metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[1-(1,10-phenanthrolin-2-yl)-2-pyridone]cadmium(II)

aChemistry and Chemical Engineering College, Shanxi Datong University, Datong 037008, People's Republic of China
*Correspondence e-mail: jinminli1957@yahoo.com.cn

(Received 20 June 2008; accepted 27 June 2008; online 5 July 2008)

In the title mononuclear complex, [CdCl2(C17H11N3O)], the CdII ion assumes a distorted trigonal–bipyramidal coordination geometry. The pyridone plane is twisted out of the 1,10-phenanthroline mean plane by 43.8 (3)°. In the crystal structure, short inter­molecular distances [3.627 (4)–3.671 (4) Å] between the centroids of the six- and five-membered Cd-containing rings suggest the existence of ππ inter­actions, which link the mol­ecules into stacks along the a axis.

Related literature

For a related structure, see Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C17H11N3O)]

  • Mr = 456.59

  • Monoclinic, P 21 /c

  • a = 7.5623 (13) Å

  • b = 14.105 (3) Å

  • c = 15.155 (3) Å

  • β = 97.728 (3)°

  • V = 1601.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 298 (2) K

  • 0.11 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.835, Tmax = 0.920

  • 9188 measured reflections

  • 3476 independent reflections

  • 2229 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.136

  • S = 1.05

  • 3476 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Centroid–centroid distances (Å)

Cg1, Cg2 and Cg3 are the centroids of the rings Cd1/N2/N3/C8/C13, C8/C9/C11–C14 and N3/C13–C17, respectively.

Cg1⋯Cg2i 3.627 (4)
Cg2⋯Cg2i 3.631 (4)
Cg2⋯Cg3ii 3.671 (4)
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry, and the complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as bridging ligand and termial ligand has been reported (Liu et al., 2008). Here I report the crystal structure of the title complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as terminal ligand.

Fig. 1 shows the title coordination structure, revealing that the atom Cd is in a distorted trigonal bipyramidal environment. The dihedral angle between the pyridine ring plane and 1,10-phenanthroline ring system plane is 43.8 (3)°, which is smaller than that of the binuclear CdII complex (Liu et al., 2008). The crystal packing exhibits weak ππ stacking interactions involving symmetry-related neigbouring complexes, the relevant distances being Cg1···Cg2i = 3.627 (4) Å and Cg1···Cg2iperp = 3.407 Å and α = 4.70°; Cg2···Cg2i = 3.631 (4) Å and Cg2···Cg2iperp = 3.464 Å and α = 0.00°; Cg2···Cg3ii =3.671 (4) Å and Cg2···Cg3iiperp = 3.467 Å and α = 1.26° [symmetry codes: (i) -x, 2-y, -z; (ii) 1-x, 2-y, -z; Cg1, Cg2 and Cg3 are centroids of the Cd1/N2/N3/C8/C13, C8/C9/C11–C14 and N3/C13–C17 rings, respectively; Cgi···Cgjperp is the perpendicular distance from ring Cgi to ring Cgj; α is the dihedral angle between ring plane Cgi and ring plane Cgj].

Related literature top

For a related structure, see Liu et al. (2008). Cg1, Cg2 and Cg3 are the centroids of the rings Cd1/N2/N3/C8/C13, C8/C9/C11–C14 and N3/C13–C17, respectively.

Experimental top

10 ml Methanol solution of 1-(1,10-phenanthrolin-2-yl)-2-pyridone (0.1620 g, 0.593 mmol) was added into 10 ml methanol solution containing CdCl2.2.5H2O (0.1352 g, 0.592 mmol) and the mixture was stirred for a few minutes. The colourless single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-numbering scheme and 30% probability displacement ellipsoids.
Dichlorido[1-(1,10-phenanthrolin-2-yl)-2-pyridone]cadmium(II) top
Crystal data top
[CdCl2(C17H11N3O)]F(000) = 896
Mr = 456.59Dx = 1.893 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 970 reflections
a = 7.5623 (13) Åθ = 2.7–18.8°
b = 14.105 (3) ŵ = 1.71 mm1
c = 15.155 (3) ÅT = 298 K
β = 97.728 (3)°Block, colourless
V = 1601.9 (5) Å30.11 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3476 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 99
Tmin = 0.835, Tmax = 0.920k = 1717
9188 measured reflectionsl = 1219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
3476 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[CdCl2(C17H11N3O)]V = 1601.9 (5) Å3
Mr = 456.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5623 (13) ŵ = 1.71 mm1
b = 14.105 (3) ÅT = 298 K
c = 15.155 (3) Å0.11 × 0.06 × 0.05 mm
β = 97.728 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3476 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2229 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.920Rint = 0.071
9188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 1.15 e Å3
3476 reflectionsΔρmin = 0.83 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1695 (9)0.9518 (5)0.3440 (5)0.0366 (17)
C20.1891 (10)0.9363 (6)0.4389 (5)0.050 (2)
H20.15600.87810.46030.060*
C30.2543 (10)1.0039 (6)0.4973 (6)0.052 (2)
H30.26380.99220.55810.063*
C40.3073 (11)1.0914 (6)0.4668 (6)0.055 (2)
H40.35511.13730.50720.066*
C50.2892 (10)1.1088 (5)0.3801 (6)0.049 (2)
H50.32561.16720.36040.059*
C60.1179 (10)1.1614 (5)0.2066 (6)0.046 (2)
H60.08531.20010.25140.056*
C70.1882 (9)1.0723 (5)0.2263 (5)0.0389 (18)
C80.2128 (8)1.0430 (5)0.0795 (5)0.0326 (16)
C90.1472 (9)1.1317 (5)0.0533 (5)0.0395 (18)
C100.0974 (9)1.1916 (5)0.1209 (6)0.047 (2)
H100.05081.25150.10650.057*
C110.1306 (10)1.1576 (5)0.0390 (6)0.047 (2)
H110.08471.21680.05660.057*
C120.1796 (9)1.0986 (6)0.1005 (6)0.048 (2)
H120.16711.11710.15990.058*
C130.2654 (8)0.9785 (5)0.0133 (4)0.0305 (16)
C140.2512 (9)1.0072 (5)0.0751 (5)0.0380 (18)
C150.3059 (10)0.9431 (6)0.1369 (5)0.048 (2)
H150.29870.95980.19670.058*
C160.3689 (10)0.8574 (6)0.1090 (5)0.049 (2)
H160.40760.81500.14940.059*
C170.3761 (10)0.8321 (5)0.0188 (5)0.045 (2)
H170.41580.77190.00060.054*
Cd10.31562 (7)0.85238 (4)0.18959 (4)0.0400 (2)
Cl10.5861 (3)0.86363 (15)0.29470 (14)0.0613 (6)
Cl20.2258 (3)0.68924 (14)0.15321 (14)0.0580 (6)
N10.2182 (7)1.0428 (4)0.3185 (4)0.0379 (15)
N20.2331 (7)1.0138 (4)0.1660 (4)0.0369 (14)
N30.3273 (7)0.8923 (4)0.0409 (4)0.0330 (13)
O10.1125 (7)0.8907 (3)0.2885 (3)0.0460 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (4)0.034 (4)0.042 (4)0.001 (3)0.007 (4)0.005 (4)
C20.053 (5)0.048 (5)0.048 (5)0.009 (4)0.004 (4)0.001 (4)
C30.065 (5)0.056 (5)0.036 (4)0.001 (4)0.007 (4)0.008 (4)
C40.069 (6)0.050 (5)0.045 (5)0.010 (4)0.005 (5)0.014 (4)
C50.058 (5)0.036 (4)0.053 (5)0.001 (4)0.009 (5)0.006 (4)
C60.043 (4)0.033 (4)0.064 (6)0.002 (3)0.010 (4)0.013 (4)
C70.036 (4)0.042 (4)0.039 (4)0.002 (3)0.009 (4)0.001 (4)
C80.028 (4)0.029 (4)0.040 (4)0.002 (3)0.004 (3)0.001 (3)
C90.024 (4)0.038 (4)0.055 (5)0.003 (3)0.000 (4)0.003 (4)
C100.039 (4)0.028 (4)0.074 (6)0.010 (3)0.002 (4)0.009 (4)
C110.050 (5)0.035 (4)0.054 (5)0.007 (4)0.008 (4)0.022 (4)
C120.044 (5)0.051 (5)0.045 (5)0.011 (4)0.011 (4)0.018 (4)
C130.027 (4)0.033 (4)0.030 (4)0.007 (3)0.001 (3)0.000 (3)
C140.037 (4)0.049 (5)0.026 (4)0.010 (4)0.004 (3)0.002 (4)
C150.055 (5)0.058 (5)0.031 (4)0.024 (4)0.007 (4)0.001 (4)
C160.046 (5)0.057 (5)0.047 (5)0.012 (4)0.013 (4)0.013 (5)
C170.052 (5)0.029 (4)0.054 (5)0.001 (3)0.010 (4)0.010 (4)
Cd10.0511 (4)0.0353 (3)0.0328 (3)0.0065 (3)0.0029 (2)0.0033 (3)
Cl10.0558 (12)0.0765 (15)0.0481 (12)0.0004 (11)0.0063 (10)0.0119 (12)
Cl20.0922 (16)0.0353 (10)0.0463 (12)0.0013 (11)0.0083 (12)0.0006 (10)
N10.039 (4)0.038 (3)0.037 (4)0.003 (3)0.005 (3)0.003 (3)
N20.028 (3)0.041 (3)0.041 (4)0.001 (3)0.001 (3)0.000 (3)
N30.037 (3)0.032 (3)0.030 (3)0.001 (3)0.003 (3)0.002 (3)
O10.058 (3)0.037 (3)0.045 (3)0.010 (3)0.012 (3)0.006 (3)
Geometric parameters (Å, º) top
C1—O11.239 (8)C9—C111.436 (11)
C1—N11.404 (8)C10—H100.9300
C1—C21.442 (10)C11—C121.337 (11)
C2—C31.348 (10)C11—H110.9300
C2—H20.9300C12—C141.431 (10)
C3—C41.394 (11)C12—H120.9300
C3—H30.9300C13—N31.348 (8)
C4—C51.326 (11)C13—C141.390 (9)
C4—H40.9300C14—C151.403 (10)
C5—N11.375 (9)C15—C161.347 (10)
C5—H50.9300C15—H150.9300
C6—C101.356 (11)C16—C171.407 (10)
C6—C71.382 (9)C16—H160.9300
C6—H60.9300C17—N31.329 (8)
C7—N21.310 (8)C17—H170.9300
C7—N11.446 (9)Cd1—N32.336 (6)
C8—N21.362 (8)Cd1—O12.349 (5)
C8—C91.384 (9)Cd1—N22.376 (6)
C8—C131.450 (9)Cd1—Cl12.423 (2)
C9—C101.417 (11)Cd1—Cl22.441 (2)
Cg1···Cg2i3.627 (4)Cg2···Cg3ii3.671 (4)
Cg2···Cg2i3.631 (4)
O1—C1—N1121.9 (7)N3—C13—C14122.7 (6)
O1—C1—C2123.4 (7)N3—C13—C8117.9 (6)
N1—C1—C2114.6 (7)C14—C13—C8119.4 (6)
C3—C2—C1121.8 (7)C13—C14—C15117.7 (7)
C3—C2—H2119.1C13—C14—C12119.9 (7)
C1—C2—H2119.1C15—C14—C12122.4 (7)
C2—C3—C4120.3 (8)C16—C15—C14119.5 (7)
C2—C3—H3119.9C16—C15—H15120.2
C4—C3—H3119.9C14—C15—H15120.3
C5—C4—C3119.7 (8)C15—C16—C17119.9 (7)
C5—C4—H4120.1C15—C16—H16120.1
C3—C4—H4120.1C17—C16—H16120.1
C4—C5—N1121.8 (8)N3—C17—C16121.4 (7)
C4—C5—H5119.1N3—C17—H17119.3
N1—C5—H5119.1C16—C17—H17119.3
C10—C6—C7119.0 (7)N3—Cd1—O1132.29 (19)
C10—C6—H6120.5N3—Cd1—N270.5 (2)
C7—C6—H6120.5O1—Cd1—N272.21 (18)
N2—C7—C6123.4 (7)N3—Cd1—Cl1118.71 (14)
N2—C7—N1118.2 (6)O1—Cd1—Cl197.58 (15)
C6—C7—N1118.5 (7)N2—Cd1—Cl1102.58 (15)
N2—C8—C9122.6 (6)N3—Cd1—Cl293.15 (14)
N2—C8—C13118.0 (6)O1—Cd1—Cl2100.09 (13)
C9—C8—C13119.3 (7)N2—Cd1—Cl2144.10 (15)
C8—C9—C10116.8 (7)Cl1—Cd1—Cl2113.26 (8)
C8—C9—C11119.4 (7)C5—N1—C1121.7 (6)
C10—C9—C11123.8 (7)C5—N1—C7117.2 (6)
C6—C10—C9119.8 (7)C1—N1—C7121.0 (6)
C6—C10—H10120.1C7—N2—C8118.4 (6)
C9—C10—H10120.1C7—N2—Cd1125.8 (5)
C12—C11—C9121.7 (7)C8—N2—Cd1115.4 (4)
C12—C11—H11119.2C17—N3—C13118.8 (6)
C9—C11—H11119.2C17—N3—Cd1123.5 (5)
C11—C12—C14120.2 (7)C13—N3—Cd1117.4 (4)
C11—C12—H12119.9C1—O1—Cd1113.3 (4)
C14—C12—H12119.9
O1—C1—C2—C3178.9 (7)N2—C7—N1—C146.0 (9)
N1—C1—C2—C31.8 (10)C6—C7—N1—C1135.6 (7)
C1—C2—C3—C40.9 (12)C6—C7—N2—C81.3 (10)
C2—C3—C4—C51.7 (13)N1—C7—N2—C8177.0 (6)
C3—C4—C5—N10.4 (13)C6—C7—N2—Cd1170.8 (5)
C10—C6—C7—N21.5 (11)N1—C7—N2—Cd110.9 (9)
C10—C6—C7—N1176.8 (7)C9—C8—N2—C70.1 (10)
N2—C8—C9—C101.2 (10)C13—C8—N2—C7179.1 (6)
C13—C8—C9—C10179.8 (6)C9—C8—N2—Cd1173.0 (5)
N2—C8—C9—C11179.6 (6)C13—C8—N2—Cd18.0 (7)
C13—C8—C9—C110.7 (9)N3—Cd1—N2—C7179.8 (6)
C7—C6—C10—C90.2 (11)O1—Cd1—N2—C730.5 (5)
C8—C9—C10—C61.0 (10)Cl1—Cd1—N2—C763.5 (6)
C11—C9—C10—C6179.9 (7)Cl2—Cd1—N2—C7113.1 (5)
C8—C9—C11—C121.0 (11)N3—Cd1—N2—C87.9 (4)
C10—C9—C11—C12179.9 (7)O1—Cd1—N2—C8141.8 (5)
C9—C11—C12—C140.2 (11)Cl1—Cd1—N2—C8124.2 (4)
N2—C8—C13—N31.6 (9)Cl2—Cd1—N2—C859.2 (5)
C9—C8—C13—N3179.4 (6)C16—C17—N3—C131.8 (10)
N2—C8—C13—C14178.2 (6)C16—C17—N3—Cd1175.4 (5)
C9—C8—C13—C140.9 (9)C14—C13—N3—C170.3 (9)
N3—C13—C14—C150.6 (10)C8—C13—N3—C17179.9 (6)
C8—C13—C14—C15179.1 (6)C14—C13—N3—Cd1174.4 (5)
N3—C13—C14—C12178.2 (6)C8—C13—N3—Cd15.9 (7)
C8—C13—C14—C122.1 (10)O1—Cd1—N3—C17140.4 (5)
C11—C12—C14—C131.8 (10)N2—Cd1—N3—C17179.1 (6)
C11—C12—C14—C15179.4 (7)Cl1—Cd1—N3—C1785.1 (5)
C13—C14—C15—C160.1 (10)Cl2—Cd1—N3—C1733.7 (5)
C12—C14—C15—C16178.7 (7)O1—Cd1—N3—C1333.3 (5)
C14—C15—C16—C171.2 (11)N2—Cd1—N3—C137.2 (4)
C15—C16—C17—N32.3 (11)Cl1—Cd1—N3—C13101.2 (4)
C4—C5—N1—C13.3 (11)Cl2—Cd1—N3—C13140.0 (4)
C4—C5—N1—C7174.1 (7)N1—C1—O1—Cd159.8 (7)
O1—C1—N1—C5176.9 (6)C2—C1—O1—Cd1121.0 (6)
C2—C1—N1—C53.9 (9)N3—Cd1—O1—C1104.1 (5)
O1—C1—N1—C75.9 (10)N2—Cd1—O1—C164.0 (5)
C2—C1—N1—C7173.4 (6)Cl1—Cd1—O1—C136.8 (5)
N2—C7—N1—C5136.6 (7)Cl2—Cd1—O1—C1152.2 (5)
C6—C7—N1—C541.8 (9)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[CdCl2(C17H11N3O)]
Mr456.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.5623 (13), 14.105 (3), 15.155 (3)
β (°) 97.728 (3)
V3)1601.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.11 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.835, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
9188, 3476, 2229
Rint0.071
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.136, 1.05
No. of reflections3476
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.83

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Selected interatomic distances (Å) top
Cg1···Cg2i3.627 (4)Cg2···Cg3ii3.671 (4)
Cg2···Cg2i3.631 (4)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds