organic compounds
(S)-1-Methoxycarbonyl-2-(4-nitrophenyl)ethanaminium chloride
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn
The title compound, C10H13N2O4+·Cl−, comprises a Cl− anion and a protonated aminium cation. The crystal packing is stabilized by cation–anion N—H⋯Cl hydrogen bonds and N—H⋯O hydrogen bonds, building an infinite two-dimensional network parallel to the (001) plane. The S at the chiral center was deduced from the synthetic pathway and confirmed by the X-ray analysis.
Related literature
For details of α-amino acid derivatives as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007); Arki et al. (2004); Hauck et al. (2006); Dai et al. (2008); Azim et al. (2006).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808020874/dn2364sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020874/dn2364Isup2.hkl
Under nitrogen protection, 2-amino-3-phenylpropanoic acid (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 h. The resulting solution was poured into ice water (100 mL), then filtered and washed with distilled water. The nitration amino acid was esterified with H2SO4 and CH3OH at 110 °C for 12 h, the crude product was obtained by evaporated the solution, and then recrystallized with distilled water by adding 1 ml HCl to yield colorless block-like crystals, suitable for X-ray analysis.
All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine), 0.93 Å (aromatic) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C except methyl) or Uiso(H) = 1.5Ueq(N and methyl C).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H13N2O4+·Cl− | F(000) = 272 |
Mr = 260.67 | Dx = 1.416 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1445 reflections |
a = 4.825 (3) Å | θ = 2.4–27.5° |
b = 8.426 (3) Å | µ = 0.32 mm−1 |
c = 15.111 (9) Å | T = 298 K |
β = 95.64 (4)° | Block, colourless |
V = 611.4 (6) Å3 | 0.25 × 0.18 × 0.17 mm |
Z = 2 |
Rigaku Mercury2 diffractometer | 2751 independent reflections |
Radiation source: fine-focus sealed tube | 2077 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.4°, θmin = 2.7° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −10→10 |
Tmin = 0.931, Tmax = 0.942 | l = −19→19 |
6215 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0476P)2 + 0.0855P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2751 reflections | Δρmax = 0.30 e Å−3 |
154 parameters | Δρmin = −0.17 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1259 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (9) |
C10H13N2O4+·Cl− | V = 611.4 (6) Å3 |
Mr = 260.67 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 4.825 (3) Å | µ = 0.32 mm−1 |
b = 8.426 (3) Å | T = 298 K |
c = 15.111 (9) Å | 0.25 × 0.18 × 0.17 mm |
β = 95.64 (4)° |
Rigaku Mercury2 diffractometer | 2751 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2077 reflections with I > 2σ(I) |
Tmin = 0.931, Tmax = 0.942 | Rint = 0.038 |
6215 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.112 | Δρmax = 0.30 e Å−3 |
S = 1.03 | Δρmin = −0.17 e Å−3 |
2751 reflections | Absolute structure: Flack (1983), 1259 Friedel pairs |
154 parameters | Absolute structure parameter: −0.03 (9) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.98552 (15) | 0.75535 (11) | 0.54873 (5) | 0.0499 (2) | |
O3 | 0.8079 (4) | 0.7690 (3) | 0.30131 (12) | 0.0483 (5) | |
C9 | 0.6109 (5) | 0.7495 (4) | 0.35535 (16) | 0.0362 (6) | |
O4 | 0.4684 (5) | 0.8525 (3) | 0.38126 (14) | 0.0498 (6) | |
C8 | 0.5762 (6) | 0.5766 (3) | 0.37686 (18) | 0.0353 (6) | |
H8A | 0.7584 | 0.5243 | 0.3803 | 0.042* | |
N2 | 0.4629 (6) | 0.5646 (3) | 0.46458 (15) | 0.0448 (6) | |
H11A | 0.5788 | 0.6120 | 0.5058 | 0.067* | |
H11B | 0.4447 | 0.4629 | 0.4787 | 0.067* | |
H11C | 0.2973 | 0.6119 | 0.4617 | 0.067* | |
C4 | 0.4967 (6) | 0.4821 (4) | 0.21766 (19) | 0.0400 (7) | |
C7 | 0.3780 (7) | 0.4943 (4) | 0.3058 (2) | 0.0439 (7) | |
H7A | 0.3369 | 0.3885 | 0.3262 | 0.053* | |
H7B | 0.2044 | 0.5530 | 0.2980 | 0.053* | |
C1 | 0.7171 (8) | 0.4557 (4) | 0.0577 (2) | 0.0493 (8) | |
C2 | 0.8081 (8) | 0.3560 (5) | 0.1245 (2) | 0.0576 (9) | |
H2C | 0.9440 | 0.2805 | 0.1165 | 0.069* | |
C3 | 0.6962 (7) | 0.3682 (4) | 0.2046 (2) | 0.0512 (8) | |
H3A | 0.7551 | 0.2991 | 0.2506 | 0.061* | |
C5 | 0.4107 (7) | 0.5812 (4) | 0.1485 (2) | 0.0530 (9) | |
H5A | 0.2761 | 0.6576 | 0.1561 | 0.064* | |
C6 | 0.5198 (8) | 0.5697 (5) | 0.0674 (2) | 0.0612 (10) | |
H6A | 0.4609 | 0.6375 | 0.0207 | 0.073* | |
N1 | 0.8330 (9) | 0.4439 (5) | −0.0288 (2) | 0.0722 (10) | |
O1 | 1.0166 (8) | 0.3463 (5) | −0.0366 (2) | 0.1027 (12) | |
O2 | 0.7365 (9) | 0.5296 (5) | −0.0890 (2) | 0.1057 (12) | |
C10 | 0.8487 (10) | 0.9318 (4) | 0.2717 (3) | 0.0691 (11) | |
H10A | 0.9951 | 0.9340 | 0.2331 | 0.104* | |
H10B | 0.8984 | 0.9983 | 0.3224 | 0.104* | |
H10C | 0.6794 | 0.9702 | 0.2402 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0520 (4) | 0.0476 (4) | 0.0505 (4) | 0.0037 (4) | 0.0075 (3) | −0.0092 (4) |
O3 | 0.0588 (12) | 0.0420 (12) | 0.0475 (11) | −0.0084 (12) | 0.0217 (10) | 0.0009 (12) |
C9 | 0.0410 (14) | 0.0359 (14) | 0.0315 (12) | −0.0017 (16) | 0.0027 (11) | −0.0029 (15) |
O4 | 0.0582 (14) | 0.0403 (12) | 0.0521 (13) | 0.0093 (11) | 0.0123 (11) | 0.0021 (11) |
C8 | 0.0429 (16) | 0.0342 (15) | 0.0303 (14) | 0.0008 (13) | 0.0109 (12) | 0.0018 (12) |
N2 | 0.0599 (17) | 0.0372 (14) | 0.0390 (14) | −0.0001 (13) | 0.0135 (12) | 0.0005 (12) |
C4 | 0.0466 (17) | 0.0353 (15) | 0.0389 (16) | −0.0111 (13) | 0.0074 (14) | −0.0071 (13) |
C7 | 0.0428 (17) | 0.0444 (18) | 0.0460 (17) | −0.0076 (14) | 0.0114 (14) | −0.0031 (15) |
C1 | 0.058 (2) | 0.056 (2) | 0.0364 (17) | −0.0125 (17) | 0.0129 (15) | −0.0138 (15) |
C2 | 0.060 (2) | 0.062 (2) | 0.052 (2) | 0.0040 (19) | 0.0099 (17) | −0.0160 (19) |
C3 | 0.067 (2) | 0.0434 (18) | 0.0431 (18) | −0.0007 (17) | 0.0073 (16) | −0.0024 (15) |
C5 | 0.060 (2) | 0.053 (2) | 0.0465 (19) | 0.0070 (17) | 0.0083 (16) | 0.0000 (17) |
C6 | 0.078 (3) | 0.064 (2) | 0.0403 (19) | −0.006 (2) | 0.0023 (18) | 0.0038 (18) |
N1 | 0.085 (3) | 0.089 (3) | 0.0451 (19) | −0.023 (2) | 0.0180 (17) | −0.021 (2) |
O1 | 0.094 (2) | 0.141 (3) | 0.078 (2) | 0.008 (2) | 0.0345 (19) | −0.035 (2) |
O2 | 0.155 (3) | 0.121 (3) | 0.0465 (16) | −0.005 (3) | 0.0353 (19) | 0.0011 (19) |
C10 | 0.090 (3) | 0.052 (2) | 0.068 (2) | −0.011 (2) | 0.022 (2) | 0.013 (2) |
O3—C9 | 1.323 (3) | C1—C2 | 1.353 (5) |
O3—C10 | 1.462 (4) | C1—C6 | 1.371 (5) |
C9—O4 | 1.196 (4) | C1—N1 | 1.475 (4) |
C9—C8 | 1.506 (4) | C2—C3 | 1.377 (4) |
C8—N2 | 1.486 (3) | C2—H2C | 0.9300 |
C8—C7 | 1.532 (4) | C3—H3A | 0.9300 |
C8—H8A | 0.9800 | C5—C6 | 1.384 (5) |
N2—H11A | 0.8900 | C5—H5A | 0.9300 |
N2—H11B | 0.8900 | C6—H6A | 0.9300 |
N2—H11C | 0.8900 | N1—O2 | 1.217 (5) |
C4—C5 | 1.370 (4) | N1—O1 | 1.223 (5) |
C4—C3 | 1.387 (5) | C10—H10A | 0.9600 |
C4—C7 | 1.505 (4) | C10—H10B | 0.9600 |
C7—H7A | 0.9700 | C10—H10C | 0.9600 |
C7—H7B | 0.9700 | ||
C9—O3—C10 | 115.6 (3) | C2—C1—C6 | 122.2 (3) |
O4—C9—O3 | 125.7 (3) | C2—C1—N1 | 119.8 (4) |
O4—C9—C8 | 123.5 (3) | C6—C1—N1 | 118.0 (4) |
O3—C9—C8 | 110.8 (3) | C1—C2—C3 | 118.9 (3) |
N2—C8—C9 | 108.4 (2) | C1—C2—H2C | 120.6 |
N2—C8—C7 | 109.6 (2) | C3—C2—H2C | 120.6 |
C9—C8—C7 | 111.2 (2) | C2—C3—C4 | 121.0 (3) |
N2—C8—H8A | 109.2 | C2—C3—H3A | 119.5 |
C9—C8—H8A | 109.2 | C4—C3—H3A | 119.5 |
C7—C8—H8A | 109.2 | C4—C5—C6 | 121.4 (3) |
C8—N2—H11A | 109.5 | C4—C5—H5A | 119.3 |
C8—N2—H11B | 109.5 | C6—C5—H5A | 119.3 |
H11A—N2—H11B | 109.5 | C1—C6—C5 | 118.2 (3) |
C8—N2—H11C | 109.5 | C1—C6—H6A | 120.9 |
H11A—N2—H11C | 109.5 | C5—C6—H6A | 120.9 |
H11B—N2—H11C | 109.5 | O2—N1—O1 | 123.7 (4) |
C5—C4—C3 | 118.4 (3) | O2—N1—C1 | 118.1 (4) |
C5—C4—C7 | 121.4 (3) | O1—N1—C1 | 118.2 (4) |
C3—C4—C7 | 120.2 (3) | O3—C10—H10A | 109.5 |
C4—C7—C8 | 112.7 (3) | O3—C10—H10B | 109.5 |
C4—C7—H7A | 109.1 | H10A—C10—H10B | 109.5 |
C8—C7—H7A | 109.1 | O3—C10—H10C | 109.5 |
C4—C7—H7B | 109.1 | H10A—C10—H10C | 109.5 |
C8—C7—H7B | 109.1 | H10B—C10—H10C | 109.5 |
H7A—C7—H7B | 107.8 | ||
C10—O3—C9—O4 | −0.3 (4) | C1—C2—C3—C4 | −1.1 (5) |
C10—O3—C9—C8 | 176.6 (3) | C5—C4—C3—C2 | 0.9 (5) |
O4—C9—C8—N2 | −29.2 (4) | C7—C4—C3—C2 | −179.7 (3) |
O3—C9—C8—N2 | 153.9 (2) | C3—C4—C5—C6 | −0.4 (5) |
O4—C9—C8—C7 | 91.4 (3) | C7—C4—C5—C6 | −179.9 (3) |
O3—C9—C8—C7 | −85.5 (3) | C2—C1—C6—C5 | −0.4 (6) |
C5—C4—C7—C8 | −103.2 (4) | N1—C1—C6—C5 | −180.0 (3) |
C3—C4—C7—C8 | 77.3 (4) | C4—C5—C6—C1 | 0.2 (5) |
N2—C8—C7—C4 | −172.3 (2) | C2—C1—N1—O2 | 176.2 (4) |
C9—C8—C7—C4 | 67.8 (3) | C6—C1—N1—O2 | −4.2 (5) |
C6—C1—C2—C3 | 0.8 (6) | C2—C1—N1—O1 | −2.3 (5) |
N1—C1—C2—C3 | −179.6 (3) | C6—C1—N1—O1 | 177.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H11B···O4i | 0.89 | 2.31 | 2.929 (4) | 127 |
N2—H11B···Cl1i | 0.89 | 2.71 | 3.380 (3) | 133 |
N2—H11C···Cl1ii | 0.89 | 2.42 | 3.175 (3) | 143 |
N2—H11A···Cl1 | 0.89 | 2.34 | 3.151 (3) | 151 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C10H13N2O4+·Cl− |
Mr | 260.67 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 298 |
a, b, c (Å) | 4.825 (3), 8.426 (3), 15.111 (9) |
β (°) | 95.64 (4) |
V (Å3) | 611.4 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.25 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.931, 0.942 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6215, 2751, 2077 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.112, 1.03 |
No. of reflections | 2751 |
No. of parameters | 154 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.17 |
Absolute structure | Flack (1983), 1259 Friedel pairs |
Absolute structure parameter | −0.03 (9) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H11B···O4i | 0.89 | 2.31 | 2.929 (4) | 126.5 |
N2—H11B···Cl1i | 0.89 | 2.71 | 3.380 (3) | 132.5 |
N2—H11C···Cl1ii | 0.89 | 2.42 | 3.175 (3) | 143.2 |
N2—H11A···Cl1 | 0.89 | 2.34 | 3.151 (3) | 151.3 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) x−1, y, z. |
Acknowledgements
This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.
References
Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43–S54. Web of Science CrossRef CAS Google Scholar
Azim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523–1529. Web of Science CrossRef CAS Google Scholar
Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o974. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305–2309. Web of Science CrossRef CAS Google Scholar
Lucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703–707. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
α-Amino acid derivatives are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of α-amino acid derivatives as precursors for the synthesis of novel biologically active compounds (Lucchese et al., (2007); Arki et al., (2004); Hauck et al., (2006); Azim et al., (2006); Dai et al., (2008)). Here we report the crystal structure of the title compound.
The title compound is built up from a Cl- anion and a protonated amino group cation (Fig. 1). The nitro group and the benzene ring are nearly planar, they are only twisted to each other by a torsion angles of C2-C1-N1-O1 (2.1 (7)° ) and C6-C1-N1-O2 (4.4 (7)° ), and the methyl 2-aminopropanoate substituent group is a zig-zag chain.
The crystal packing is stabilized by cation-anion N—H···Cl H-bonds and N—H···O H-bonds building an infinite two-dimensional network developping parallel to the (0 0 1) plane.(Table 1, Fig. 2).
The S absolute configuration at C8 is deduced from the synthetic pathway and confirmed by the X-ray analyses.