organic compounds
1-Deoxy-D-galactitol (L-fucitol)
aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and cDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: victoria.booth@chem.ox.ac.uk
1-Deoxy-D-galactitol, C6H14O5, exists in the crystalline form as hydrogen-bonded layers of molecules running parallel to the ac plane, with each molecule acting as a donor and acceptor of five hydrogen bonds.
Related literature
For related literature, see: Yoshihara et al. (2008); Jones et al. (2007); Görbitz (1999); Izumori (2002, 2006); Prince (1982); Watkin (1994).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536808020345/lh2653sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020345/lh2653Isup2.hkl
The title compound was recrystallized from methanol: m.p. 420-422K; [α]D21 +1.6 (c, 1.13 in H2O) [Lit. (Yoshihara et al., 2008) for [α]D20 -1.9 (c, 1.0 in H2O)].
In the absence of significant
Friedel pairs were merged and the was assigned fron the starting material.The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22 reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C6H14O5 | F(000) = 180 |
Mr = 166.17 | Dx = 1.386 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8486 (3) Å | Cell parameters from 844 reflections |
b = 4.8827 (3) Å | θ = 5–27° |
c = 16.8354 (13) Å | µ = 0.12 mm−1 |
β = 92.856 (2)° | T = 150 K |
V = 398.07 (5) Å3 | Block, colourless |
Z = 2 | 0.15 × 0.15 × 0.05 mm |
Nonius KappaCCD diffractometer | 804 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 27.4°, θmin = 5.4° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −6→6 |
Tmin = 0.81, Tmax = 0.99 | k = −5→6 |
2786 measured reflections | l = −21→21 |
998 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.111 | Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 17.0 25.0 12.0 3.16 |
S = 0.88 | (Δ/σ)max = 0.000240 |
998 reflections | Δρmax = 0.34 e Å−3 |
100 parameters | Δρmin = −0.31 e Å−3 |
1 restraint |
C6H14O5 | V = 398.07 (5) Å3 |
Mr = 166.17 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 4.8486 (3) Å | µ = 0.12 mm−1 |
b = 4.8827 (3) Å | T = 150 K |
c = 16.8354 (13) Å | 0.15 × 0.15 × 0.05 mm |
β = 92.856 (2)° |
Nonius KappaCCD diffractometer | 998 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 804 reflections with I > 2σ(I) |
Tmin = 0.81, Tmax = 0.99 | Rint = 0.038 |
2786 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 0.88 | Δρmax = 0.34 e Å−3 |
998 reflections | Δρmin = −0.31 e Å−3 |
100 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4779 (4) | 0.0226 (5) | 0.76245 (11) | 0.0217 | |
C2 | 0.6328 (6) | 0.2631 (7) | 0.78168 (17) | 0.0186 | |
C3 | 0.7866 (6) | 0.3389 (7) | 0.70769 (17) | 0.0189 | |
O4 | 0.9430 (4) | 0.5805 (5) | 0.72728 (12) | 0.0227 | |
C5 | 0.5946 (6) | 0.3936 (7) | 0.63490 (17) | 0.0207 | |
O6 | 0.4117 (4) | 0.6179 (5) | 0.64879 (12) | 0.0238 | |
C7 | 0.7550 (7) | 0.4471 (9) | 0.56067 (18) | 0.0330 | |
C8 | 0.8283 (6) | 0.2108 (7) | 0.85426 (17) | 0.0190 | |
O9 | 1.0094 (4) | −0.0141 (5) | 0.84026 (12) | 0.0222 | |
C10 | 0.6698 (6) | 0.1572 (7) | 0.92859 (17) | 0.0236 | |
O11 | 0.8526 (4) | 0.1176 (5) | 0.99759 (12) | 0.0260 | |
H21 | 0.5071 | 0.4100 | 0.7945 | 0.0249* | |
H31 | 0.9082 | 0.1875 | 0.6971 | 0.0263* | |
H51 | 0.4763 | 0.2307 | 0.6253 | 0.0282* | |
H71 | 0.6272 | 0.4510 | 0.5138 | 0.0515* | |
H72 | 0.8900 | 0.3047 | 0.5550 | 0.0518* | |
H73 | 0.8493 | 0.6223 | 0.5674 | 0.0506* | |
H81 | 0.9485 | 0.3709 | 0.8670 | 0.0243* | |
H101 | 0.5642 | −0.0123 | 0.9193 | 0.0325* | |
H102 | 0.5415 | 0.3107 | 0.9363 | 0.0333* | |
H1 | 1.0737 | 0.5438 | 0.6989 | 0.0372* | |
H3 | 0.9415 | −0.1296 | 0.8087 | 0.0364* | |
H4 | 0.5121 | 0.7060 | 0.6789 | 0.0402* | |
H9 | 0.3277 | 0.0397 | 0.7859 | 0.0353* | |
H10 | 0.9076 | 0.2813 | 0.9992 | 0.0410* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0179 (9) | 0.0228 (13) | 0.0249 (10) | −0.0051 (9) | 0.0048 (8) | −0.0061 (10) |
C2 | 0.0180 (13) | 0.0189 (15) | 0.0189 (13) | −0.0011 (11) | 0.0010 (10) | 0.0011 (12) |
C3 | 0.0196 (13) | 0.0173 (15) | 0.0202 (13) | −0.0016 (12) | 0.0031 (11) | −0.0029 (12) |
O4 | 0.0212 (10) | 0.0235 (13) | 0.0237 (9) | −0.0059 (10) | 0.0057 (8) | −0.0040 (10) |
C5 | 0.0210 (14) | 0.0218 (17) | 0.0196 (13) | 0.0007 (13) | 0.0029 (11) | −0.0017 (12) |
O6 | 0.0188 (9) | 0.0271 (13) | 0.0254 (10) | 0.0014 (10) | 0.0003 (8) | −0.0008 (11) |
C7 | 0.0320 (17) | 0.048 (2) | 0.0192 (14) | 0.0027 (17) | 0.0047 (12) | 0.0033 (16) |
C8 | 0.0166 (13) | 0.0198 (15) | 0.0204 (13) | 0.0021 (12) | 0.0006 (10) | −0.0004 (12) |
O9 | 0.0206 (10) | 0.0227 (12) | 0.0233 (10) | 0.0015 (10) | 0.0011 (8) | −0.0047 (10) |
C10 | 0.0223 (14) | 0.031 (2) | 0.0179 (13) | 0.0020 (13) | 0.0023 (11) | −0.0001 (13) |
O11 | 0.0323 (11) | 0.0248 (11) | 0.0206 (9) | −0.0028 (11) | −0.0024 (8) | 0.0022 (10) |
O1—C2 | 1.423 (4) | O6—H4 | 0.809 |
O1—H9 | 0.849 | C7—H71 | 0.979 |
C2—C3 | 1.529 (4) | C7—H72 | 0.963 |
C2—C8 | 1.530 (4) | C7—H73 | 0.974 |
C2—H21 | 0.972 | C8—O9 | 1.433 (4) |
C3—O4 | 1.432 (4) | C8—C10 | 1.523 (4) |
C3—C5 | 1.525 (4) | C8—H81 | 0.992 |
C3—H31 | 0.968 | O9—H3 | 0.832 |
O4—H1 | 0.832 | C10—O11 | 1.439 (4) |
C5—O6 | 1.436 (4) | C10—H101 | 0.982 |
C5—C7 | 1.527 (4) | C10—H102 | 0.987 |
C5—H51 | 0.989 | O11—H10 | 0.843 |
C2—O1—H9 | 105.6 | C5—C7—H71 | 109.6 |
O1—C2—C3 | 106.7 (2) | C5—C7—H72 | 109.6 |
O1—C2—C8 | 110.0 (3) | H71—C7—H72 | 109.9 |
C3—C2—C8 | 112.6 (2) | C5—C7—H73 | 108.1 |
O1—C2—H21 | 109.2 | H71—C7—H73 | 110.5 |
C3—C2—H21 | 109.8 | H72—C7—H73 | 109.1 |
C8—C2—H21 | 108.5 | C2—C8—O9 | 110.9 (2) |
C2—C3—O4 | 106.6 (2) | C2—C8—C10 | 111.5 (2) |
C2—C3—C5 | 113.2 (2) | O9—C8—C10 | 110.0 (3) |
O4—C3—C5 | 109.6 (3) | C2—C8—H81 | 112.0 |
C2—C3—H31 | 106.9 | O9—C8—H81 | 106.3 |
O4—C3—H31 | 110.6 | C10—C8—H81 | 105.8 |
C5—C3—H31 | 109.8 | C8—O9—H3 | 113.5 |
C3—O4—H1 | 95.8 | C8—C10—O11 | 111.8 (2) |
C3—C5—O6 | 111.1 (2) | C8—C10—H101 | 107.1 |
C3—C5—C7 | 111.9 (2) | O11—C10—H101 | 108.1 |
O6—C5—C7 | 110.3 (3) | C8—C10—H102 | 108.9 |
C3—C5—H51 | 108.5 | O11—C10—H102 | 111.3 |
O6—C5—H51 | 106.4 | H101—C10—H102 | 109.5 |
C7—C5—H51 | 108.6 | C10—O11—H10 | 94.6 |
C5—O6—H4 | 98.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1···O6i | 0.83 | 1.91 | 2.691 (4) | 155 |
O9—H3···O4ii | 0.83 | 1.97 | 2.753 (4) | 156 |
O6—H4···O1iii | 0.81 | 2.10 | 2.758 (4) | 138 |
O6—H4···O4 | 0.81 | 2.29 | 2.842 (4) | 126 |
O1—H9···O9iv | 0.85 | 1.85 | 2.684 (4) | 166 |
O11—H10···O11v | 0.84 | 2.01 | 2.828 (4) | 163 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x−1, y, z; (v) −x+2, y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C6H14O5 |
Mr | 166.17 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 150 |
a, b, c (Å) | 4.8486 (3), 4.8827 (3), 16.8354 (13) |
β (°) | 92.856 (2) |
V (Å3) | 398.07 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.15 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.81, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2786, 998, 804 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.111, 0.88 |
No. of reflections | 998 |
No. of parameters | 100 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.31 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1···O6i | 0.83 | 1.91 | 2.691 (4) | 155 |
O9—H3···O4ii | 0.83 | 1.97 | 2.753 (4) | 156 |
O6—H4···O1iii | 0.81 | 2.10 | 2.758 (4) | 138 |
O1—H9···O9iv | 0.85 | 1.85 | 2.684 (4) | 166 |
O11—H10···O11v | 0.84 | 2.01 | 2.828 (4) | 163 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x−1, y, z; (v) −x+2, y+1/2, −z+2. |
Acknowledgements
This work was supported in part by the Programme for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Izumori, K. J. (2002). Naturwissenschaften, 89, 120–124. Web of Science CrossRef PubMed CAS Google Scholar
Izumori, K. J. (2006). Biotechnology, 124, 717–722. CAS Google Scholar
Jones, N. A., Jenkinson, S. F., Soengas, R., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. C63, o7–o10. CSD CrossRef IUCr Journals Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The methodology developed by Izumori (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008). This methodology could allow access to rare monosaccharides in water in large amounts. An example of this is the subsequent formation of 1-deoxy-D-galactitol 2 by hydrogenation of L-fucose 1 (Fig. 1) which subsequently could be oxidized enzymatically to 1-deoxy-D-tagatose (Jones et al., 2007) 3.
If the terminal hydroxyl group and H atoms are ignored there is a pseudo centre of symmetry between C2 and C3 (Fig. 2). The crystal structure exists of hydrogen-bonded layers of molecules running parallel to the c-axis (Fig. 3). Each molecule acts as a donor and acceptor of 5 hydrogen bonds, all intra-molecular hydrogen bonds have been omitted.