organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-De­­oxy-D-galactitol (L-fucitol)

aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and cDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: victoria.booth@chem.ox.ac.uk

(Received 25 June 2008; accepted 2 July 2008; online 9 July 2008)

1-De­oxy-D-galactitol, C6H14O5, exists in the crystalline form as hydrogen-bonded layers of mol­ecules running parallel to the ac plane, with each mol­ecule acting as a donor and acceptor of five hydrogen bonds.

Related literature

For related literature, see: Yoshihara et al. (2008[Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739-745.]); Jones et al. (2007[Jones, N. A., Jenkinson, S. F., Soengas, R., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. C63, o7-o10.]); Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]); Izumori (2002[Izumori, K. J. (2002). Naturwissenschaften, 89, 120-124.], 2006[Izumori, K. J. (2006). Biotechnology, 124, 717-722.]); Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14O5

  • Mr = 166.17

  • Monoclinic, P 21

  • a = 4.8486 (3) Å

  • b = 4.8827 (3) Å

  • c = 16.8354 (13) Å

  • β = 92.856 (2)°

  • V = 398.07 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.15 × 0.15 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.81, Tmax = 0.99

  • 2786 measured reflections

  • 998 independent reflections

  • 804 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 0.88

  • 998 reflections

  • 100 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O6i 0.83 1.91 2.691 (4) 155
O9—H3⋯O4ii 0.83 1.97 2.753 (4) 156
O6—H4⋯O1iii 0.81 2.10 2.758 (4) 138
O1—H9⋯O9iv 0.85 1.85 2.684 (4) 166
O11—H10⋯O11v 0.84 2.01 2.828 (4) 163
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) x, y+1, z; (iv) x-1, y, z; (v) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The methodology developed by Izumori (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008). This methodology could allow access to rare monosaccharides in water in large amounts. An example of this is the subsequent formation of 1-deoxy-D-galactitol 2 by hydrogenation of L-fucose 1 (Fig. 1) which subsequently could be oxidized enzymatically to 1-deoxy-D-tagatose (Jones et al., 2007) 3.

If the terminal hydroxyl group and H atoms are ignored there is a pseudo centre of symmetry between C2 and C3 (Fig. 2). The crystal structure exists of hydrogen-bonded layers of molecules running parallel to the c-axis (Fig. 3). Each molecule acts as a donor and acceptor of 5 hydrogen bonds, all intra-molecular hydrogen bonds have been omitted.

Related literature top

For related literature, see: Yoshihara et al. (2008); Jones et al. (2007); Görbitz (1999); Izumori (2002, 2006); Prince (1982); Watkin (1994).

Experimental top

The title compound was recrystallized from methanol: m.p. 420-422K; [α]D21 +1.6 (c, 1.13 in H2O) [Lit. (Yoshihara et al., 2008) for enantiomer [α]D20 -1.9 (c, 1.0 in H2O)].

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned fron the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22 reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic scheme.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. The packing diagram for the title compound projected along the b-axis. Hydrogen bonds are shown as dotted lines.
1-Deoxy-D-galactitol top
Crystal data top
C6H14O5F(000) = 180
Mr = 166.17Dx = 1.386 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.8486 (3) ÅCell parameters from 844 reflections
b = 4.8827 (3) Åθ = 5–27°
c = 16.8354 (13) ŵ = 0.12 mm1
β = 92.856 (2)°T = 150 K
V = 398.07 (5) Å3Block, colourless
Z = 20.15 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.4°, θmin = 5.4°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.81, Tmax = 0.99k = 56
2786 measured reflectionsl = 2121
998 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.111 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 17.0 25.0 12.0 3.16
S = 0.88(Δ/σ)max = 0.000240
998 reflectionsΔρmax = 0.34 e Å3
100 parametersΔρmin = 0.31 e Å3
1 restraint
Crystal data top
C6H14O5V = 398.07 (5) Å3
Mr = 166.17Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8486 (3) ŵ = 0.12 mm1
b = 4.8827 (3) ÅT = 150 K
c = 16.8354 (13) Å0.15 × 0.15 × 0.05 mm
β = 92.856 (2)°
Data collection top
Nonius KappaCCD
diffractometer
998 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
804 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.99Rint = 0.038
2786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.111H-atom parameters constrained
S = 0.88Δρmax = 0.34 e Å3
998 reflectionsΔρmin = 0.31 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4779 (4)0.0226 (5)0.76245 (11)0.0217
C20.6328 (6)0.2631 (7)0.78168 (17)0.0186
C30.7866 (6)0.3389 (7)0.70769 (17)0.0189
O40.9430 (4)0.5805 (5)0.72728 (12)0.0227
C50.5946 (6)0.3936 (7)0.63490 (17)0.0207
O60.4117 (4)0.6179 (5)0.64879 (12)0.0238
C70.7550 (7)0.4471 (9)0.56067 (18)0.0330
C80.8283 (6)0.2108 (7)0.85426 (17)0.0190
O91.0094 (4)0.0141 (5)0.84026 (12)0.0222
C100.6698 (6)0.1572 (7)0.92859 (17)0.0236
O110.8526 (4)0.1176 (5)0.99759 (12)0.0260
H210.50710.41000.79450.0249*
H310.90820.18750.69710.0263*
H510.47630.23070.62530.0282*
H710.62720.45100.51380.0515*
H720.89000.30470.55500.0518*
H730.84930.62230.56740.0506*
H810.94850.37090.86700.0243*
H1010.56420.01230.91930.0325*
H1020.54150.31070.93630.0333*
H11.07370.54380.69890.0372*
H30.94150.12960.80870.0364*
H40.51210.70600.67890.0402*
H90.32770.03970.78590.0353*
H100.90760.28130.99920.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (9)0.0228 (13)0.0249 (10)0.0051 (9)0.0048 (8)0.0061 (10)
C20.0180 (13)0.0189 (15)0.0189 (13)0.0011 (11)0.0010 (10)0.0011 (12)
C30.0196 (13)0.0173 (15)0.0202 (13)0.0016 (12)0.0031 (11)0.0029 (12)
O40.0212 (10)0.0235 (13)0.0237 (9)0.0059 (10)0.0057 (8)0.0040 (10)
C50.0210 (14)0.0218 (17)0.0196 (13)0.0007 (13)0.0029 (11)0.0017 (12)
O60.0188 (9)0.0271 (13)0.0254 (10)0.0014 (10)0.0003 (8)0.0008 (11)
C70.0320 (17)0.048 (2)0.0192 (14)0.0027 (17)0.0047 (12)0.0033 (16)
C80.0166 (13)0.0198 (15)0.0204 (13)0.0021 (12)0.0006 (10)0.0004 (12)
O90.0206 (10)0.0227 (12)0.0233 (10)0.0015 (10)0.0011 (8)0.0047 (10)
C100.0223 (14)0.031 (2)0.0179 (13)0.0020 (13)0.0023 (11)0.0001 (13)
O110.0323 (11)0.0248 (11)0.0206 (9)0.0028 (11)0.0024 (8)0.0022 (10)
Geometric parameters (Å, º) top
O1—C21.423 (4)O6—H40.809
O1—H90.849C7—H710.979
C2—C31.529 (4)C7—H720.963
C2—C81.530 (4)C7—H730.974
C2—H210.972C8—O91.433 (4)
C3—O41.432 (4)C8—C101.523 (4)
C3—C51.525 (4)C8—H810.992
C3—H310.968O9—H30.832
O4—H10.832C10—O111.439 (4)
C5—O61.436 (4)C10—H1010.982
C5—C71.527 (4)C10—H1020.987
C5—H510.989O11—H100.843
C2—O1—H9105.6C5—C7—H71109.6
O1—C2—C3106.7 (2)C5—C7—H72109.6
O1—C2—C8110.0 (3)H71—C7—H72109.9
C3—C2—C8112.6 (2)C5—C7—H73108.1
O1—C2—H21109.2H71—C7—H73110.5
C3—C2—H21109.8H72—C7—H73109.1
C8—C2—H21108.5C2—C8—O9110.9 (2)
C2—C3—O4106.6 (2)C2—C8—C10111.5 (2)
C2—C3—C5113.2 (2)O9—C8—C10110.0 (3)
O4—C3—C5109.6 (3)C2—C8—H81112.0
C2—C3—H31106.9O9—C8—H81106.3
O4—C3—H31110.6C10—C8—H81105.8
C5—C3—H31109.8C8—O9—H3113.5
C3—O4—H195.8C8—C10—O11111.8 (2)
C3—C5—O6111.1 (2)C8—C10—H101107.1
C3—C5—C7111.9 (2)O11—C10—H101108.1
O6—C5—C7110.3 (3)C8—C10—H102108.9
C3—C5—H51108.5O11—C10—H102111.3
O6—C5—H51106.4H101—C10—H102109.5
C7—C5—H51108.6C10—O11—H1094.6
C5—O6—H498.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O6i0.831.912.691 (4)155
O9—H3···O4ii0.831.972.753 (4)156
O6—H4···O1iii0.812.102.758 (4)138
O6—H4···O40.812.292.842 (4)126
O1—H9···O9iv0.851.852.684 (4)166
O11—H10···O11v0.842.012.828 (4)163
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x1, y, z; (v) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC6H14O5
Mr166.17
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)4.8486 (3), 4.8827 (3), 16.8354 (13)
β (°) 92.856 (2)
V3)398.07 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.15 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.81, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
2786, 998, 804
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 0.88
No. of reflections998
No. of parameters100
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O6i0.831.912.691 (4)155
O9—H3···O4ii0.831.972.753 (4)156
O6—H4···O1iii0.812.102.758 (4)138
O1—H9···O9iv0.851.852.684 (4)166
O11—H10···O11v0.842.012.828 (4)163
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x1, y, z; (v) x+2, y+1/2, z+2.
 

Acknowledgements

This work was supported in part by the Programme for Promotion of Basic Research Activities for Innovative Bio­sciences (PROBRAIN).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIzumori, K. J. (2002). Naturwissenschaften, 89, 120–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzumori, K. J. (2006). Biotechnology, 124, 717–722.  CAS Google Scholar
First citationJones, N. A., Jenkinson, S. F., Soengas, R., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. C63, o7–o10.  CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationYoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds