are found to have normal values (Allen et al., 1987). The pyrimidine ring adopts a flattened envelope conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.067 (2) Å, θ = 132.5 (16)° and ϕ = 237 (2)°. The C1-C6 and C15-C20 phenyl rings form dihedral angles of 89.05 (4)° and 85.14 (5)°, respectively, with the N1/N2/C7/C8/C13/C14 plane. Intramolecular C—H···Br and C—H···O hydrogen bonds generate S(5) and S(6) ring motifs (Bernstein et al., 1995), respectively.

The crystal structure is stabilized by intermolecular N—H···S, C—H···F, C—H···O and C—H···Br hydrogen bonds (Table 1 and Fig.2).

Related literature top

For the biological activity of pyrimidinone derivatives, see: Atwal (1990); Matsuda & Hirao (1965); Sadanandam et al. (1992). For the synthetic procedure, see: Steele et al. (1998); Manjual et al. (2004); Kappe (1993); Wipf & Cunningham (1995). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

A mixture of 2-bromo-5-fluorobenzaldehyde (0.01 mol, 2.0301 g), ethyl acetoacetate [0.015 mol, 2 g (2 ml)], phenylthiourea (0.01 mol, 1.5215 g) and concentrated H2SO4 (2 drops) in absolute alcohol (10 ml) taken in a beaker (100 ml) was put inside a microwave oven for 4 minutes at 160 Watts (25% MW power). The reaction mixture was then allowed to stand at room temperature and the product formed was filtered, washed with ethanol followed by water and dried. Further purification was done by recrystallization from ethanol (yield = 77%, m.p = 442–445 K). Composition calculated (found): C 53.45 (53.34), H 4.008 (3.92), N 6.236 (6.15), S 7.1269 (7.03)%.

Refinement top

The ethylcarboxylate group is disordered over two orienatations with refined occupancies of 0.869 (4):0.131 (4). The displacement parameters of atoms C11A and C12A were restrained to an approximate isotropic behaviour. The corresponding C—O and C—C distances in the two disorder components were restrained to be equal. All H atoms were positioned geometrically [C-H = 0.95–1.00 Å and N-H = 0.85 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5eq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
Ethyl 4-(2-bromo-5-fluorophenyl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate top
Crystal data top
C20H18BrFN2O2SZ = 2
Mr = 449.33F(000) = 456
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0455 (1) ÅCell parameters from 9996 reflections
b = 10.2969 (1) Åθ = 2.2–37.5°
c = 10.3714 (1) ŵ = 2.31 mm1
α = 64.286 (1)°T = 100 K
β = 83.110 (1)°Block, colourless
γ = 78.796 (1)°0.41 × 0.35 × 0.22 mm
V = 947.36 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5490 independent reflections
Radiation source: fine-focus sealed tube4895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.451, Tmax = 0.631k = 1414
30132 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.6872P]
where P = (Fo2 + 2Fc2)/3
5490 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 1.01 e Å3
15 restraintsΔρmin = 0.66 e Å3
Crystal data top
C20H18BrFN2O2Sγ = 78.796 (1)°
Mr = 449.33V = 947.36 (2) Å3
Triclinic, P1Z = 2
a = 10.0455 (1) ÅMo Kα radiation
b = 10.2969 (1) ŵ = 2.31 mm1
c = 10.3714 (1) ÅT = 100 K
α = 64.286 (1)°0.41 × 0.35 × 0.22 mm
β = 83.110 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5490 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4895 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.631Rint = 0.029
30132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03115 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 1.01 e Å3
5490 reflectionsΔρmin = 0.66 e Å3
267 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.718042 (18)0.65172 (2)0.42386 (2)0.02506 (6)
S10.96029 (4)0.37018 (5)0.22541 (4)0.01943 (9)
F11.01209 (13)0.03875 (13)0.17700 (14)0.0324 (3)
O10.50168 (14)0.40666 (18)0.20152 (16)0.0313 (3)
N10.81604 (15)0.43472 (17)0.00399 (15)0.0196 (3)
H1N10.87810.48590.03700.023*
N20.73979 (14)0.26404 (16)0.21844 (15)0.0163 (3)
C10.87086 (17)0.2259 (2)0.13630 (19)0.0209 (3)
H10.86840.16470.03650.025*
C20.94486 (18)0.1774 (2)0.2313 (2)0.0236 (3)
C30.95266 (18)0.2600 (2)0.3770 (2)0.0231 (3)
H31.00520.22150.43870.028*
C40.88166 (17)0.4003 (2)0.43062 (19)0.0204 (3)
H40.88410.45960.53080.024*
C50.80672 (16)0.45529 (19)0.33865 (19)0.0184 (3)
C60.79770 (16)0.37081 (19)0.19184 (18)0.0175 (3)
C70.71816 (17)0.42662 (19)0.08487 (18)0.0176 (3)
H70.66800.52690.13940.021*
C80.61745 (16)0.32950 (19)0.00875 (19)0.0182 (3)
C90.50415 (18)0.3362 (2)0.0741 (2)0.0221 (3)
C130.63308 (16)0.24993 (19)0.15063 (19)0.0178 (3)
C140.83214 (16)0.35640 (18)0.14314 (17)0.0158 (3)
C150.73718 (16)0.19955 (18)0.37368 (17)0.0165 (3)
C160.81160 (19)0.0635 (2)0.4482 (2)0.0250 (4)
H160.87120.01530.39850.030*
C170.7980 (2)0.0018 (2)0.5970 (2)0.0339 (5)
H170.84810.09550.64980.041*
C180.7111 (2)0.0701 (3)0.6680 (2)0.0335 (5)
H180.70080.02450.76940.040*
C190.6396 (2)0.2069 (3)0.5931 (2)0.0290 (4)
H190.58170.25610.64290.035*
C200.65228 (17)0.2732 (2)0.44396 (19)0.0206 (3)
H200.60330.36760.39140.025*
C210.5474 (2)0.1379 (2)0.2489 (2)0.0261 (4)
H21A0.50000.10720.19220.039*
H21B0.48070.18050.30270.039*
H21C0.60570.05310.31590.039*
O20.40143 (16)0.26503 (19)0.00591 (18)0.0270 (4)0.869 (4)
C110.2885 (2)0.2674 (3)0.0718 (3)0.0290 (5)0.869 (4)
H11A0.27260.36220.15660.035*0.869 (4)
H11B0.20500.25700.00930.035*0.869 (4)
C120.3186 (3)0.1458 (3)0.1191 (3)0.0319 (5)0.869 (4)
H12A0.24190.14920.17120.048*0.869 (4)
H12B0.33290.05190.03500.048*0.869 (4)
H12C0.40060.15680.18190.048*0.869 (4)
O2A0.4326 (11)0.2257 (8)0.0408 (13)0.0270 (4)0.131 (4)
C11A0.3310 (13)0.2655 (15)0.1426 (13)0.018 (3)0.131 (4)
H11C0.37030.26130.23310.021*0.131 (4)
H11D0.27840.36380.16320.021*0.131 (4)
C12A0.247 (2)0.147 (2)0.060 (2)0.047 (5)0.131 (4)
H12D0.16900.16100.11560.071*0.131 (4)
H12E0.21460.15120.03140.071*0.131 (4)
H12F0.30240.05190.04170.071*0.131 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02414 (10)0.02346 (10)0.02129 (10)0.00017 (6)0.00032 (6)0.00558 (7)
S10.02016 (19)0.0262 (2)0.01355 (19)0.01177 (15)0.00010 (14)0.00673 (16)
F10.0345 (6)0.0264 (6)0.0341 (7)0.0048 (5)0.0013 (5)0.0146 (5)
O10.0241 (7)0.0465 (9)0.0253 (7)0.0044 (6)0.0057 (5)0.0162 (7)
N10.0233 (7)0.0245 (7)0.0142 (7)0.0131 (6)0.0005 (5)0.0076 (6)
N20.0161 (6)0.0205 (7)0.0137 (6)0.0080 (5)0.0022 (5)0.0072 (5)
C10.0198 (8)0.0302 (9)0.0189 (8)0.0095 (7)0.0022 (6)0.0144 (7)
C20.0215 (8)0.0237 (9)0.0272 (9)0.0014 (6)0.0021 (7)0.0127 (8)
C30.0197 (8)0.0279 (9)0.0271 (9)0.0068 (7)0.0052 (6)0.0167 (8)
C40.0186 (7)0.0270 (9)0.0190 (8)0.0086 (6)0.0022 (6)0.0116 (7)
C50.0160 (7)0.0203 (8)0.0194 (8)0.0038 (6)0.0017 (6)0.0083 (7)
C60.0155 (7)0.0232 (8)0.0177 (8)0.0049 (6)0.0016 (5)0.0111 (7)
C70.0185 (7)0.0219 (8)0.0145 (7)0.0044 (6)0.0018 (5)0.0090 (6)
C80.0160 (7)0.0229 (8)0.0204 (8)0.0053 (6)0.0006 (6)0.0130 (7)
C90.0187 (8)0.0247 (9)0.0289 (9)0.0017 (6)0.0039 (6)0.0167 (8)
C130.0155 (7)0.0221 (8)0.0205 (8)0.0068 (6)0.0028 (6)0.0127 (7)
C140.0171 (7)0.0176 (7)0.0146 (7)0.0062 (6)0.0020 (5)0.0077 (6)
C150.0163 (7)0.0185 (7)0.0140 (7)0.0073 (6)0.0011 (5)0.0046 (6)
C160.0263 (9)0.0183 (8)0.0283 (10)0.0045 (7)0.0025 (7)0.0070 (7)
C170.0405 (11)0.0222 (9)0.0298 (11)0.0139 (8)0.0113 (9)0.0036 (8)
C180.0395 (11)0.0444 (12)0.0150 (9)0.0294 (10)0.0002 (7)0.0021 (8)
C190.0257 (9)0.0476 (12)0.0210 (9)0.0191 (8)0.0087 (7)0.0181 (9)
C200.0169 (7)0.0270 (9)0.0192 (8)0.0065 (6)0.0025 (6)0.0107 (7)
C210.0262 (9)0.0348 (10)0.0230 (9)0.0188 (8)0.0058 (7)0.0134 (8)
O20.0213 (7)0.0337 (9)0.0305 (9)0.0104 (6)0.0044 (6)0.0144 (7)
C110.0200 (10)0.0367 (13)0.0351 (14)0.0058 (9)0.0053 (9)0.0179 (11)
C120.0316 (12)0.0354 (13)0.0353 (13)0.0111 (10)0.0007 (10)0.0187 (11)
O2A0.0213 (7)0.0337 (9)0.0305 (9)0.0104 (6)0.0044 (6)0.0144 (7)
C11A0.016 (5)0.032 (6)0.006 (5)0.007 (4)0.003 (4)0.007 (4)
C12A0.037 (8)0.059 (9)0.038 (8)0.026 (7)0.014 (6)0.003 (6)
Geometric parameters (Å, º) top
Br1—C51.8982 (17)C15—C201.383 (2)
S1—C141.6867 (16)C16—C171.392 (3)
F1—C21.353 (2)C16—H160.95
O1—C91.201 (2)C17—C181.386 (4)
N1—C141.325 (2)C17—H170.95
N1—C71.463 (2)C18—C191.377 (3)
N1—H1N10.85C18—H180.95
N2—C141.378 (2)C19—C201.394 (3)
N2—C131.412 (2)C19—H190.95
N2—C151.450 (2)C20—H200.95
C1—C21.371 (2)C21—H21A0.98
C1—C61.424 (3)C21—H21B0.98
C1—H10.95C21—H21C0.98
C2—C31.377 (3)O2—C111.459 (3)
C3—C41.380 (3)C11—C121.499 (3)
C3—H30.95C11—H11A0.99
C4—C51.388 (2)C11—H11B0.99
C4—H40.95C12—H12A0.98
C5—C61.390 (2)C12—H12B0.98
C6—C71.537 (2)C12—H12C0.98
C7—C81.510 (2)O2A—C11A1.431 (12)
C7—H71.00C11A—C12A1.501 (15)
C8—C131.349 (2)C11A—H11C0.99
C8—C91.481 (2)C11A—H11D0.99
C9—O2A1.359 (3)C12A—H12D0.98
C9—O21.361 (2)C12A—H12E0.98
C13—C211.505 (2)C12A—H12F0.98
C15—C161.382 (2)
C14—N1—C7127.83 (14)C15—C16—C17119.04 (18)
C14—N1—H1N1113.1C15—C16—H16120.5
C7—N1—H1N1118.5C17—C16—H16120.5
C14—N2—C13121.82 (14)C18—C17—C16119.8 (2)
C14—N2—C15118.93 (13)C18—C17—H17120.1
C13—N2—C15118.34 (13)C16—C17—H17120.1
C2—C1—C6117.93 (17)C19—C18—C17120.74 (18)
C2—C1—H1121.0C19—C18—H18119.6
C6—C1—H1121.0C17—C18—H18119.6
F1—C2—C1117.18 (17)C18—C19—C20119.90 (19)
F1—C2—C3118.70 (16)C18—C19—H19120.1
C1—C2—C3124.11 (18)C20—C19—H19120.1
C2—C3—C4117.87 (16)C15—C20—C19119.04 (18)
C2—C3—H3121.1C15—C20—H20120.5
C4—C3—H3121.1C19—C20—H20120.5
C3—C4—C5120.24 (17)C13—C21—H21A109.5
C3—C4—H4119.9C13—C21—H21B109.5
C5—C4—H4119.9H21A—C21—H21B109.5
C4—C5—C6121.62 (16)C13—C21—H21C109.5
C4—C5—Br1116.51 (13)H21A—C21—H21C109.5
C6—C5—Br1121.87 (13)H21B—C21—H21C109.5
C5—C6—C1118.20 (15)C9—O2—C11116.68 (18)
C5—C6—C7123.85 (15)O2—C11—C12110.62 (19)
C1—C6—C7117.90 (15)O2—C11—H11A109.5
N1—C7—C8109.92 (14)C12—C11—H11A109.5
N1—C7—C6107.99 (13)O2—C11—H11B109.5
C8—C7—C6112.44 (13)C12—C11—H11B109.5
N1—C7—H7108.8H11A—C11—H11B108.1
C8—C7—H7108.8C11—C12—H12A109.5
C6—C7—H7108.8C11—C12—H12B109.5
C13—C8—C9126.36 (16)H12A—C12—H12B109.5
C13—C8—C7121.87 (14)C11—C12—H12C109.5
C9—C8—C7111.77 (15)H12A—C12—H12C109.5
O1—C9—O2A107.4 (5)H12B—C12—H12C109.5
O1—C9—O2123.54 (17)C9—O2A—C11A111.1 (8)
O1—C9—C8121.38 (17)O2A—C11A—C12A99.2 (10)
O2A—C9—C8124.7 (5)O2A—C11A—H11C111.9
O2—C9—C8114.94 (16)C12A—C11A—H11C111.9
C8—C13—N2120.36 (15)O2A—C11A—H11D111.9
C8—C13—C21125.54 (15)C12A—C11A—H11D111.9
N2—C13—C21114.07 (15)H11C—C11A—H11D109.6
N1—C14—N2117.58 (14)C11A—C12A—H12D109.5
N1—C14—S1121.21 (12)C11A—C12A—H12E109.5
N2—C14—S1121.21 (12)H12D—C12A—H12E109.5
C16—C15—C20121.44 (16)C11A—C12A—H12F109.5
C16—C15—N2120.12 (15)H12D—C12A—H12F109.5
C20—C15—N2118.31 (15)H12E—C12A—H12F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.852.513.327 (2)162
C1—H1···F1ii0.952.523.370 (2)148
C7—H7···Br11.002.693.265 (2)117
C20—H20···O1iii0.952.443.368 (3)164
C21—H21A···O20.982.112.737 (3)120
C21—H21B···Br1iii0.982.913.886 (2)171
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H18BrFN2O2S
Mr449.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.0455 (1), 10.2969 (1), 10.3714 (1)
α, β, γ (°)64.286 (1), 83.110 (1), 78.796 (1)
V3)947.36 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.41 × 0.35 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.451, 0.631
No. of measured, independent and
observed [I > 2σ(I)] reflections
30132, 5490, 4895
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05
No. of reflections5490
No. of parameters267
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.66

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.852.513.327 (2)162
C1—H1···F1ii0.952.523.370 (2)148
C7—H7···Br11.002.693.265 (2)117
C20—H20···O1iii0.952.443.368 (3)164
C21—H21A···O20.982.112.737 (3)120
C21—H21B···Br1iii0.982.913.886 (2)171
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z; (iii) x+1, y+1, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtwal, K. S. (1990). J. Med. Chem. 33, 1510–1515.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKappe, C. O. (1993). Tetrahedron, 49, 6937–6963.  CrossRef CAS Google Scholar
First citationManjual, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665–2671.  Google Scholar
First citationMatsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195–1197.  CAS Google Scholar
First citationSadanandam, Y. S., Shetty, M. M. & Diwan, P. V. (1992). Eur. J. Med. Chem. 27, 87–92.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315–9318.  Web of Science CrossRef CAS Google Scholar
First citationWipf, P. & Cunningham, A. (1995). Tetrahedron Lett. 36, 7819–7822.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1526-o1527
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds