metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[1-(1,10-phenanthrolin-2-yl)-2-pyridone]copper(II)

aChemistry and Chemical Engineering College, Shanxi Datong University, Datong 037008, People's Republic of China
*Correspondence e-mail: jinminli1957@yahoo.com.cn

(Received 20 June 2008; accepted 26 June 2008; online 5 July 2008)

In the title mononuclear complex, [CuCl2(C17H11N3O)], the CuII ion is in a distorted square-pyramidal coordination environment. The crystal structure is stabilized by various ππ stacking inter­actions in which the benzene ring, a pyridine ring and the five-membered CuN2C2 ring are involved. The centroid–centroid distances range from 3.5631 (15) to 3.5666 (16) Å.

Related literature

For a related structure, see: Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C17H11N3O)]

  • Mr = 407.73

  • Monoclinic, P 21 /c

  • a = 7.3653 (12) Å

  • b = 13.811 (2) Å

  • c = 14.994 (2) Å

  • β = 98.416 (2)°

  • V = 1508.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 298 (2) K

  • 0.38 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Gemany.]) Tmin = 0.546, Tmax = 0.812

  • 8630 measured reflections

  • 3265 independent reflections

  • 2706 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.11

  • 3265 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Cu1 2.2362 (8)
Cl2—Cu1 2.3740 (8)
Cu1—N2 2.0165 (19)
Cu1—N1 2.042 (2)
Cu1—O1 2.1337 (18)
N2—Cu1—N1 80.75 (8)
N2—Cu1—O1 80.70 (7)
N1—Cu1—O1 147.25 (8)
N2—Cu1—Cl1 158.03 (7)
N1—Cu1—Cl1 92.93 (6)
O1—Cu1—Cl1 94.29 (5)
N2—Cu1—Cl2 97.87 (6)
N1—Cu1—Cl2 115.81 (6)
O1—Cu1—Cl2 93.32 (6)
Cl1—Cu1—Cl2 103.79 (3)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and the complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as bridging ligand and termial ligand has already been reported (Liu et al., 2008). Herein the crystal structure of the title complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as terminal ligand is reported.

Fig. 1 shows the moleculuar structure, revealing that the atom CuII ion is in a distorted square-pyramidal coordination environment, with atom Cl2 in the apical position. There are ππ stacking interactions involving symmetry-related complex molecules, the relevant distances being Cg1···Cg2i = 3.5631 (15) Å and Cg1···Cg2iperp = 3.355 Å and α = 4.35°; Cg2···Cg3ii = 3.5568 (16) Å and Cg2···Cg3iiperp = 3.450 Å and α = 1.81°; Cg2···Cg2i = 3.5666 (16) Å and Cg2···Cg2iperp = 3.407 Å and α = 0.00° [symmetry codes: (i) 1-x, 2-x, 1-x; (ii) -x, 2-y, 1-x; Cg1, Cg2 and Cg3 are the centroids of the Cu1/N1/N2/C8/C14 ring, C8/C9/C11-C14 ring amd N1/C13-C17 ring, respectively; Cgi···Cgjperp is the perpendicular distance from ring Cgi to ring Cgj; α is the dihedral angle between ring plane Cgi and ring plane Cgj]. These ππ stacking interactions help stabilize the crystal structure.

Related literature top

For a related structure, see: Liu et al. (2008).

Experimental top

A 10 ml methanol solution of 1-(1,10-phenanthrolin-2-yl)-2-pyridone (0.1648 g, 0.603 mmol) was added into a 10 ml methanol solution containing CuCl2 (0.1025 g, 0.601 mmol) and the mixture was stirred for a few minutes. The green single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level
Dichlorido[1-(1,10-phenanthrolin-2-yl)-2-pyridone]copper(II) top
Crystal data top
[CuCl2(C17H11N3O)]F(000) = 820
Mr = 407.73Dx = 1.795 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3380 reflections
a = 7.3653 (12) Åθ = 2.8–28.1°
b = 13.811 (2) ŵ = 1.81 mm1
c = 14.994 (2) ÅT = 298 K
β = 98.416 (2)°Block, green
V = 1508.8 (4) Å30.38 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3265 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.546, Tmax = 0.812k = 1617
8630 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1919P]
where P = (Fo2 + 2Fc2)/3
3265 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = 0.66 e Å3
Crystal data top
[CuCl2(C17H11N3O)]V = 1508.8 (4) Å3
Mr = 407.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3653 (12) ŵ = 1.81 mm1
b = 13.811 (2) ÅT = 298 K
c = 14.994 (2) Å0.38 × 0.16 × 0.12 mm
β = 98.416 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3265 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2706 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.812Rint = 0.035
8630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.11Δρmax = 0.64 e Å3
3265 reflectionsΔρmin = 0.66 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3230 (4)1.05721 (18)0.15163 (16)0.0310 (5)
C20.3160 (4)1.0755 (2)0.05804 (17)0.0378 (6)
H20.35501.13540.03970.045*
C30.2546 (4)1.0089 (2)0.00543 (17)0.0397 (6)
H30.25181.02360.06620.048*
C40.1951 (4)0.9179 (2)0.01991 (18)0.0405 (6)
H40.14980.87250.02360.049*
C50.2045 (4)0.89731 (19)0.10802 (18)0.0371 (6)
H50.16380.83730.12520.045*
C60.2990 (3)0.93054 (17)0.26475 (16)0.0291 (5)
C70.3620 (4)0.83639 (18)0.28418 (18)0.0352 (6)
H70.39090.79630.23850.042*
C80.2832 (3)0.95921 (16)0.41397 (15)0.0254 (5)
C90.3410 (3)0.86537 (16)0.43983 (17)0.0289 (5)
C100.3804 (4)0.80403 (18)0.37072 (19)0.0358 (6)
H100.41940.74090.38410.043*
C110.3575 (4)0.83935 (19)0.53288 (18)0.0354 (6)
H110.40020.77800.55100.042*
C120.3121 (4)0.9024 (2)0.59522 (17)0.0361 (6)
H120.32330.88350.65530.043*
C130.2472 (3)0.99763 (18)0.57023 (16)0.0308 (5)
C140.2373 (3)1.02632 (17)0.47986 (15)0.0258 (5)
C150.1357 (4)1.17865 (19)0.50840 (17)0.0339 (6)
H150.09871.24020.48820.041*
C160.1378 (4)1.1564 (2)0.59914 (18)0.0389 (6)
H160.10071.20220.63820.047*
C170.1950 (4)1.06686 (19)0.63025 (17)0.0362 (6)
H170.19931.05180.69100.043*
Cl10.25172 (13)1.29316 (5)0.33181 (5)0.0508 (2)
Cl20.07342 (10)1.12202 (5)0.21487 (5)0.04360 (19)
Cu10.20539 (5)1.13365 (2)0.316143 (19)0.03221 (13)
N10.1845 (3)1.11538 (14)0.44938 (13)0.0282 (4)
N20.2618 (3)0.99094 (14)0.32770 (12)0.0262 (4)
N30.2737 (3)0.96350 (15)0.17385 (13)0.0299 (5)
O10.3712 (3)1.11913 (12)0.21153 (13)0.0375 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (14)0.0318 (13)0.0311 (13)0.0018 (10)0.0054 (10)0.0030 (11)
C20.0418 (17)0.0382 (15)0.0345 (14)0.0002 (12)0.0091 (12)0.0034 (11)
C30.0423 (17)0.0498 (16)0.0270 (13)0.0047 (13)0.0049 (11)0.0005 (12)
C40.0477 (18)0.0415 (15)0.0310 (14)0.0004 (13)0.0012 (12)0.0108 (11)
C50.0443 (17)0.0306 (13)0.0353 (14)0.0014 (12)0.0018 (12)0.0057 (11)
C60.0308 (14)0.0287 (12)0.0279 (12)0.0011 (10)0.0043 (10)0.0021 (10)
C70.0404 (16)0.0271 (12)0.0387 (14)0.0034 (11)0.0072 (12)0.0045 (11)
C80.0208 (13)0.0263 (11)0.0284 (12)0.0017 (9)0.0009 (9)0.0023 (9)
C90.0239 (14)0.0275 (12)0.0348 (13)0.0011 (9)0.0025 (10)0.0048 (9)
C100.0350 (16)0.0263 (13)0.0448 (15)0.0032 (11)0.0009 (11)0.0033 (11)
C110.0306 (15)0.0332 (13)0.0409 (15)0.0015 (11)0.0002 (11)0.0134 (11)
C120.0358 (16)0.0427 (14)0.0287 (13)0.0075 (12)0.0011 (11)0.0111 (11)
C130.0242 (14)0.0394 (13)0.0287 (12)0.0097 (11)0.0030 (10)0.0034 (11)
C140.0199 (12)0.0300 (12)0.0266 (12)0.0030 (9)0.0007 (9)0.0013 (9)
C150.0366 (15)0.0319 (13)0.0330 (13)0.0003 (11)0.0041 (11)0.0058 (11)
C160.0396 (17)0.0454 (15)0.0328 (14)0.0039 (12)0.0093 (12)0.0096 (12)
C170.0349 (16)0.0472 (16)0.0266 (13)0.0104 (12)0.0050 (11)0.0015 (11)
Cl10.0949 (7)0.0249 (3)0.0346 (4)0.0034 (3)0.0158 (4)0.0007 (3)
Cl20.0389 (4)0.0562 (4)0.0337 (4)0.0037 (3)0.0013 (3)0.0073 (3)
Cu10.0477 (3)0.02408 (19)0.02382 (19)0.00415 (13)0.00175 (14)0.00028 (11)
N10.0279 (12)0.0295 (10)0.0264 (10)0.0004 (8)0.0018 (8)0.0009 (8)
N20.0284 (11)0.0228 (10)0.0271 (10)0.0009 (8)0.0033 (8)0.0002 (8)
N30.0362 (13)0.0280 (11)0.0263 (10)0.0009 (9)0.0066 (9)0.0024 (8)
O10.0475 (12)0.0328 (10)0.0335 (10)0.0075 (8)0.0104 (8)0.0047 (8)
Geometric parameters (Å, º) top
C1—O11.253 (3)C9—C111.429 (4)
C1—N31.397 (3)C10—H100.9300
C1—C21.419 (3)C11—C121.355 (4)
C2—C31.353 (4)C11—H110.9300
C2—H20.9300C12—C131.430 (4)
C3—C41.402 (4)C12—H120.9300
C3—H30.9300C13—C141.403 (3)
C4—C51.343 (4)C13—C171.405 (4)
C4—H40.9300C14—N11.349 (3)
C5—N31.386 (3)C15—N11.330 (3)
C5—H50.9300C15—C161.393 (4)
C6—N21.318 (3)C15—H150.9300
C6—C71.397 (3)C16—C171.366 (4)
C6—N31.423 (3)C16—H160.9300
C7—C101.360 (4)C17—H170.9300
C7—H70.9300Cl1—Cu12.2362 (8)
C8—N21.353 (3)Cl2—Cu12.3740 (8)
C8—C91.401 (3)Cu1—N22.0165 (19)
C8—C141.431 (3)Cu1—N12.042 (2)
C9—C101.401 (4)Cu1—O12.1337 (18)
O1—C1—N3121.2 (2)C14—C13—C17116.5 (2)
O1—C1—C2123.5 (2)C14—C13—C12118.7 (2)
N3—C1—C2115.3 (2)C17—C13—C12124.8 (2)
C3—C2—C1122.3 (3)N1—C14—C13123.8 (2)
C3—C2—H2118.8N1—C14—C8116.2 (2)
C1—C2—H2118.8C13—C14—C8120.0 (2)
C2—C3—C4120.3 (2)N1—C15—C16122.7 (2)
C2—C3—H3119.9N1—C15—H15118.7
C4—C3—H3119.9C16—C15—H15118.7
C5—C4—C3118.9 (3)C17—C16—C15119.5 (2)
C5—C4—H4120.6C17—C16—H16120.3
C3—C4—H4120.6C15—C16—H16120.3
C4—C5—N3121.4 (3)C16—C17—C13119.8 (2)
C4—C5—H5119.3C16—C17—H17120.1
N3—C5—H5119.3C13—C17—H17120.1
N2—C6—C7122.5 (2)N2—Cu1—N180.75 (8)
N2—C6—N3118.1 (2)N2—Cu1—O180.70 (7)
C7—C6—N3119.4 (2)N1—Cu1—O1147.25 (8)
C10—C7—C6119.2 (2)N2—Cu1—Cl1158.03 (7)
C10—C7—H7120.4N1—Cu1—Cl192.93 (6)
C6—C7—H7120.4O1—Cu1—Cl194.29 (5)
N2—C8—C9123.5 (2)N2—Cu1—Cl297.87 (6)
N2—C8—C14116.4 (2)N1—Cu1—Cl2115.81 (6)
C9—C8—C14120.1 (2)O1—Cu1—Cl293.32 (6)
C8—C9—C10116.2 (2)Cl1—Cu1—Cl2103.79 (3)
C8—C9—C11118.8 (2)C15—N1—C14117.8 (2)
C10—C9—C11125.0 (2)C15—N1—Cu1129.52 (17)
C7—C10—C9120.3 (2)C14—N1—Cu1112.63 (15)
C7—C10—H10119.9C6—N2—C8118.2 (2)
C9—C10—H10119.9C6—N2—Cu1128.23 (16)
C12—C11—C9121.2 (2)C8—N2—Cu1113.10 (15)
C12—C11—H11119.4C5—N3—C1121.5 (2)
C9—C11—H11119.4C5—N3—C6117.0 (2)
C11—C12—C13121.1 (2)C1—N3—C6121.5 (2)
C11—C12—H12119.4C1—O1—Cu1117.28 (17)
C13—C12—H12119.4
O1—C1—C2—C3176.6 (3)Cl1—Cu1—N1—C1525.1 (2)
N3—C1—C2—C34.1 (4)Cl2—Cu1—N1—C1581.8 (2)
C1—C2—C3—C40.1 (4)N2—Cu1—N1—C147.26 (17)
C2—C3—C4—C51.7 (4)O1—Cu1—N1—C1449.0 (2)
C3—C4—C5—N30.8 (4)Cl1—Cu1—N1—C14151.57 (16)
N2—C6—C7—C102.2 (4)Cl2—Cu1—N1—C14101.59 (16)
N3—C6—C7—C10177.9 (2)C7—C6—N2—C81.1 (4)
N2—C8—C9—C101.1 (4)N3—C6—N2—C8179.0 (2)
C14—C8—C9—C10179.1 (2)C7—C6—N2—Cu1170.42 (19)
N2—C8—C9—C11179.5 (2)N3—C6—N2—Cu19.5 (3)
C14—C8—C9—C111.6 (3)C9—C8—N2—C60.6 (4)
C6—C7—C10—C91.6 (4)C14—C8—N2—C6178.6 (2)
C8—C9—C10—C70.0 (4)C9—C8—N2—Cu1173.35 (19)
C11—C9—C10—C7179.3 (3)C14—C8—N2—Cu18.6 (3)
C8—C9—C11—C122.4 (4)N1—Cu1—N2—C6179.5 (2)
C10—C9—C11—C12178.3 (3)O1—Cu1—N2—C627.6 (2)
C9—C11—C12—C130.5 (4)Cl1—Cu1—N2—C6105.8 (2)
C11—C12—C13—C142.2 (4)Cl2—Cu1—N2—C664.5 (2)
C11—C12—C13—C17179.1 (3)N1—Cu1—N2—C88.60 (16)
C17—C13—C14—N11.2 (4)O1—Cu1—N2—C8144.29 (17)
C12—C13—C14—N1177.6 (2)Cl1—Cu1—N2—C866.0 (2)
C17—C13—C14—C8178.3 (2)Cl2—Cu1—N2—C8123.61 (16)
C12—C13—C14—C83.0 (3)C4—C5—N3—C15.1 (4)
N2—C8—C14—N12.5 (3)C4—C5—N3—C6172.4 (3)
C9—C8—C14—N1179.4 (2)O1—C1—N3—C5174.1 (2)
N2—C8—C14—C13177.0 (2)C2—C1—N3—C56.5 (3)
C9—C8—C14—C131.1 (3)O1—C1—N3—C68.4 (4)
N1—C15—C16—C171.2 (4)C2—C1—N3—C6170.9 (2)
C15—C16—C17—C131.3 (4)N2—C6—N3—C5142.1 (2)
C14—C13—C17—C160.2 (4)C7—C6—N3—C538.0 (3)
C12—C13—C17—C16178.9 (3)N2—C6—N3—C140.3 (3)
C16—C15—N1—C140.2 (4)C7—C6—N3—C1139.6 (3)
C16—C15—N1—Cu1176.3 (2)N3—C1—O1—Cu146.7 (3)
C13—C14—N1—C151.4 (4)C2—C1—O1—Cu1134.1 (2)
C8—C14—N1—C15178.1 (2)N2—Cu1—O1—C155.40 (19)
C13—C14—N1—Cu1175.69 (18)N1—Cu1—O1—C1111.6 (2)
C8—C14—N1—Cu14.8 (3)Cl1—Cu1—O1—C1146.15 (19)
N2—Cu1—N1—C15176.1 (2)Cl2—Cu1—O1—C142.04 (19)
O1—Cu1—N1—C15127.7 (2)

Experimental details

Crystal data
Chemical formula[CuCl2(C17H11N3O)]
Mr407.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.3653 (12), 13.811 (2), 14.994 (2)
β (°) 98.416 (2)
V3)1508.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.38 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.546, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
8630, 3265, 2706
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.11
No. of reflections3265
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.66

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cl1—Cu12.2362 (8)Cu1—N12.042 (2)
Cl2—Cu12.3740 (8)Cu1—O12.1337 (18)
Cu1—N22.0165 (19)
N2—Cu1—N180.75 (8)O1—Cu1—Cl194.29 (5)
N2—Cu1—O180.70 (7)N2—Cu1—Cl297.87 (6)
N1—Cu1—O1147.25 (8)N1—Cu1—Cl2115.81 (6)
N2—Cu1—Cl1158.03 (7)O1—Cu1—Cl293.32 (6)
N1—Cu1—Cl192.93 (6)Cl1—Cu1—Cl2103.79 (3)
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Gemany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds