organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-3-hydr­­oxy-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid di­methyl­formamide disolvate

aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China, bState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China, and cCollege of Environmental and Chemical Engineering, Nanchang University of Aeronautics, Nanchang 330063, People's Republic of China
*Correspondence e-mail: hlwen70@163.com

(Received 17 June 2008; accepted 26 June 2008; online 5 July 2008)

In the title compound, C16H9BrO5·2C3H7NO, the chromene ring system is essentially planar. The two dimethyl­formamide solvent mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds to the 6-bromo-3-hydr­oxy-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid molecules.

Related literature

For related literature, see: Gills et al. (1980[Gills, P. M., Haemers, A. & Bollaert, W. (1980). Eur. J. Med. Chem. Chim. Ther. 15, 185-190.]); Liu et al. (2007[Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90-o91.]); Jin & Xiao (2005[Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1198-o1199.]); Kagechika et al. (1989[Kagechika, H., Kawachi, E., Hashimoto, Y. & Shudo, K. (1989). J. Med. Chem. 32, 834-840.]); Valenti et al. (1998[Valenti, P., Bisi, A., Rampa, A., Gobbi, S., Belluti, F., Da Re, P., Cima, L. & Carrara, M. (1998). Anti Cancer Drug Des. 13, 881-892.]); Walenta et al. (1991[Walenta, R., Muller-Peddinghaus, R., Ban, I., Wurl, M. & Preuschoff, U. (1991). US Patent 5 013 852.]); Zwaagstra et al. (1996[Zwaagstra, M. E., Timmerman, H., Abdoelgafoe, R. S. & Zhang, M.-Q. (1996). Eur J. Med. Chem. 31, 861-874.], 1998a[Zwaagstra, M. E., Korthouwer, R. E. M., Timmerman, H. & Zhang, M.-Q. (1998a). Eur J. Med. Chem. 33, 95-102.],b[Zwaagstra, M. E., Zhang, M., Timmermann, H., Tamura, M. & Wada, Y. (1998b). European Patent 8 345 10.]).

[Scheme 1]

Experimental

Crystal data
  • C16H9BrO5·2C3H7NO

  • Mr = 507.33

  • Monoclinic, P 21 /n

  • a = 10.489 (2) Å

  • b = 11.470 (2) Å

  • c = 18.803 (4) Å

  • β = 92.127 (3)°

  • V = 2260.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 294 (2) K

  • 0.49 × 0.38 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.462, Tmax = 0.742

  • 14295 measured reflections

  • 4203 independent reflections

  • 2889 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 0.99

  • 4203 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O6 0.82 1.78 2.598 (2) 173
O5—H5⋯O7 0.82 1.89 2.627 (2) 149
O5—H5⋯O4 0.82 2.32 2.741 (3) 113

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson,1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Flavonoids are widely present in nature, which have potential biological activity such as antiviral (Zwaagstra et al., 1996; Zwaagstra et al., 1998a), anticancer (Valenti et al., 1998), treating leukemia (Kagechika et al., 1989), antihypertensive, antimicrobial (Gills et al., 1980; Walenta et al., 1991) et al. Due to the varieties of its biological activity, the structure-activity relationships study of flavonoids carboxylic acids has been the hot spot all along. In a continuation of our recent studies of flavonoids carboxylic acids (Liu et al., 2007), we report here the title compound, C16H9BrO5—C6H14N2O2, (I).

In compound (I), the chromene molecule is roughly planar, with a mean deviation of 0.0521 Å. The dihedral angle between the chromene ring and the phenyl ring is 7.5 (2)°. Two O—H···O hydrogen bonds (Table 1, Fig. 1) involving the H atoms of hydroxyl group and carboxylic acid group connect the dimethylformamide molecules and 6-bromo-3-hydroxy-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid.

Related literature top

For related literature, see: Gills et al. (1980); Liu et al. (2007); Jin & Xiao (2005); Kagechika et al. (1989); Valenti et al. (1998); Walenta et al. (1991); Zwaagstra et al. (1996, 1998a,b).

Experimental top

The title compound was synthesized by the ring closure of 5'-bromo-3'-carboxy-2'-hydroxychalcone under the existence of a certain oxidant, according to the route published by Zwaagstra et al. (Zwaagstra et al., 1998b). Single crystals of (I) suitable for X-ray diffraction analysis were obtained from a solution in N,N-dimethylformamide.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl and O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson,1996); ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii. The hydrogen bonds are shown as dashed lines.
6-Bromo-3-hydroxy-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid dimethylformamide solvate top
Crystal data top
C16H9BrO5·2C3H7NOF(000) = 1040
Mr = 507.33Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3645 reflections
a = 10.489 (2) Åθ = 2.6–23.5°
b = 11.470 (2) ŵ = 1.86 mm1
c = 18.803 (4) ÅT = 294 K
β = 92.127 (3)°Block, yellow
V = 2260.6 (8) Å30.49 × 0.38 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4203 independent reflections
Radiation source: fine-focus sealed tube2889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.462, Tmax = 0.742k = 1313
14295 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6824P]
where P = (Fo2 + 2Fc2)/3
4203 reflections(Δ/σ)max = 0.017
294 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H9BrO5·2C3H7NOV = 2260.6 (8) Å3
Mr = 507.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.489 (2) ŵ = 1.86 mm1
b = 11.470 (2) ÅT = 294 K
c = 18.803 (4) Å0.49 × 0.38 × 0.17 mm
β = 92.127 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4203 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2889 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.742Rint = 0.028
14295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
4203 reflectionsΔρmin = 0.35 e Å3
294 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.06013 (3)0.88028 (2)0.582768 (19)0.07113 (15)
O10.0368 (2)0.44074 (18)0.65009 (12)0.0911 (8)
O20.06856 (17)0.31912 (16)0.58290 (9)0.0577 (5)
H2A0.02790.27040.60460.087*
O30.24560 (16)0.40314 (13)0.50359 (9)0.0460 (4)
O40.41242 (18)0.68075 (16)0.41187 (10)0.0652 (6)
O50.49923 (18)0.46087 (15)0.38343 (11)0.0610 (5)
H50.53030.52370.37270.091*
C10.1082 (2)0.5216 (2)0.57023 (13)0.0439 (6)
C20.0684 (2)0.6327 (2)0.58763 (14)0.0517 (7)
H20.00410.64160.61990.062*
C30.1222 (2)0.7312 (2)0.55796 (14)0.0495 (7)
C40.2183 (2)0.7207 (2)0.51073 (14)0.0485 (6)
H40.25440.78690.49120.058*
C50.2615 (2)0.6101 (2)0.49221 (13)0.0422 (6)
C60.2067 (2)0.5112 (2)0.52147 (12)0.0411 (6)
C70.3634 (2)0.5972 (2)0.44191 (14)0.0456 (6)
C80.4030 (2)0.4787 (2)0.42805 (13)0.0443 (6)
C90.3421 (2)0.3864 (2)0.45729 (13)0.0429 (6)
C100.0406 (3)0.4222 (2)0.60528 (14)0.0518 (7)
C110.3633 (2)0.2608 (2)0.44578 (13)0.0442 (6)
C120.4628 (3)0.2186 (3)0.40674 (19)0.0821 (11)
H120.51880.27080.38650.099*
C130.4800 (4)0.1012 (3)0.3976 (2)0.0944 (13)
H130.54820.07520.37160.113*
C140.3998 (3)0.0217 (2)0.42550 (17)0.0686 (9)
H140.41140.05780.41840.082*
C150.3021 (3)0.0619 (2)0.46419 (18)0.0736 (9)
H150.24640.00890.48390.088*
C160.2840 (3)0.1793 (2)0.47476 (16)0.0629 (8)
H160.21690.20410.50200.075*
N10.2166 (3)0.1136 (2)0.71663 (13)0.0631 (7)
O60.0563 (2)0.15290 (18)0.64329 (11)0.0722 (6)
C170.1516 (3)0.1828 (3)0.67549 (16)0.0626 (8)
H170.17920.25950.67030.075*
C180.3276 (4)0.1567 (3)0.7524 (2)0.0983 (13)
H18A0.30720.16490.80240.147*
H18B0.39680.10260.74560.147*
H18C0.35210.23110.73290.147*
C190.1781 (3)0.0070 (3)0.72818 (18)0.0840 (10)
H19A0.22510.05650.69550.126*
H19B0.19530.02940.77610.126*
H19C0.08850.01470.72060.126*
N20.7254 (2)0.78411 (18)0.28823 (12)0.0554 (6)
O70.6435 (2)0.60874 (17)0.31631 (12)0.0773 (7)
C200.6539 (3)0.7141 (3)0.32545 (16)0.0642 (8)
H200.60760.74730.36150.077*
C210.7365 (4)0.9061 (3)0.3036 (3)0.1108 (15)
H21A0.69090.92390.34560.166*
H21B0.70120.95030.26420.166*
H21C0.82480.92600.31130.166*
C220.8037 (3)0.7385 (3)0.23293 (16)0.0746 (9)
H22A0.88530.71600.25320.112*
H22B0.81510.79740.19750.112*
H22C0.76260.67180.21140.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0723 (2)0.04462 (18)0.0983 (3)0.00670 (14)0.02689 (18)0.00929 (15)
O10.1120 (19)0.0564 (13)0.1106 (18)0.0065 (12)0.0794 (16)0.0021 (12)
O20.0641 (13)0.0440 (11)0.0672 (12)0.0095 (9)0.0321 (10)0.0013 (9)
O30.0491 (10)0.0358 (9)0.0546 (10)0.0028 (7)0.0219 (8)0.0004 (7)
O40.0696 (14)0.0428 (11)0.0860 (14)0.0029 (9)0.0389 (11)0.0106 (10)
O50.0621 (13)0.0421 (10)0.0814 (13)0.0017 (9)0.0392 (10)0.0058 (9)
C10.0440 (15)0.0429 (14)0.0454 (14)0.0045 (11)0.0098 (12)0.0000 (11)
C20.0483 (16)0.0522 (16)0.0557 (16)0.0010 (12)0.0179 (13)0.0043 (12)
C30.0501 (16)0.0402 (14)0.0587 (17)0.0007 (12)0.0073 (13)0.0050 (12)
C40.0486 (16)0.0375 (13)0.0600 (17)0.0043 (11)0.0085 (13)0.0032 (12)
C50.0411 (14)0.0389 (13)0.0472 (14)0.0012 (11)0.0078 (11)0.0025 (11)
C60.0411 (14)0.0372 (13)0.0455 (14)0.0011 (11)0.0080 (11)0.0015 (11)
C70.0425 (15)0.0412 (14)0.0540 (15)0.0033 (11)0.0125 (12)0.0060 (11)
C80.0413 (15)0.0429 (14)0.0494 (14)0.0025 (11)0.0131 (12)0.0040 (11)
C90.0401 (14)0.0432 (13)0.0460 (14)0.0022 (11)0.0116 (11)0.0022 (11)
C100.0528 (17)0.0501 (15)0.0537 (16)0.0041 (13)0.0197 (14)0.0009 (12)
C110.0448 (15)0.0383 (13)0.0500 (15)0.0009 (11)0.0102 (12)0.0001 (11)
C120.083 (2)0.0446 (16)0.123 (3)0.0012 (15)0.061 (2)0.0002 (17)
C130.099 (3)0.0519 (19)0.137 (3)0.0085 (18)0.070 (3)0.0067 (19)
C140.079 (2)0.0396 (16)0.089 (2)0.0024 (15)0.0210 (18)0.0071 (15)
C150.085 (2)0.0397 (15)0.099 (2)0.0087 (16)0.0338 (19)0.0043 (16)
C160.069 (2)0.0440 (15)0.078 (2)0.0023 (14)0.0344 (16)0.0023 (14)
N10.0694 (17)0.0582 (15)0.0630 (15)0.0122 (12)0.0213 (13)0.0075 (11)
O60.0710 (15)0.0588 (12)0.0889 (15)0.0066 (10)0.0320 (12)0.0131 (11)
C170.064 (2)0.0532 (17)0.072 (2)0.0080 (15)0.0209 (16)0.0106 (15)
C180.096 (3)0.088 (3)0.114 (3)0.014 (2)0.057 (2)0.004 (2)
C190.104 (3)0.064 (2)0.084 (2)0.0043 (19)0.016 (2)0.0247 (18)
N20.0544 (14)0.0404 (12)0.0727 (15)0.0045 (10)0.0200 (12)0.0015 (11)
O70.0906 (17)0.0485 (13)0.0959 (16)0.0178 (10)0.0453 (13)0.0037 (10)
C200.065 (2)0.0550 (18)0.075 (2)0.0054 (15)0.0276 (16)0.0033 (15)
C210.114 (3)0.0420 (18)0.180 (4)0.0070 (19)0.056 (3)0.007 (2)
C220.087 (2)0.072 (2)0.067 (2)0.0156 (17)0.0320 (18)0.0041 (16)
Geometric parameters (Å, º) top
Br1—C31.894 (2)C14—C151.359 (4)
O1—C101.210 (3)C14—H140.9300
O2—C101.293 (3)C15—C161.376 (4)
O2—H2A0.8200C15—H150.9300
O3—C61.351 (3)C16—H160.9300
O3—C91.372 (3)N1—C171.316 (3)
O4—C71.235 (3)N1—C181.453 (4)
O5—C81.352 (3)N1—C191.455 (4)
O5—H50.8200O6—C171.236 (3)
C1—C21.384 (3)C17—H170.9300
C1—C61.412 (3)C18—H18A0.9600
C1—C101.507 (3)C18—H18B0.9600
C2—C31.389 (4)C18—H18C0.9600
C2—H20.9300C19—H19A0.9600
C3—C41.373 (3)C19—H19B0.9600
C4—C51.396 (3)C19—H19C0.9600
C4—H40.9300N2—C201.318 (3)
C5—C61.394 (3)N2—C211.433 (4)
C5—C71.460 (3)N2—C221.447 (3)
C7—C81.447 (3)O7—C201.225 (3)
C8—C91.363 (3)C20—H200.9300
C9—C111.475 (3)C21—H21A0.9600
C11—C161.377 (3)C21—H21B0.9600
C11—C121.386 (4)C21—H21C0.9600
C12—C131.371 (4)C22—H22A0.9600
C12—H120.9300C22—H22B0.9600
C13—C141.359 (4)C22—H22C0.9600
C13—H130.9300
C10—O2—H2A109.5C13—C14—H14121.0
C6—O3—C9121.48 (18)C14—C15—C16121.4 (3)
C8—O5—H5109.5C14—C15—H15119.3
C2—C1—C6117.8 (2)C16—C15—H15119.3
C2—C1—C10116.2 (2)C15—C16—C11121.2 (3)
C6—C1—C10126.0 (2)C15—C16—H16119.4
C1—C2—C3121.6 (2)C11—C16—H16119.4
C1—C2—H2119.2C17—N1—C18120.6 (3)
C3—C2—H2119.2C17—N1—C19120.9 (3)
C4—C3—C2120.5 (2)C18—N1—C19118.5 (3)
C4—C3—Br1120.38 (19)O6—C17—N1124.5 (3)
C2—C3—Br1119.14 (19)O6—C17—H17117.7
C3—C4—C5119.6 (2)N1—C17—H17117.7
C3—C4—H4120.2N1—C18—H18A109.5
C5—C4—H4120.2N1—C18—H18B109.5
C6—C5—C4119.9 (2)H18A—C18—H18B109.5
C6—C5—C7119.7 (2)N1—C18—H18C109.5
C4—C5—C7120.4 (2)H18A—C18—H18C109.5
O3—C6—C5121.0 (2)H18B—C18—H18C109.5
O3—C6—C1118.3 (2)N1—C19—H19A109.5
C5—C6—C1120.6 (2)N1—C19—H19B109.5
O4—C7—C8121.3 (2)H19A—C19—H19B109.5
O4—C7—C5123.0 (2)N1—C19—H19C109.5
C8—C7—C5115.7 (2)H19A—C19—H19C109.5
O5—C8—C9120.3 (2)H19B—C19—H19C109.5
O5—C8—C7118.7 (2)C20—N2—C21122.1 (3)
C9—C8—C7120.9 (2)C20—N2—C22120.7 (2)
C8—C9—O3121.0 (2)C21—N2—C22117.0 (2)
C8—C9—C11128.6 (2)O7—C20—N2125.2 (3)
O3—C9—C11110.38 (19)O7—C20—H20117.4
O1—C10—O2123.6 (2)N2—C20—H20117.4
O1—C10—C1120.7 (2)N2—C21—H21A109.5
O2—C10—C1115.7 (2)N2—C21—H21B109.5
C16—C11—C12116.8 (2)H21A—C21—H21B109.5
C16—C11—C9120.6 (2)N2—C21—H21C109.5
C12—C11—C9122.7 (2)H21A—C21—H21C109.5
C13—C12—C11121.0 (3)H21B—C21—H21C109.5
C13—C12—H12119.5N2—C22—H22A109.5
C11—C12—H12119.5N2—C22—H22B109.5
C14—C13—C12121.6 (3)H22A—C22—H22B109.5
C14—C13—H13119.2N2—C22—H22C109.5
C12—C13—H13119.2H22A—C22—H22C109.5
C15—C14—C13118.0 (3)H22B—C22—H22C109.5
C15—C14—H14121.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O60.821.782.598 (2)173
O5—H5···O70.821.892.627 (2)149
O5—H5···O40.822.322.741 (3)113

Experimental details

Crystal data
Chemical formulaC16H9BrO5·2C3H7NO
Mr507.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.489 (2), 11.470 (2), 18.803 (4)
β (°) 92.127 (3)
V3)2260.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.49 × 0.38 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.462, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
14295, 4203, 2889
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.00
No. of reflections4203
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.35

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson,1996); ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O60.821.782.598 (2)173.2
O5—H5···O70.821.892.627 (2)148.8
O5—H5···O40.822.322.741 (3)112.5
 

Acknowledgements

This work is supported by the National Natural Science Foundation of China (20662007) and the Key Laboratory Open Foundation of Food Science of the Ministry of Education, Nanchang University (NCU200407).

References

First citationBruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGills, P. M., Haemers, A. & Bollaert, W. (1980). Eur. J. Med. Chem. Chim. Ther. 15, 185–190.  Google Scholar
First citationJin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1198–o1199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKagechika, H., Kawachi, E., Hashimoto, Y. & Shudo, K. (1989). J. Med. Chem. 32, 834–840.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Bisi, A., Rampa, A., Gobbi, S., Belluti, F., Da Re, P., Cima, L. & Carrara, M. (1998). Anti Cancer Drug Des. 13, 881–892.  CAS Google Scholar
First citationWalenta, R., Muller-Peddinghaus, R., Ban, I., Wurl, M. & Preuschoff, U. (1991). US Patent 5 013 852.  Google Scholar
First citationZwaagstra, M. E., Korthouwer, R. E. M., Timmerman, H. & Zhang, M.-Q. (1998a). Eur J. Med. Chem. 33, 95–102.  Web of Science CrossRef CAS Google Scholar
First citationZwaagstra, M. E., Timmerman, H., Abdoelgafoe, R. S. & Zhang, M.-Q. (1996). Eur J. Med. Chem. 31, 861–874.  CrossRef CAS Web of Science Google Scholar
First citationZwaagstra, M. E., Zhang, M., Timmermann, H., Tamura, M. & Wada, Y. (1998b). European Patent 8 345 10.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds