metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(1,3-Dioxoindan-2-yl­­idene)-2-oxido­benzohydrazidato-κ3O2,N,O]tri­pyridine­nickel(II) pyridine solvate

aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemistry, College of Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: liuws@lzu.edu.cn

(Received 6 May 2008; accepted 25 July 2008; online 31 July 2008)

In the title compound, [Ni(C16H8N2O4)(C5H5N)3]·C5H5N, the NiII atom is six-coordinated by two O atoms and one N atom from the Schiff base ligand and by three N atoms from three pyridine mol­ecules, forming a distorted octa­hedral geometry. The Ni—O(phenolate) bond [1.9750 (16) Å] is shorter than the Ni—O(carbon­yl) bond [2.0840 (16) Å] and the Ni—N bonds (mean 2.120 Å).

Related literature

For related Schiff-base structures, see: Qiu, Fang et al. (2006[Qiu, X.-Y., Fang, X.-N., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2687-o2688.]); Qiu, Luo et al. (2006[Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3531-o3532.]); Qiu et al. (2007[Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem. 633, 1480-1484.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H8N2O4)(C5H5N)3]·C5H5N

  • Mr = 667.35

  • Orthorhombic, P b c a

  • a = 17.1945 (13) Å

  • b = 17.6887 (13) Å

  • c = 21.4633 (16) Å

  • V = 6528.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 273 (2) K

  • 0.19 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.908

  • 36292 measured reflections

  • 7115 independent reflections

  • 4248 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.00

  • 7115 reflections

  • 424 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

As part of an ongoing study on the structural characterization of Schiff-base compounds (Qiu, Fang et al., 2006; Qiu, Luo et al., 2006), the crystal structure of the title compound is reported here. In the molecule (Fig. 1), the NiII ion is six-coordinated by two oxygen atoms and one nitrogen atom from the schiff base ligand and three nitrogen atoms from three pyridine rings. One pyridine solvent molecule is not involved either in coordination to the NiII center or in classic hydrogen bonding to the compound. The Ni–O (phenolate) bond (1.975 Å) is the significantly shorter than other Ni–O (carbonyl) (2.084 Å) and Ni–N bonds (mean 2.120 Å), which suggests that the Ni–O (phenolate) bond is stronger than other bonds. From the crystal structure, the schiff base ligand and pyridine rings wrap around the NiII centre, forming an octahedral coordination (Qiu et al., 2007). A portion of the crystal packing of the compound is illustrated in Fig. 2.

Related literature top

For related Schiff-base structures, see: Qiu, Fang et al. (2006); Qiu, Luo et al. (2006); Qiu et al. (2007).

Experimental top

To a cold solution of 2-hydroxybenzhydrazide (3.04 g, 20 mmol) in absolute ethyl alcohol (25 ml) was added dropwise a solution of triketohydrindene hydrate (3.2 g, 20 mmol) in absolute ethyl alcohol (25 ml). Stirring was continued at room temperature for 10 min, then refluxing at 351 K for 2 h. After filtering, the filtrate was the schiff base (H2L) as yellow solid. To a solution of ligand (0.47 g, 1.6 mmol) in ethyl acetate (15 ml) was added slowly a solution of Ni(ac)2.2H2O (0.34 g, 1.6 mmol) in ethyl acetate (10 ml). The mixture was stirred for 2 h until a brown precipitate appeared. The precipitate was collected and washed three times with ethyl acetate. Further drying in vacuum afforded a brown powder. Brown single crystals of NiL.4(C5H5N) were grown from methanol and pyridine mixed solution (2:1 v/v) with slow evaporation at room temperature.

Refinement top

All H were placed in geometrically idealized positions (C—H = 0.93 Å) and were treated as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
[N'-(1,3-Dioxoindan-2-ylidene)-2-oxidobenzohydrazidato- κ3O2,N,O]tripyridinenickel(II) pyridine solvate top
Crystal data top
[Ni(C16H8N2O4)(C5H5N)3]·C5H5NF(000) = 2768
Mr = 667.35Dx = 1.358 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4952 reflections
a = 17.1945 (13) Åθ = 2.2–21.5°
b = 17.6887 (13) ŵ = 0.64 mm1
c = 21.4633 (16) ÅT = 273 K
V = 6528.0 (8) Å3Block, brown
Z = 80.19 × 0.18 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7115 independent reflections
Radiation source: fine-focus sealed tube4248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2021
Tmin = 0.885, Tmax = 0.908k = 1822
36292 measured reflectionsl = 2427
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.031P)2 + 1.8991P]
where P = (Fo2 + 2Fc2)/3
7115 reflections(Δ/σ)max = 0.001
424 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C16H8N2O4)(C5H5N)3]·C5H5NV = 6528.0 (8) Å3
Mr = 667.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.1945 (13) ŵ = 0.64 mm1
b = 17.6887 (13) ÅT = 273 K
c = 21.4633 (16) Å0.19 × 0.18 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7115 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4248 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.908Rint = 0.058
36292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
7115 reflectionsΔρmin = 0.26 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.836338 (16)0.083641 (16)0.657583 (13)0.04341 (10)
C10.76080 (12)0.18336 (13)0.48329 (11)0.0453 (6)
C20.75643 (14)0.26298 (14)0.47940 (12)0.0565 (7)
H20.76380.29300.51450.068*
C30.74079 (15)0.29530 (16)0.42153 (13)0.0643 (7)
H30.73830.34760.41740.077*
C40.72894 (15)0.24950 (17)0.37029 (13)0.0668 (8)
H40.71850.27190.33200.080*
C50.73212 (14)0.16902 (15)0.37408 (12)0.0595 (7)
H50.72350.13930.33900.071*
C60.74836 (13)0.13645 (14)0.43112 (11)0.0463 (6)
C70.75640 (13)0.05326 (14)0.44978 (11)0.0476 (6)
C80.77700 (13)0.05377 (13)0.51617 (10)0.0431 (5)
C90.77869 (12)0.13320 (13)0.53733 (11)0.0433 (6)
C100.80145 (16)0.08939 (15)0.63042 (12)0.0568 (7)
C110.84936 (14)0.11063 (14)0.68389 (11)0.0489 (6)
C120.85576 (15)0.19104 (15)0.69505 (13)0.0615 (7)
H120.83060.22400.66800.074*
C130.89690 (16)0.22044 (16)0.74336 (14)0.0693 (8)
H130.90090.27240.74930.083*
C140.93282 (16)0.16944 (17)0.78369 (14)0.0692 (8)
H140.96080.18800.81750.083*
C150.92794 (14)0.09100 (15)0.77480 (12)0.0590 (7)
H150.95270.05930.80310.071*
C160.88692 (13)0.05805 (14)0.72444 (11)0.0470 (6)
C170.72290 (15)0.05699 (15)0.76300 (11)0.0568 (7)
H170.76820.05460.78660.068*
C180.65464 (16)0.04440 (16)0.79189 (12)0.0644 (7)
H180.65280.03360.83430.077*
C190.58917 (15)0.04784 (15)0.75774 (12)0.0616 (7)
H190.54090.03960.77610.074*
C200.59477 (14)0.06369 (16)0.69538 (13)0.0630 (7)
H200.55020.06600.67090.076*
C210.66456 (14)0.07584 (15)0.67011 (11)0.0579 (7)
H210.66750.08700.62780.069*
C220.84087 (14)0.25500 (15)0.69829 (12)0.0577 (7)
H220.81320.26170.66150.069*
C230.85674 (17)0.31949 (16)0.73437 (14)0.0702 (8)
H230.84030.36720.72170.084*
C240.89680 (17)0.31003 (18)0.78832 (15)0.0756 (9)
H240.90840.35110.81370.091*
C250.92010 (16)0.23715 (18)0.80478 (14)0.0720 (8)
H250.94780.22950.84140.086*
C260.90217 (15)0.17552 (16)0.76671 (12)0.0619 (7)
H260.91800.12750.77890.074*
C270.96595 (17)0.15987 (18)0.58237 (15)0.0824 (10)
H270.93690.20340.58930.099*
C281.0323 (2)0.1649 (2)0.54845 (18)0.1044 (12)
H281.04910.21090.53240.125*
C291.07387 (18)0.0991 (2)0.53864 (16)0.0895 (11)
H291.11970.10080.51570.107*
C301.04850 (16)0.0314 (2)0.56227 (13)0.0723 (9)
H301.07620.01300.55510.087*
C310.98246 (14)0.03074 (16)0.59608 (11)0.0572 (7)
H310.96520.01480.61280.069*
C320.4254 (3)0.1039 (2)0.5441 (2)0.1206 (14)
H320.38750.09970.57490.145*
C330.4032 (2)0.0948 (2)0.4840 (2)0.1056 (12)
H330.35120.08670.47390.127*
C340.4572 (3)0.0977 (2)0.43937 (19)0.1094 (13)
H340.44430.09090.39770.131*
C350.5290 (3)0.1106 (2)0.4563 (2)0.1157 (14)
H350.56820.11250.42650.139*
C360.5462 (2)0.1208 (3)0.5161 (2)0.1186 (14)
H360.59770.13080.52630.142*
N10.78470 (10)0.01309 (11)0.54711 (9)0.0448 (5)
N20.80692 (10)0.01229 (10)0.60518 (9)0.0441 (5)
N30.72906 (11)0.07276 (11)0.70230 (9)0.0464 (5)
N40.86311 (11)0.18326 (11)0.71342 (9)0.0496 (5)
N50.94071 (11)0.09374 (12)0.60636 (9)0.0538 (5)
N60.4958 (2)0.1180 (2)0.56149 (16)0.1264 (12)
O10.79103 (9)0.15745 (8)0.59117 (7)0.0493 (4)
O20.74742 (11)0.00276 (10)0.41554 (8)0.0645 (5)
O30.75743 (14)0.13547 (12)0.60754 (9)0.0958 (8)
O40.88726 (9)0.01748 (9)0.71947 (7)0.0523 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03906 (16)0.04585 (18)0.04532 (18)0.00026 (14)0.00063 (14)0.00265 (15)
C10.0367 (13)0.0499 (16)0.0493 (14)0.0019 (11)0.0044 (10)0.0021 (12)
C20.0575 (16)0.0531 (17)0.0589 (17)0.0006 (13)0.0035 (13)0.0007 (14)
C30.0672 (19)0.0513 (17)0.074 (2)0.0031 (14)0.0003 (15)0.0094 (16)
C40.0692 (18)0.066 (2)0.0651 (18)0.0006 (15)0.0071 (14)0.0201 (16)
C50.0590 (17)0.069 (2)0.0506 (16)0.0045 (14)0.0020 (12)0.0041 (14)
C60.0387 (13)0.0524 (15)0.0479 (15)0.0011 (11)0.0044 (11)0.0037 (12)
C70.0434 (14)0.0521 (15)0.0472 (14)0.0000 (12)0.0034 (11)0.0017 (13)
C80.0399 (13)0.0467 (14)0.0425 (13)0.0003 (11)0.0029 (10)0.0018 (12)
C90.0339 (12)0.0486 (15)0.0473 (14)0.0019 (10)0.0059 (10)0.0001 (12)
C100.0708 (17)0.0490 (16)0.0506 (15)0.0109 (14)0.0028 (13)0.0008 (13)
C110.0497 (15)0.0473 (15)0.0496 (14)0.0008 (12)0.0025 (12)0.0044 (12)
C120.0693 (19)0.0509 (17)0.0644 (18)0.0017 (14)0.0060 (14)0.0030 (14)
C130.071 (2)0.0537 (18)0.084 (2)0.0101 (15)0.0059 (17)0.0166 (16)
C140.0566 (18)0.075 (2)0.076 (2)0.0088 (15)0.0065 (15)0.0199 (17)
C150.0512 (16)0.0662 (19)0.0596 (16)0.0008 (14)0.0077 (12)0.0094 (14)
C160.0384 (13)0.0521 (17)0.0506 (15)0.0022 (11)0.0051 (11)0.0052 (12)
C170.0488 (15)0.0742 (18)0.0472 (15)0.0015 (13)0.0017 (12)0.0037 (14)
C180.0584 (18)0.090 (2)0.0445 (15)0.0034 (15)0.0081 (13)0.0028 (15)
C190.0471 (16)0.0785 (19)0.0590 (18)0.0057 (14)0.0125 (13)0.0006 (15)
C200.0393 (15)0.090 (2)0.0598 (18)0.0058 (14)0.0023 (13)0.0021 (15)
C210.0449 (14)0.084 (2)0.0444 (14)0.0048 (14)0.0024 (12)0.0023 (13)
C220.0574 (16)0.0549 (17)0.0607 (16)0.0017 (14)0.0018 (13)0.0073 (14)
C230.079 (2)0.0539 (18)0.077 (2)0.0009 (15)0.0049 (17)0.0124 (16)
C240.077 (2)0.071 (2)0.078 (2)0.0140 (17)0.0031 (17)0.0286 (18)
C250.0667 (19)0.082 (2)0.0669 (19)0.0056 (17)0.0090 (15)0.0162 (17)
C260.0552 (17)0.0651 (19)0.0653 (18)0.0018 (13)0.0048 (14)0.0078 (15)
C270.068 (2)0.067 (2)0.111 (3)0.0087 (16)0.0337 (19)0.0041 (18)
C280.088 (3)0.089 (3)0.135 (3)0.029 (2)0.051 (2)0.010 (2)
C290.0535 (19)0.123 (3)0.092 (2)0.020 (2)0.0220 (17)0.035 (2)
C300.0428 (16)0.103 (3)0.071 (2)0.0046 (16)0.0009 (14)0.0283 (18)
C310.0444 (15)0.0712 (19)0.0559 (16)0.0044 (13)0.0039 (12)0.0083 (14)
C320.090 (3)0.160 (4)0.112 (4)0.017 (3)0.015 (3)0.011 (3)
C330.074 (3)0.103 (3)0.140 (4)0.010 (2)0.021 (3)0.026 (3)
C340.114 (4)0.126 (3)0.088 (3)0.008 (3)0.011 (3)0.011 (2)
C350.096 (3)0.156 (4)0.095 (3)0.007 (3)0.012 (2)0.022 (3)
C360.071 (3)0.166 (4)0.118 (4)0.012 (3)0.012 (3)0.030 (3)
N10.0429 (11)0.0495 (13)0.0420 (12)0.0005 (9)0.0027 (9)0.0022 (10)
N20.0408 (11)0.0471 (12)0.0444 (12)0.0013 (9)0.0017 (9)0.0015 (9)
N30.0412 (11)0.0555 (13)0.0424 (11)0.0022 (9)0.0005 (9)0.0039 (10)
N40.0406 (11)0.0523 (14)0.0559 (13)0.0005 (10)0.0010 (10)0.0066 (10)
N50.0424 (12)0.0587 (14)0.0601 (13)0.0036 (11)0.0046 (10)0.0075 (11)
N60.094 (3)0.190 (4)0.096 (2)0.019 (3)0.019 (2)0.000 (2)
O10.0529 (10)0.0490 (10)0.0462 (10)0.0026 (8)0.0000 (8)0.0047 (8)
O20.0869 (13)0.0572 (11)0.0494 (10)0.0001 (10)0.0032 (9)0.0066 (9)
O30.145 (2)0.0689 (13)0.0739 (14)0.0529 (14)0.0469 (13)0.0201 (11)
O40.0517 (10)0.0515 (11)0.0537 (10)0.0002 (8)0.0100 (8)0.0003 (8)
Geometric parameters (Å, º) top
Ni1—O12.0840 (16)C18—H180.9300
Ni1—O41.9750 (16)C19—C201.371 (3)
Ni1—N22.0977 (19)C19—H190.9300
Ni1—N32.0882 (18)C20—C211.334 (3)
Ni1—N42.180 (2)C20—H200.9300
Ni1—N52.1122 (19)C21—N31.308 (3)
C1—C21.413 (3)C21—H210.9300
C1—C61.410 (3)C22—N41.365 (3)
C1—C91.492 (3)C22—C231.405 (3)
C2—C31.394 (3)C22—H220.9300
C2—H20.9300C23—C241.358 (4)
C3—C41.381 (4)C23—H230.9300
C3—H30.9300C24—C251.395 (4)
C4—C51.427 (4)C24—H240.9300
C4—H40.9300C25—C261.397 (4)
C5—C61.382 (3)C25—H250.9300
C5—H50.9300C26—N41.333 (3)
C6—C71.531 (3)C26—H260.9300
C7—O21.243 (3)C27—N51.350 (3)
C7—C81.468 (3)C27—C281.356 (4)
C8—N11.363 (3)C27—H270.9300
C8—C91.477 (3)C28—C291.382 (4)
C9—O11.251 (3)C28—H280.9300
C10—O31.216 (3)C29—C301.373 (4)
C10—C111.462 (3)C29—H290.9300
C10—N21.471 (3)C30—C311.348 (3)
C11—C161.428 (3)C30—H300.9300
C11—C121.447 (3)C31—N51.344 (3)
C12—C131.359 (4)C31—H310.9300
C12—H120.9300C32—N61.292 (5)
C13—C141.394 (4)C32—C331.357 (5)
C13—H130.9300C32—H320.9300
C14—C151.403 (4)C33—C341.335 (5)
C14—H140.9300C33—H330.9300
C15—C161.416 (3)C34—C351.307 (5)
C15—H150.9300C34—H340.9300
C16—O41.340 (3)C35—C361.329 (5)
C17—N31.337 (3)C35—H350.9300
C17—C181.346 (3)C36—N61.303 (5)
C17—H170.9300C36—H360.9300
C18—C191.345 (3)N1—N21.304 (2)
O4—Ni1—O1175.52 (7)C18—C19—H19120.6
O4—Ni1—N391.60 (7)C20—C19—H19120.6
O1—Ni1—N392.40 (7)C21—C20—C19119.5 (2)
O4—Ni1—N289.32 (7)C21—C20—H20120.2
O1—Ni1—N292.86 (7)C19—C20—H20120.2
N3—Ni1—N287.64 (7)N3—C21—C20122.8 (2)
O4—Ni1—N591.34 (7)N3—C21—H21118.6
O1—Ni1—N584.76 (7)C20—C21—H21118.6
N3—Ni1—N5175.99 (8)N4—C22—C23124.7 (3)
N2—Ni1—N589.67 (7)N4—C22—H22117.7
O4—Ni1—N490.90 (7)C23—C22—H22117.7
O1—Ni1—N487.05 (7)C24—C23—C22117.9 (3)
N3—Ni1—N490.48 (7)C24—C23—H23121.0
N2—Ni1—N4178.12 (7)C22—C23—H23121.0
N5—Ni1—N492.20 (7)C23—C24—C25118.4 (3)
C6—C1—C2122.1 (2)C23—C24—H24120.8
C6—C1—C9107.4 (2)C25—C24—H24120.8
C2—C1—C9130.5 (2)C24—C25—C26120.6 (3)
C3—C2—C1118.2 (3)C24—C25—H25119.7
C3—C2—H2120.9C26—C25—H25119.7
C1—C2—H2120.9N4—C26—C25122.2 (3)
C4—C3—C2119.8 (3)N4—C26—H26118.9
C4—C3—H3120.1C25—C26—H26118.9
C2—C3—H3120.1N5—C27—C28122.1 (3)
C3—C4—C5122.3 (3)N5—C27—H27118.9
C3—C4—H4118.9C28—C27—H27118.9
C5—C4—H4118.9C27—C28—C29117.5 (3)
C6—C5—C4118.3 (3)C27—C28—H28121.2
C6—C5—H5120.8C29—C28—H28121.2
C4—C5—H5120.8C30—C29—C28120.9 (3)
C5—C6—C1119.3 (2)C30—C29—H29119.5
C5—C6—C7130.6 (2)C28—C29—H29119.5
C1—C6—C7110.1 (2)C31—C30—C29118.3 (3)
O2—C7—C8127.5 (2)C31—C30—H30120.8
O2—C7—C6126.9 (2)C29—C30—H30120.8
C8—C7—C6105.6 (2)N5—C31—C30122.1 (3)
N1—C8—C7119.4 (2)N5—C31—H31118.9
N1—C8—C9132.4 (2)C30—C31—H31118.9
C7—C8—C9108.0 (2)N6—C32—C33124.1 (4)
O1—C9—C8127.9 (2)N6—C32—H32117.9
O1—C9—C1123.3 (2)C33—C32—H32117.9
C8—C9—C1108.82 (19)C34—C33—C32118.8 (4)
O3—C10—C11119.7 (2)C34—C33—H33120.6
O3—C10—N2120.8 (2)C32—C33—H33120.6
C11—C10—N2119.4 (2)C35—C34—C33117.7 (4)
C16—C11—C12120.3 (2)C35—C34—H34121.2
C16—C11—C10124.5 (2)C33—C34—H34121.2
C12—C11—C10115.2 (2)C34—C35—C36120.1 (4)
C13—C12—C11122.8 (3)C34—C35—H35119.9
C13—C12—H12118.6C36—C35—H35119.9
C11—C12—H12118.6N6—C36—C35124.7 (4)
C12—C13—C14117.2 (3)N6—C36—H36117.7
C12—C13—H13121.4C35—C36—H36117.7
C14—C13—H13121.4N2—N1—C8119.01 (19)
C13—C14—C15121.9 (3)N1—N2—C10108.86 (18)
C13—C14—H14119.0N1—N2—Ni1126.31 (15)
C15—C14—H14119.0C10—N2—Ni1124.62 (15)
C14—C15—C16122.7 (3)C21—N3—C17117.2 (2)
C14—C15—H15118.6C21—N3—Ni1120.16 (16)
C16—C15—H15118.6C17—N3—Ni1122.50 (16)
O4—C16—C15118.0 (2)C26—N4—C22116.2 (2)
O4—C16—C11127.1 (2)C26—N4—Ni1119.66 (18)
C15—C16—C11115.0 (2)C22—N4—Ni1124.17 (17)
N3—C17—C18123.6 (2)C31—N5—C27119.0 (2)
N3—C17—H17118.2C31—N5—Ni1117.98 (17)
C18—C17—H17118.2C27—N5—Ni1123.02 (18)
C19—C18—C17118.1 (2)C32—N6—C36114.5 (4)
C19—C18—H18120.9C9—O1—Ni1118.72 (15)
C17—C18—H18120.9C16—O4—Ni1129.97 (15)
C18—C19—C20118.9 (2)

Experimental details

Crystal data
Chemical formula[Ni(C16H8N2O4)(C5H5N)3]·C5H5N
Mr667.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)17.1945 (13), 17.6887 (13), 21.4633 (16)
V3)6528.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.19 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
36292, 7115, 4248
Rint0.058
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.00
No. of reflections7115
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008).

 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant Nos. 20771048, 20431010, 20621091 and J0630962) for financial support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2687–o2688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem. 633, 1480–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3531–o3532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds