metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-[(E)-2-methyl-3-(3-methyl­phen­yl)acrylato-κ2O:O′]]

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 June 2008; accepted 27 June 2008; online 5 July 2008)

The title trimethyl­tin(IV) carboxyl­ate, [Sn(CH3)3(C11H11O2)]n, is a carboxyl­ate-bridged polymer in which the Sn atom exists in a trans-C3SnO2 trigonal bipyramidal coordination. One Sn—O bond is a covalent bond [2.114 (2) Å], whereas the other is a dative bond [2.607 (2) Å]. The polymeric chain propagates along the b axis of the monoclinic unit cell.

Related literature

For related crystal structures, see: Muhammad et al. (2008a[Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008a). Acta Cryst. E64, m946-m947.],b[Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008b). Acta Cryst. E64, o1373.]); Niaz et al. (2008[Niaz, M., Tahir, M. N., Zia-ur-Rehman, Ali, S. & Khan, I. U. (2008). Acta Cryst. E64, o733.]); Tahir et al. (1997a[Tahir, M. N., Ülkü, D., Danish, M., Ali, S., Badshah, A. & Mazhar, M. (1997a). Acta Cryst. C53, 183-185.],b[Tahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997b). Acta Cryst. C53, 1574-1576.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C11H11O2)]

  • Mr = 339.01

  • Monoclinic, C 2/c

  • a = 12.9530 (6) Å

  • b = 9.8756 (4) Å

  • c = 24.0728 (10) Å

  • β = 101.301 (2)°

  • V = 3019.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.705, Tmax = 0.781

  • 14486 measured reflections

  • 3348 independent reflections

  • 2874 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.01

  • 3348 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.1144 (19)
Sn1—C12 2.1126 (17)
Sn1—C13 2.1072 (17)
Sn1—C14 2.1037 (18)
Sn1—O2i 2.607 (2)
O1—Sn1—C12 90.17 (7)
O1—Sn1—C13 97.09 (7)
O1—Sn1—C14 98.56 (7)
O1—Sn1—O2i 175.64 (7)
C12—Sn1—C13 114.87 (7)
C12—Sn1—C14 116.04 (7)
C13—Sn1—C14 126.36 (7)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Organotin compounds have attracted much interest owing to their potential use in industry and agriculture. In the Pharmaceutical industry, a number of dialkyltin carboxylate derivatives are being used as efficient antitumor and anticancer agents. In continuation of synthesizing new ligands having carboxylate groups (Muhammad et al., 2008a, Niaz et al., 2008) and their complexation with organotin(IV) (Muhammad et al., 2008b), we report the crystal structure of title compound (I).

The title compound (I) (Fig 1.) is the trimethyltin(IV) complex of 3-(3-Methylphenyl)-2-methylacrylate (Muhammad et al., 2008a). The crystal structures of (II) {2-[(2,3-Dimethylphenyl)amino]benzoato-O:O'}trimethyltin(IV) (Tahir et al., 1997a) and (III) (Ketoprofenato)trimethyltin(IV) (Tahir et al., 1997b) have been reported. As the present complex have similar geometry around Sn-atom, so the bond lengths and bond angles are being compared with (II) and (III). The range of Sn—C [2.1037 (18)- 2.1126 (17) Å] bonds in (I) is reported as [2.106 (3)–2.113 (4) Å] in (II) and 2.106 (6)–2.116 (5) Å, in (III). The range of C—Sn—C [114.87 (7)- 126.36 (7)°] bond angles in (I) is reported as [113.9 (2)°-125.2 (1)°] in (II) and 117.0 (2)°-124.7 (3)°, in (III). Therefore, the C—Sn—C bond angles of trimethyltin moiety is mainly affected due to the change of coordinating ligand. The bond distances for Sn1—O1 [2.1144 (19) Å] and Sn1—O2i [2.607 (2) Å] (symmetry code i = -x + 1/2, y - 1/2, -z + 1/2) have different values compared to (II) and (III). These values in (II) and (III) are [2.153 (2) Å and 2.495 (2) Å] and [2.184 (3) Å and 2.433 (4) Å], respectively. The O1—Sn1—O2i bond angle is 175.64 (7)°, which is larger but not very different from (II) and (III). The dihedral angle between the plane of benzene ring A (C5—C10) and the plane formed by C11/C12/C13 is 76.16 (7)°, whereas it is 7.0 (7)° between O1/C1/O2 and C2/C3/C4. There is a single C—H···O interamolecular H-bond (Table 2, Fig 1.) forming a five-membered ring (O1/C1/C2/C4/H4···O1). There exist π-π-interactions between the centroids of benzene ring [CgA···CgAiii: symmetry code iii = 1 - x, -y, -z] and [CgA···CgAiv: symmetry code iv = 1 - x, 1 - y, -z]. The perpendicular distance between the centroids for CgA···CgAiii and CgA···CgAiv is 3.488 Å and 3.725 Å, respectively. The compound is polymeric in nature due to the bridging nature of carboxyl group.

Related literature top

For related crystal structures, see: Muhammad et al. (2008a,b); Niaz et al. (2008); Tahir et al. (1997a,b).

Experimental top

The title compound (I), was prepared by the reaction of stoichiometric amounts of the sodium 3-(3-methylphenyl)-2-methylacrylate (0.399 g, 2.02 mmol) and (0.402 g, 2.02 mmol)of trimethyltin(IV)chloride in dry toluene (100 ml). The reaction mixture was refluxed for 8 h and then allowed to stand overnight. The residual sodium salt was removed by filtration and the solvent was evaporated under reduced pressure leaving a solid residue. This was recrystallized from a mixture of chloroform/n-hexane (4:1). The yield was 80%.

Refinement top

H atoms were positioned geometrically, with C-H= 0.93, and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, (C11H11O2)Sn(CH3)3 with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The interamolecular H-bond is shown by dotted lines.
[Figure 2] Fig. 2. The figure showing the polymeric compound.
catena-Poly[[trimethyltin(IV)]-µ-[(E)-2-methyl-3-(3-methylphenyl)acrylato-κ2O:O']] top
Crystal data top
[Sn(CH3)3(C11H11O2)]F(000) = 1360
Mr = 339.01Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3348 reflections
a = 12.9530 (6) Åθ = 2.6–27.1°
b = 9.8756 (4) ŵ = 1.68 mm1
c = 24.0728 (10) ÅT = 296 K
β = 101.301 (2)°Prismatic, colourless
V = 3019.7 (2) Å30.25 × 0.18 × 0.15 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3348 independent reflections
Radiation source: fine-focus sealed tube2874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.5 pixels mm-1θmax = 27.2°, θmin = 2.6°
ω sans scansh = 1615
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 712
Tmin = 0.705, Tmax = 0.781l = 3030
14486 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0374P)2 + 3.5913P]
where P = (Fo2 + 2Fc2)/3
3348 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Sn(CH3)3(C11H11O2)]V = 3019.7 (2) Å3
Mr = 339.01Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.9530 (6) ŵ = 1.68 mm1
b = 9.8756 (4) ÅT = 296 K
c = 24.0728 (10) Å0.25 × 0.18 × 0.15 mm
β = 101.301 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3348 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2874 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.781Rint = 0.023
14486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.01Δρmax = 0.63 e Å3
3348 reflectionsΔρmin = 0.41 e Å3
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.28429 (1)0.16993 (2)0.22816 (1)0.0380 (1)
O10.32929 (16)0.03474 (18)0.16907 (8)0.0498 (6)
O20.26730 (17)0.1483 (2)0.20361 (9)0.0529 (7)
C10.3143 (2)0.0940 (3)0.17022 (10)0.0389 (7)
C20.3576 (2)0.1747 (2)0.12708 (11)0.0401 (8)
C30.3324 (3)0.3224 (3)0.12430 (15)0.0591 (10)
C40.4185 (2)0.1119 (3)0.09665 (11)0.0426 (8)
C50.4713 (2)0.1667 (3)0.05244 (12)0.0482 (9)
C60.5691 (3)0.1139 (4)0.04886 (14)0.0663 (11)
C70.6223 (3)0.1596 (5)0.00784 (19)0.0870 (18)
C80.5750 (3)0.2546 (5)0.03080 (15)0.0809 (15)
C90.4775 (3)0.3064 (4)0.02935 (13)0.0663 (11)
C100.4254 (3)0.2612 (3)0.01229 (12)0.0534 (10)
C110.42742 (14)0.40923 (17)0.07152 (7)0.0932 (18)
C120.35163 (14)0.33276 (17)0.19080 (7)0.0624 (11)
C130.38060 (14)0.08820 (17)0.30121 (7)0.0547 (10)
C140.12000 (14)0.14855 (17)0.20410 (7)0.0586 (10)
H3A0.334960.356440.161900.0885*
H3B0.263050.335840.102070.0885*
H3C0.382770.369740.107160.0885*
H40.429330.020180.104340.0511*
H60.599150.047280.074220.0792*
H70.689000.126600.006420.1042*
H80.610250.284300.058660.0972*
H100.358720.294540.013360.0640*
H11A0.370700.452590.058050.1396*
H11B0.400550.365500.107020.1396*
H11C0.478780.475770.076620.1396*
H12A0.302010.405920.183500.0935*
H12B0.414110.362950.216100.0935*
H12C0.369360.303410.155820.0935*
H13A0.343360.017170.316120.0820*
H13B0.443680.052210.291600.0820*
H13C0.398640.158000.329190.0820*
H14A0.099610.060490.214970.0879*
H14B0.085990.216720.222560.0879*
H14C0.099430.158690.163780.0879*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0438 (1)0.0315 (1)0.0422 (1)0.0025 (1)0.0169 (1)0.0026 (1)
O10.0662 (12)0.0339 (9)0.0574 (11)0.0025 (9)0.0322 (10)0.0049 (8)
O20.0681 (13)0.0464 (11)0.0518 (11)0.0016 (9)0.0307 (10)0.0030 (9)
C10.0445 (14)0.0348 (12)0.0393 (12)0.0037 (11)0.0131 (11)0.0012 (10)
C20.0499 (15)0.0326 (12)0.0405 (13)0.0067 (11)0.0152 (11)0.0005 (10)
C30.086 (2)0.0339 (14)0.0670 (19)0.0010 (14)0.0383 (18)0.0022 (13)
C40.0512 (15)0.0386 (13)0.0409 (13)0.0029 (12)0.0162 (11)0.0015 (11)
C50.0548 (16)0.0507 (16)0.0432 (14)0.0101 (13)0.0196 (12)0.0023 (12)
C60.063 (2)0.082 (2)0.0602 (19)0.0021 (18)0.0278 (16)0.0043 (18)
C70.068 (2)0.126 (4)0.078 (3)0.014 (2)0.041 (2)0.008 (3)
C80.083 (3)0.115 (3)0.0525 (19)0.036 (2)0.0324 (19)0.002 (2)
C90.081 (2)0.075 (2)0.0420 (16)0.0339 (19)0.0099 (15)0.0009 (15)
C100.0604 (18)0.0567 (18)0.0434 (14)0.0169 (14)0.0111 (13)0.0004 (13)
C110.121 (4)0.100 (3)0.053 (2)0.040 (3)0.003 (2)0.023 (2)
C120.085 (2)0.0397 (15)0.075 (2)0.0003 (15)0.0463 (19)0.0039 (14)
C130.0519 (16)0.0603 (18)0.0517 (16)0.0072 (14)0.0099 (13)0.0042 (14)
C140.0489 (16)0.0635 (19)0.0629 (18)0.0053 (14)0.0095 (14)0.0069 (15)
Geometric parameters (Å, º) top
Sn1—O12.1144 (19)C3—H3B0.9600
Sn1—C122.1126 (17)C3—H3C0.9600
Sn1—C132.1072 (17)C4—H40.9300
Sn1—C142.1037 (18)C6—H60.9300
Sn1—O2i2.607 (2)C7—H70.9300
O1—C11.287 (3)C8—H80.9300
O2—C11.223 (3)C10—H100.9300
C1—C21.502 (4)C11—H11A0.9600
C2—C31.493 (4)C11—H11B0.9600
C2—C41.330 (4)C11—H11C0.9600
C4—C51.476 (4)C12—H12A0.9600
C5—C61.388 (5)C12—H12B0.9600
C5—C101.391 (4)C12—H12C0.9600
C6—C71.386 (6)C13—H13A0.9600
C7—C81.378 (6)C13—H13B0.9600
C8—C91.369 (6)C13—H13C0.9600
C9—C101.387 (5)C14—H14A0.9600
C9—C111.492 (4)C14—H14B0.9600
C3—H3A0.9600C14—H14C0.9600
O1—Sn1—C1290.17 (7)C5—C4—H4115.00
O1—Sn1—C1397.09 (7)C5—C6—H6120.00
O1—Sn1—C1498.56 (7)C7—C6—H6120.00
O1—Sn1—O2i175.64 (7)C6—C7—H7120.00
C12—Sn1—C13114.87 (7)C8—C7—H7120.00
C12—Sn1—C14116.04 (7)C7—C8—H8119.00
C13—Sn1—C14126.36 (7)C9—C8—H8119.00
Sn1—O1—C1123.13 (17)C5—C10—H10119.00
Sn1ii—O2—C1159.7 (2)C9—C10—H10119.00
O1—C1—O2122.9 (2)C9—C11—H11A109.00
O1—C1—C2115.5 (2)C9—C11—H11B109.00
O2—C1—C2121.5 (3)C9—C11—H11C109.00
C1—C2—C3116.2 (2)H11A—C11—H11B109.00
C1—C2—C4118.4 (2)H11A—C11—H11C109.00
C3—C2—C4125.4 (3)H11B—C11—H11C109.00
C2—C4—C5129.4 (3)Sn1—C12—H12A109.00
C4—C5—C6117.7 (3)Sn1—C12—H12B109.00
C4—C5—C10123.5 (3)Sn1—C12—H12C109.00
C6—C5—C10118.7 (3)H12A—C12—H12B109.00
C5—C6—C7120.6 (3)H12A—C12—H12C109.00
C6—C7—C8119.1 (4)H12B—C12—H12C109.00
C7—C8—C9121.8 (4)Sn1—C13—H13A109.00
C8—C9—C10118.7 (3)Sn1—C13—H13B109.00
C8—C9—C11121.2 (3)Sn1—C13—H13C109.00
C10—C9—C11120.2 (3)H13A—C13—H13B109.00
C5—C10—C9121.1 (3)H13A—C13—H13C109.00
C2—C3—H3A109.00H13B—C13—H13C109.00
C2—C3—H3B109.00Sn1—C14—H14A109.00
C2—C3—H3C110.00Sn1—C14—H14B109.00
H3A—C3—H3B109.00Sn1—C14—H14C109.00
H3A—C3—H3C110.00H14A—C14—H14B109.00
H3B—C3—H3C109.00H14A—C14—H14C109.00
C2—C4—H4115.00H14B—C14—H14C109.00
C12—Sn1—O1—C1176.6 (2)C1—C2—C4—C5179.4 (3)
C13—Sn1—O1—C161.5 (2)C3—C2—C4—C52.8 (5)
C14—Sn1—O1—C167.0 (2)C2—C4—C5—C6145.1 (3)
C12—Sn1—O2i—C1i157.4 (5)C2—C4—C5—C1039.2 (5)
C13—Sn1—O2i—C1i87.2 (5)C4—C5—C6—C7179.2 (3)
C14—Sn1—O2i—C1i40.4 (5)C10—C5—C6—C73.3 (5)
Sn1—O1—C1—O24.3 (4)C4—C5—C10—C9178.1 (3)
Sn1—O1—C1—C2176.30 (16)C6—C5—C10—C92.5 (5)
Sn1ii—O2—C1—O1146.2 (4)C5—C6—C7—C82.5 (6)
Sn1ii—O2—C1—C234.4 (7)C6—C7—C8—C90.9 (7)
O1—C1—C2—C3174.6 (3)C7—C8—C9—C100.1 (6)
O1—C1—C2—C48.5 (4)C7—C8—C9—C11180.0 (4)
O2—C1—C2—C34.8 (4)C8—C9—C10—C50.9 (5)
O2—C1—C2—C4172.1 (3)C11—C9—C10—C5179.2 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.93002.28002.695 (3)107.00

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C11H11O2)]
Mr339.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)12.9530 (6), 9.8756 (4), 24.0728 (10)
β (°) 101.301 (2)
V3)3019.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.705, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
14486, 3348, 2874
Rint0.023
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.01
No. of reflections3348
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Sn1—O12.1144 (19)Sn1—C142.1037 (18)
Sn1—C122.1126 (17)Sn1—O2i2.607 (2)
Sn1—C132.1072 (17)
O1—Sn1—C1290.17 (7)C12—Sn1—C13114.87 (7)
O1—Sn1—C1397.09 (7)C12—Sn1—C14116.04 (7)
O1—Sn1—C1498.56 (7)C13—Sn1—C14126.36 (7)
O1—Sn1—O2i175.64 (7)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for financial support to NM for PhD studies under the Indigenous Scholarship Scheme.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMuhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008a). Acta Cryst. E64, m946–m947.  Google Scholar
First citationMuhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008b). Acta Cryst. E64, o1373.  Google Scholar
First citationNiaz, M., Tahir, M. N., Zia-ur-Rehman, Ali, S. & Khan, I. U. (2008). Acta Cryst. E64, o733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997b). Acta Cryst. C53, 1574–1576.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Danish, M., Ali, S., Badshah, A. & Mazhar, M. (1997a). Acta Cryst. C53, 183–185.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds