metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m979-m980

Aqua­[4-(hy­droxy­imino­meth­yl)pyridine-κN1](pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)copper(II)

aUniversity of Bristol, Bristol, England BS8 1TS, England
*Correspondence e-mail: emutambi@yahoo.com

(Received 18 June 2008; accepted 27 June 2008; online 5 July 2008)

In the title compound, [Cu(C7H3NO4)(C6H6N2O)(H2O)], the coordination geometry of the CuII atom can be described as distorted square pyramidal. The basal plane is defined by one N atom and two O atoms from the deprotonated pyridine-2,6-dicarboxyl­ate ligand, and a pyridyl N atom from the 4-pyridyl aldoxime ligand. The apical position is occupied by a water mol­ecule. O—H⋯O hydrogen bonds lead to the formation of a two-dimensional network.

Related literature

For related literature, see: Blake et al. (2002[Blake, A. J., Felloni, M., Hubberstey, P., Wilson, C. & Schröder, M. (2002). Acta Cryst. E58, m43-m46.]); Germán-Acacio et al. (2007[Germán-Acacio, J. M., Hernández-Ortega, S. & Valdés-Martínez, J. (2007). Acta Cryst. E63, m1057-m1058.]); Ucar et al. (2007[Ucar, I., Karabulut, B., Bulut, A. & Büyükgüngör, O. (2007). J. Mol. Struct. 834-836, 336-344.]); Xie et al. (2004[Xie, C., Zhang, B., Liu, X., Wang, X., Kou, H., Shen, G. & Shen, D. (2004). Inorg. Chem. Commun. 7, 1037-1040.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO4)(C6H6N2O)(H2O)]

  • Mr = 368.79

  • Triclinic, [P \overline 1]

  • a = 6.7826 (2) Å

  • b = 7.1858 (3) Å

  • c = 14.8746 (6) Å

  • α = 76.154 (2)°

  • β = 87.152 (1)°

  • γ = 69.739 (1)°

  • V = 659.91 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 120 (2) K

  • 0.16 × 0.14 × 0.04 mm

Data collection
  • Bruker–Nonius APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 0.925

  • 12553 measured reflections

  • 2951 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.10

  • 2951 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.903 (2)
Cu1—N2 1.957 (2)
Cu1—O2 2.0018 (18)
Cu1—O3 2.0574 (18)
Cu1—O5 2.2273 (18)
N1—Cu1—N2 168.18 (9)
N1—Cu1—O2 81.66 (8)
N2—Cu1—O2 97.18 (8)
N1—Cu1—O3 79.84 (8)
N2—Cu1—O3 99.02 (8)
O2—Cu1—O3 159.29 (8)
N1—Cu1—O5 91.57 (8)
N2—Cu1—O5 100.24 (8)
O2—Cu1—O5 96.71 (7)
O3—Cu1—O5 93.03 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O1i 0.84 1.93 2.769 (3) 180
O5—H5B⋯O4ii 0.83 2.07 2.836 (3) 155
O5—H5B⋯O6iii 0.83 2.51 2.939 (3) 113
O6—H6⋯O3iv 0.84 1.89 2.725 (3) 173
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the design and synthesis of polymeric complexes, various bridging and chelating ligands have been used extensively. Coordination bonds and hydrogen bonds are the major interactions in these assemblies (Xie et al., 2004). Pyridine-2,6-dicarboxylic acid (H2pydc) is an efficient ligand with three coordinating sites. H2pydc coordinates with transition metals in different ways to form various coordination geometries. The relative positions of the coordinating atoms (O and N) determine the type of coordination that will be seen in the molecular structure. The interest in this ligand centers on the versatile yet unpredictable manner in which it coordinates to a wide variety of metals due to its rigid and planar nature (Ucar et al., 2007). This paper aims to report one of the rare coordination modes that can be exhibited by copper(II) when coordinated by H2pydc, 4-pyridyl aldoxime and H2O.

The structure of the title compound is shown in Fig. 1. The molecule is approximately planar and the increased co-planarity is due to the resonance between the pyridine rings, which leads to the formation of square-pyramidal geometry (Fig. 1). The elongated square-pyramidal geometry of the structure (Table 1) is typical of Jahn-Teller-distorted copper(II) (Blake et al., 2002). The structure shows hydrogen-bonding interactions, which enhance the formation of two-dimensional network of the structure (Germán-Acacio et al., 2007). Bond lengths and angles are in the range expected for heteroaromatic-oximes and pryridne dicarboxylates. The hydrogen-bonding interactions are presented in Fig. 2. A l l the hydrogen-bonding donors and acceptors are involved in O—H···O hydrogen bonds (Table 2), which organize the molecules into a two-dimensional network (Fig. 3).

Related literature top

For related literature, see: Blake et al. (2002); Germán-Acacio et al. (2007); Ucar et al. (2007); Xie et al. (2004)

Experimental top

An aqueous solution of Cu(CH3COO)2.6H2O (0.290 g, 1 mmol), KOH (0.220 g, 2 mmol) and H2pydc (0.360 g, 2 mmol) in a 1:2:2 molar ratio was refluxed for 2 h and the resultant reaction mixture was reduced to less than 50 ml. After one day, the grown crystals of K2[Cu(C7H3NO4)2] were filtered out and dried in air. Equimolar amounts of K2[Cu(C7H3NO4)2] and 4-pyridyl aldoxime were dissolved in water in small vials, respectively, and then mixed together. The solution was left at room temperature in a vapour diffusion setup with ethanol. Blue crystals of the title compound were obtained after 3 weeks.

Refinement top

H atoms bonded to O atoms were located in a difference map and fixed in the refinements with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the coordination geometry. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed down the c-axis, showing hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. View of a two-dimensional hydrogen-bonded layer along the c-axis. Hydrogen bonds are shown as dashed lines.
Aqua[4-(hydroxyiminomethyl)pyridine-κN1](pyridine-2,6-dicarboxylato- κ3O2,N,O6)copper(II) top
Crystal data top
[Cu(C7H3NO4)(C6H6N2O)(H2O)]Z = 2
Mr = 368.79F(000) = 374
Triclinic, P1Dx = 1.848 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7826 (2) ÅCell parameters from 18028 reflections
b = 7.1858 (3) Åθ = 2.9–27.5°
c = 14.8746 (6) ŵ = 1.69 mm1
α = 76.154 (2)°T = 120 K
β = 87.152 (1)°Plate, blue
γ = 69.739 (1)°0.16 × 0.14 × 0.04 mm
V = 659.91 (4) Å3
Data collection top
Bruker–Nonius APEXII CCD
diffractometer
2951 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2814 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.055
Detector resolution: 4096x4096 pixels / 62x62mm pixels mm-1θmax = 27.4°, θmin = 3.1°
ϕ and ω scansh = 08
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 89
Tmin = 0.763, Tmax = 0.925l = 1819
12553 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.382P]
where P = (Fo2 + 2Fc2)/3
2951 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C7H3NO4)(C6H6N2O)(H2O)]γ = 69.739 (1)°
Mr = 368.79V = 659.91 (4) Å3
Triclinic, P1Z = 2
a = 6.7826 (2) ÅMo Kα radiation
b = 7.1858 (3) ŵ = 1.69 mm1
c = 14.8746 (6) ÅT = 120 K
α = 76.154 (2)°0.16 × 0.14 × 0.04 mm
β = 87.152 (1)°
Data collection top
Bruker–Nonius APEXII CCD
diffractometer
2951 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2814 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.925Rint = 0.055
12553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.10Δρmax = 0.49 e Å3
2951 reflectionsΔρmin = 0.47 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.89909 (5)0.56560 (4)0.26849 (2)0.01368 (12)
C10.7448 (4)0.2868 (4)0.22309 (17)0.0146 (5)
C20.9262 (4)0.2935 (4)0.15912 (17)0.0140 (5)
C31.0017 (4)0.1862 (4)0.09243 (18)0.0165 (5)
H30.93790.09620.07970.020*
C41.1751 (4)0.2134 (4)0.04381 (18)0.0176 (5)
H41.23210.13890.00190.021*
C51.2656 (4)0.3486 (4)0.06166 (18)0.0170 (5)
H51.38210.36930.02810.020*
C61.1803 (4)0.4515 (4)0.12958 (17)0.0147 (5)
C71.2478 (4)0.6059 (4)0.16230 (17)0.0145 (5)
N20.8203 (3)0.6662 (3)0.38093 (15)0.0140 (4)
C90.8504 (4)0.8386 (4)0.38654 (18)0.0149 (5)
H90.90580.90870.33490.018*
C100.8047 (4)0.9181 (4)0.46359 (18)0.0152 (5)
H100.82491.04220.46420.018*
C110.7280 (4)0.8137 (4)0.54125 (17)0.0145 (5)
C120.6947 (4)0.6355 (4)0.53510 (18)0.0164 (5)
H120.64040.56190.58590.020*
C130.7416 (4)0.5671 (4)0.45432 (18)0.0161 (5)
H130.71740.44650.45060.019*
C140.6845 (4)0.8833 (4)0.62729 (18)0.0169 (5)
H140.61670.81890.67590.020*
N11.0162 (3)0.4206 (3)0.17580 (15)0.0138 (4)
N30.7389 (3)1.0317 (4)0.63636 (15)0.0172 (4)
O10.6349 (3)0.1882 (3)0.21279 (13)0.0174 (4)
O20.7219 (3)0.3883 (3)0.28564 (13)0.0167 (4)
O31.1531 (3)0.6594 (3)0.23461 (13)0.0175 (4)
O41.3813 (3)0.6698 (3)0.12037 (13)0.0187 (4)
O50.6858 (3)0.8261 (3)0.16420 (12)0.0159 (4)
H5C0.67030.93600.17890.024*
H5B0.57290.80940.15860.024*
O60.6877 (3)1.0704 (3)0.72334 (13)0.0215 (4)
H60.73761.15740.73140.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01538 (18)0.01586 (18)0.01443 (18)0.00932 (13)0.00346 (12)0.00687 (12)
C10.0162 (12)0.0134 (11)0.0143 (11)0.0060 (9)0.0011 (9)0.0022 (9)
C20.0149 (11)0.0129 (11)0.0144 (11)0.0061 (9)0.0004 (9)0.0016 (9)
C30.0206 (12)0.0160 (12)0.0177 (12)0.0105 (10)0.0004 (10)0.0063 (10)
C40.0225 (13)0.0182 (12)0.0156 (12)0.0084 (10)0.0035 (10)0.0086 (10)
C50.0179 (12)0.0186 (12)0.0160 (12)0.0079 (10)0.0005 (9)0.0043 (10)
C60.0147 (11)0.0154 (11)0.0151 (11)0.0071 (9)0.0008 (9)0.0028 (9)
C70.0166 (12)0.0152 (11)0.0139 (11)0.0079 (9)0.0011 (9)0.0039 (9)
N20.0138 (10)0.0160 (10)0.0149 (10)0.0075 (8)0.0024 (8)0.0056 (8)
C90.0136 (11)0.0145 (11)0.0161 (12)0.0045 (9)0.0008 (9)0.0031 (9)
C100.0145 (11)0.0145 (11)0.0184 (12)0.0073 (9)0.0003 (9)0.0037 (9)
C110.0115 (11)0.0181 (12)0.0158 (12)0.0071 (9)0.0009 (9)0.0050 (9)
C120.0168 (12)0.0194 (12)0.0167 (12)0.0110 (10)0.0010 (9)0.0038 (10)
C130.0144 (11)0.0181 (12)0.0182 (12)0.0087 (10)0.0004 (9)0.0037 (10)
C140.0156 (12)0.0215 (12)0.0159 (12)0.0091 (10)0.0018 (9)0.0048 (10)
N10.0157 (10)0.0154 (10)0.0142 (10)0.0090 (8)0.0017 (8)0.0054 (8)
N30.0170 (10)0.0240 (11)0.0152 (10)0.0099 (9)0.0035 (8)0.0092 (9)
O10.0198 (9)0.0155 (8)0.0211 (9)0.0109 (7)0.0014 (7)0.0051 (7)
O20.0199 (9)0.0189 (9)0.0168 (9)0.0124 (7)0.0041 (7)0.0066 (7)
O30.0184 (9)0.0222 (9)0.0178 (9)0.0119 (7)0.0030 (7)0.0088 (7)
O40.0192 (9)0.0222 (9)0.0201 (9)0.0129 (8)0.0035 (7)0.0069 (7)
O50.0147 (8)0.0166 (8)0.0188 (9)0.0069 (7)0.0031 (7)0.0072 (7)
O60.0280 (10)0.0280 (10)0.0190 (9)0.0173 (9)0.0085 (8)0.0150 (8)
Geometric parameters (Å, º) top
Cu1—N11.903 (2)C7—O31.295 (3)
Cu1—N21.957 (2)N2—C91.345 (3)
Cu1—O22.0018 (18)N2—C131.348 (3)
Cu1—O32.0574 (18)C9—C101.375 (4)
Cu1—O52.2273 (18)C9—H90.9500
C1—O11.229 (3)C10—C111.401 (3)
C1—O21.286 (3)C10—H100.9500
C1—C21.524 (3)C11—C121.399 (3)
C2—N11.334 (3)C11—C141.463 (4)
C2—C31.372 (4)C12—C131.387 (4)
C3—C41.397 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.394 (4)C14—N31.280 (3)
C4—H40.9500C14—H140.9500
C5—C61.380 (4)N3—O61.390 (3)
C5—H50.9500O5—H5C0.8400
C6—N11.335 (3)O5—H5B0.8263
C6—C71.520 (3)O6—H60.8400
C7—O41.231 (3)
N1—Cu1—N2168.18 (9)C9—N2—C13118.4 (2)
N1—Cu1—O281.66 (8)C9—N2—Cu1118.92 (17)
N2—Cu1—O297.18 (8)C13—N2—Cu1122.68 (18)
N1—Cu1—O379.84 (8)N2—C9—C10123.0 (2)
N2—Cu1—O399.02 (8)N2—C9—H9118.5
O2—Cu1—O3159.29 (8)C10—C9—H9118.5
N1—Cu1—O591.57 (8)C9—C10—C11119.2 (2)
N2—Cu1—O5100.24 (8)C9—C10—H10120.4
O2—Cu1—O596.71 (7)C11—C10—H10120.4
O3—Cu1—O593.03 (7)C12—C11—C10117.8 (2)
O1—C1—O2125.2 (2)C12—C11—C14119.7 (2)
O1—C1—C2119.9 (2)C10—C11—C14122.5 (2)
O2—C1—C2114.9 (2)C13—C12—C11119.5 (2)
N1—C2—C3120.4 (2)C13—C12—H12120.2
N1—C2—C1111.3 (2)C11—C12—H12120.2
C3—C2—C1128.3 (2)N2—C13—C12122.1 (2)
C2—C3—C4118.0 (2)N2—C13—H13119.0
C2—C3—H3121.0C12—C13—H13119.0
C4—C3—H3121.0N3—C14—C11119.3 (2)
C5—C4—C3120.7 (2)N3—C14—H14120.4
C5—C4—H4119.7C11—C14—H14120.4
C3—C4—H4119.7C2—N1—C6122.9 (2)
C6—C5—C4117.9 (2)C2—N1—Cu1117.51 (17)
C6—C5—H5121.1C6—N1—Cu1119.60 (17)
C4—C5—H5121.1C14—N3—O6110.1 (2)
N1—C6—C5120.2 (2)C1—O2—Cu1113.75 (16)
N1—C6—C7111.4 (2)C7—O3—Cu1113.79 (16)
C5—C6—C7128.5 (2)Cu1—O5—H5C109.5
O4—C7—O3125.6 (2)Cu1—O5—H5B110.7
O4—C7—C6120.1 (2)H5C—O5—H5B112.6
O3—C7—C6114.3 (2)N3—O6—H6109.5
O1—C1—C2—N1174.9 (2)C12—C11—C14—N3171.6 (2)
O2—C1—C2—N15.5 (3)C10—C11—C14—N37.7 (4)
O1—C1—C2—C36.4 (4)C3—C2—N1—C60.4 (4)
O2—C1—C2—C3173.2 (2)C1—C2—N1—C6179.2 (2)
N1—C2—C3—C40.5 (4)C3—C2—N1—Cu1179.26 (19)
C1—C2—C3—C4178.1 (2)C1—C2—N1—Cu11.9 (3)
C2—C3—C4—C51.2 (4)C5—C6—N1—C20.6 (4)
C3—C4—C5—C61.0 (4)C7—C6—N1—C2179.3 (2)
C4—C5—C6—N10.1 (4)C5—C6—N1—Cu1179.45 (19)
C4—C5—C6—C7179.9 (2)C7—C6—N1—Cu10.4 (3)
N1—C6—C7—O4171.9 (2)N2—Cu1—N1—C290.7 (4)
C5—C6—C7—O47.9 (4)O2—Cu1—N1—C25.49 (18)
N1—C6—C7—O37.7 (3)O3—Cu1—N1—C2176.1 (2)
C5—C6—C7—O3172.5 (2)O5—Cu1—N1—C291.07 (19)
N1—Cu1—N2—C9116.4 (4)N2—Cu1—N1—C690.4 (4)
O2—Cu1—N2—C9160.01 (19)O2—Cu1—N1—C6175.6 (2)
O3—Cu1—N2—C932.9 (2)O3—Cu1—N1—C64.92 (19)
O5—Cu1—N2—C961.82 (19)O5—Cu1—N1—C687.88 (19)
N1—Cu1—N2—C1361.9 (5)C11—C14—N3—O6178.7 (2)
O2—Cu1—N2—C1321.7 (2)O1—C1—O2—Cu1170.6 (2)
O3—Cu1—N2—C13145.3 (2)C2—C1—O2—Cu19.9 (3)
O5—Cu1—N2—C13119.9 (2)N1—Cu1—O2—C18.63 (17)
C13—N2—C9—C100.0 (4)N2—Cu1—O2—C1176.76 (17)
Cu1—N2—C9—C10178.33 (19)O3—Cu1—O2—C135.5 (3)
N2—C9—C10—C111.6 (4)O5—Cu1—O2—C181.98 (17)
C9—C10—C11—C122.2 (4)O4—C7—O3—Cu1168.1 (2)
C9—C10—C11—C14177.2 (2)C6—C7—O3—Cu111.5 (3)
C10—C11—C12—C131.1 (4)N1—Cu1—O3—C79.31 (17)
C14—C11—C12—C13178.3 (2)N2—Cu1—O3—C7177.38 (17)
C9—N2—C13—C121.1 (4)O2—Cu1—O3—C736.3 (3)
Cu1—N2—C13—C12177.19 (19)O5—Cu1—O3—C781.74 (18)
C11—C12—C13—N20.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O1i0.841.932.769 (3)180
O5—H5B···O4ii0.832.072.836 (3)155
O5—H5B···O6iii0.832.512.939 (3)113
O6—H6···O3iv0.841.892.725 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(C6H6N2O)(H2O)]
Mr368.79
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.7826 (2), 7.1858 (3), 14.8746 (6)
α, β, γ (°)76.154 (2), 87.152 (1), 69.739 (1)
V3)659.91 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.16 × 0.14 × 0.04
Data collection
DiffractometerBruker–Nonius APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
12553, 2951, 2814
Rint0.055
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.10
No. of reflections2951
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.903 (2)Cu1—O32.0574 (18)
Cu1—N21.957 (2)Cu1—O52.2273 (18)
Cu1—O22.0018 (18)
N1—Cu1—N2168.18 (9)O2—Cu1—O3159.29 (8)
N1—Cu1—O281.66 (8)N1—Cu1—O591.57 (8)
N2—Cu1—O297.18 (8)N2—Cu1—O5100.24 (8)
N1—Cu1—O379.84 (8)O2—Cu1—O596.71 (7)
N2—Cu1—O399.02 (8)O3—Cu1—O593.03 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O1i0.841.932.769 (3)180
O5—H5B···O4ii0.832.072.836 (3)155
O5—H5B···O6iii0.832.512.939 (3)113
O6—H6···O3iv0.841.892.725 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1.
 

Acknowledgements

The author acknowledges the Overseas Research Scholarship Award Scheme and a Postgraduate Scholarship from the University of Bristol for funding, thanks Professor A. G. Orpen, University of Bristol, for his advice and support, and thanks the Structural Chemistry group, University of Bristol.

References

First citationBlake, A. J., Felloni, M., Hubberstey, P., Wilson, C. & Schröder, M. (2002). Acta Cryst. E58, m43–m46.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGermán-Acacio, J. M., Hernández-Ortega, S. & Valdés-Martínez, J. (2007). Acta Cryst. E63, m1057–m1058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUcar, I., Karabulut, B., Bulut, A. & Büyükgüngör, O. (2007). J. Mol. Struct. 834836, 336–344.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, C., Zhang, B., Liu, X., Wang, X., Kou, H., Shen, G. & Shen, D. (2004). Inorg. Chem. Commun. 7, 1037–1040.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m979-m980
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds