organic compounds
6-Azido-6-deoxy-α-L-galactose (6-azido-L-fucose) monohydrate
aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and cDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: victoria.booth@chem.ox.ac.uk
Although 6-azido-6-deoxy-L-galactose in aqueous solution is in equilibrium between the open-chain, furanose and pyranose forms, it crystallizes solely as 6-azido-6-deoxy-α-L-galactopyranose monohydrate, C6H11N3O5·H2O, with the six-membered ring adopting a chair conformation. The structure exists as hydrogen-bonded chains, with each molecule acting as a donor and acceptor of five hydrogen bonds. There are no unusual crystal packing features and the was determined from the use of 1-azido-1-deoxy-D-galactitol as the starting material.
Related literature
For related literature see: Beadle et al. (1992); Izumori (2002, 2006); Granstrom et al. (2004); Sun et al. (2007); Levin (2002); Skytte (2002); Nakajima et al. (2004); Sui et al. (2005); Hossain et al. (2006); Kolb & Sharpless (2003); Chesterton et al. (2006); Görbitz (1999); Larson (1970); Prince (1982); Watkin (1994); Yoshihara et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536808022563/lh2654sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808022563/lh2654Isup2.hkl
The title compound was crystallized from water: m.p. 345 - 348K; [α]D21-52.3 (c, 1.05 in H2O).
In the absence of significant
Friedel pairs were merged. The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.15) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
A few very weak reflections were ignored in the
and was therefore carried out on only 1095 reflections, not the full 1296 originally collected.Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C6H11N3O5·H2O | F(000) = 472 |
Mr = 223.19 | Dx = 1.530 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2018 reflections |
a = 5.9687 (3) Å | θ = 5–27° |
b = 7.7395 (4) Å | µ = 0.14 mm−1 |
c = 20.9768 (11) Å | T = 150 K |
V = 969.02 (9) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.05 × 0.05 mm |
Nonius KappaCCD diffractometer | 792 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ω scans | θmax = 27.4°, θmin = 5.2° |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | h = −7→7 |
Tmin = 0.86, Tmax = 0.99 | k = −9→10 |
7317 measured reflections | l = −26→27 |
1296 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(F2)] |
S = 0.80 | (Δ/σ)max = 0.000272 |
1095 reflections | Δρmax = 0.37 e Å−3 |
136 parameters | Δρmin = −0.36 e Å−3 |
0 restraints |
C6H11N3O5·H2O | V = 969.02 (9) Å3 |
Mr = 223.19 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.9687 (3) Å | µ = 0.14 mm−1 |
b = 7.7395 (4) Å | T = 150 K |
c = 20.9768 (11) Å | 0.50 × 0.05 × 0.05 mm |
Nonius KappaCCD diffractometer | 1296 independent reflections |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | 792 reflections with I > 2σ(I) |
Tmin = 0.86, Tmax = 0.99 | Rint = 0.053 |
7317 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 0.80 | Δρmax = 0.37 e Å−3 |
1095 reflections | Δρmin = −0.36 e Å−3 |
136 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7366 (3) | 0.6574 (2) | 0.68646 (7) | 0.0240 | |
C2 | 0.8440 (4) | 0.5120 (3) | 0.65721 (11) | 0.0207 | |
C3 | 0.8824 (4) | 0.3657 (4) | 0.70492 (11) | 0.0198 | |
O4 | 1.0088 (3) | 0.4176 (3) | 0.76006 (7) | 0.0239 | |
C5 | 0.6592 (4) | 0.2991 (4) | 0.72879 (11) | 0.0185 | |
O6 | 0.7020 (3) | 0.1614 (2) | 0.77263 (7) | 0.0218 | |
C7 | 0.5141 (4) | 0.2396 (3) | 0.67315 (11) | 0.0203 | |
O8 | 0.6145 (3) | 0.0996 (3) | 0.64297 (8) | 0.0276 | |
O9 | 0.4833 (3) | 0.3840 (2) | 0.63098 (7) | 0.0228 | |
C10 | 0.6911 (4) | 0.4467 (4) | 0.60441 (11) | 0.0223 | |
C11 | 0.6234 (5) | 0.5891 (4) | 0.55904 (11) | 0.0286 | |
N12 | 0.5055 (4) | 0.5214 (3) | 0.50147 (10) | 0.0336 | |
N13 | 0.3088 (4) | 0.4780 (4) | 0.51035 (10) | 0.0347 | |
N14 | 0.1278 (4) | 0.4350 (5) | 0.51097 (11) | 0.0585 | |
O15 | 0.7358 (3) | 0.5841 (3) | 0.38440 (7) | 0.0372 | |
H21 | 0.9866 | 0.5468 | 0.6385 | 0.0251* | |
H31 | 0.9606 | 0.2684 | 0.6830 | 0.0246* | |
H51 | 0.5793 | 0.3928 | 0.7511 | 0.0236* | |
H71 | 0.3616 | 0.2056 | 0.6878 | 0.0253* | |
H101 | 0.7643 | 0.3512 | 0.5817 | 0.0281* | |
H111 | 0.7596 | 0.6432 | 0.5432 | 0.0344* | |
H112 | 0.5329 | 0.6774 | 0.5803 | 0.0343* | |
H152 | 0.6532 | 0.5377 | 0.4105 | 0.0561* | |
H11 | 0.8239 | 0.7312 | 0.6983 | 0.0373* | |
H41 | 1.1103 | 0.4866 | 0.7514 | 0.0381* | |
H151 | 0.6582 | 0.6044 | 0.3527 | 0.0563* | |
H81 | 0.5011 | 0.0423 | 0.6335 | 0.0441* | |
H62 | 0.5844 | 0.1468 | 0.7909 | 0.0334* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0231 (9) | 0.0184 (10) | 0.0306 (9) | 0.0001 (9) | 0.0005 (9) | −0.0023 (9) |
C2 | 0.0192 (13) | 0.0202 (16) | 0.0226 (12) | 0.0007 (13) | 0.0055 (12) | −0.0010 (13) |
C3 | 0.0164 (12) | 0.0236 (18) | 0.0193 (12) | 0.0008 (13) | −0.0022 (11) | −0.0033 (13) |
O4 | 0.0215 (9) | 0.0256 (11) | 0.0247 (9) | −0.0089 (9) | −0.0044 (8) | 0.0023 (9) |
C5 | 0.0192 (13) | 0.0169 (16) | 0.0193 (12) | −0.0005 (12) | 0.0002 (11) | 0.0020 (13) |
O6 | 0.0193 (9) | 0.0225 (11) | 0.0236 (8) | 0.0003 (9) | 0.0017 (8) | 0.0046 (10) |
C7 | 0.0217 (13) | 0.0184 (14) | 0.0207 (13) | 0.0012 (14) | −0.0002 (13) | −0.0003 (13) |
O8 | 0.0269 (10) | 0.0248 (11) | 0.0310 (9) | −0.0028 (10) | −0.0001 (9) | −0.0065 (10) |
O9 | 0.0194 (9) | 0.0267 (11) | 0.0223 (9) | −0.0011 (9) | 0.0005 (8) | 0.0043 (9) |
C10 | 0.0218 (14) | 0.0238 (16) | 0.0213 (12) | 0.0001 (13) | 0.0043 (12) | 0.0004 (13) |
C11 | 0.0293 (15) | 0.0334 (17) | 0.0232 (13) | −0.0028 (16) | −0.0001 (12) | 0.0066 (15) |
N12 | 0.0253 (12) | 0.0542 (19) | 0.0213 (11) | −0.0009 (13) | 0.0003 (11) | 0.0049 (13) |
N13 | 0.0364 (15) | 0.0501 (19) | 0.0174 (13) | 0.0037 (14) | 0.0003 (11) | 0.0006 (13) |
N14 | 0.0350 (16) | 0.107 (3) | 0.0336 (15) | −0.0156 (19) | 0.0022 (14) | −0.0111 (19) |
O15 | 0.0357 (10) | 0.0476 (13) | 0.0283 (9) | 0.0078 (12) | 0.0071 (9) | 0.0092 (11) |
O1—C2 | 1.433 (3) | C7—O9 | 1.437 (3) |
O1—H11 | 0.812 | C7—H71 | 0.997 |
C2—C3 | 1.529 (3) | O8—H81 | 0.834 |
C2—C10 | 1.522 (3) | O9—C10 | 1.444 (3) |
C2—H21 | 0.975 | C10—C11 | 1.511 (4) |
C3—O4 | 1.438 (3) | C10—H101 | 0.982 |
C3—C5 | 1.514 (3) | C11—N12 | 1.493 (3) |
C3—H31 | 0.999 | C11—H111 | 0.973 |
O4—H41 | 0.828 | C11—H112 | 0.978 |
C5—O6 | 1.431 (3) | N12—N13 | 1.235 (3) |
C5—C7 | 1.524 (3) | N13—N14 | 1.130 (3) |
C5—H51 | 0.986 | O15—H152 | 0.820 |
O6—H62 | 0.807 | O15—H151 | 0.825 |
C7—O8 | 1.391 (3) | ||
C2—O1—H11 | 113.3 | C5—C7—O9 | 108.0 (2) |
O1—C2—C3 | 111.62 (19) | O8—C7—O9 | 112.39 (18) |
O1—C2—C10 | 107.7 (2) | C5—C7—H71 | 111.2 |
C3—C2—C10 | 108.7 (2) | O8—C7—H71 | 109.2 |
O1—C2—H21 | 110.3 | O9—C7—H71 | 106.2 |
C3—C2—H21 | 109.7 | C7—O8—H81 | 100.0 |
C10—C2—H21 | 108.8 | C7—O9—C10 | 112.87 (18) |
C2—C3—O4 | 113.5 (2) | C2—C10—O9 | 110.25 (19) |
C2—C3—C5 | 109.7 (2) | C2—C10—C11 | 112.1 (2) |
O4—C3—C5 | 106.90 (18) | O9—C10—C11 | 104.97 (19) |
C2—C3—H31 | 109.1 | C2—C10—H101 | 109.6 |
O4—C3—H31 | 109.6 | O9—C10—H101 | 108.5 |
C5—C3—H31 | 107.9 | C11—C10—H101 | 111.2 |
C3—O4—H41 | 112.7 | C10—C11—N12 | 112.3 (3) |
C3—C5—O6 | 108.02 (19) | C10—C11—H111 | 107.7 |
C3—C5—C7 | 110.46 (18) | N12—C11—H111 | 105.6 |
O6—C5—C7 | 111.6 (2) | C10—C11—H112 | 111.8 |
C3—C5—H51 | 109.4 | N12—C11—H112 | 110.7 |
O6—C5—H51 | 109.2 | H111—C11—H112 | 108.4 |
C7—C5—H51 | 108.1 | C11—N12—N13 | 114.9 (2) |
C5—O6—H62 | 104.7 | N12—N13—N14 | 171.9 (3) |
C5—C7—O8 | 109.8 (2) | H152—O15—H151 | 106.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O15—H152···N12 | 0.82 | 2.11 | 2.856 (4) | 152 |
O1—H11···O4i | 0.81 | 1.96 | 2.760 (4) | 169 |
O4—H41···O6i | 0.83 | 1.83 | 2.648 (4) | 171 |
O15—H151···O4ii | 0.83 | 2.19 | 2.989 (4) | 163 |
O8—H81···O15iii | 0.83 | 1.90 | 2.732 (4) | 177 |
O6—H62···O1iv | 0.81 | 1.98 | 2.755 (4) | 162 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+3/2, −y+1, z−1/2; (iii) x−1/2, −y+1/2, −z+1; (iv) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C6H11N3O5·H2O |
Mr | 223.19 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 5.9687 (3), 7.7395 (4), 20.9768 (11) |
V (Å3) | 969.02 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.50 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.86, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7317, 1296, 792 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.073, 0.80 |
No. of reflections | 1095 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.36 |
Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···O4i | 0.81 | 1.96 | 2.760 (4) | 169 |
O4—H41···O6i | 0.83 | 1.83 | 2.648 (4) | 171 |
O15—H151···O4ii | 0.83 | 2.19 | 2.989 (4) | 163 |
O8—H81···O15iii | 0.83 | 1.90 | 2.732 (4) | 177 |
O6—H62···O1iv | 0.81 | 1.98 | 2.755 (4) | 162 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+3/2, −y+1, z−1/2; (iii) x−1/2, −y+1/2, −z+1; (iv) −x+1, y−1/2, −z+3/2. |
Acknowledgements
This work was supported in part by the Programme for the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN). The authors also thank the Oxford University Chemical Crystallography Service for use of the instruments.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796. Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Chesterton, A. K. S., Jenkinson, S. F., Jones, N. A., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o2983–o2985. Web of Science CSD CrossRef IUCr Journals Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94. Web of Science CrossRef PubMed Google Scholar
Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371. Web of Science CrossRef PubMed CAS Google Scholar
Izumori, K. (2002). Naturwissenschaften, 89, 120–124. Web of Science CrossRef PubMed CAS Google Scholar
Izumori, K. (2006). J. Biotechnol. 124, 717–722. Web of Science CrossRef PubMed CAS Google Scholar
Kolb, H. C. & Sharpless, K. B. (2003). Drug Discovery Today, 8, 1128–???. Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Levin, G. V. (2002). J. Med. Food, 5, 23–36. CrossRef PubMed CAS Google Scholar
Nakajima, Y., Gotanda, T., Uchimiya, H., Furukawa, T., Haraguchi, M., Ikeda, R., Sumizawa, T., Yoshida, H. & Akiyama, S. (2004). Cancer Res. 64, 1794–1801. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Skytte, U. P. (2002). Cereal Foods World, 47, 224–224. Google Scholar
Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Int. J. Oncol. 27, 907–912. Web of Science PubMed CAS Google Scholar
Sun, Y. X., Hayakawa, S., Ogawa, M. & Izumori, K. (2007). Food. Contr. 18, 220–227. Web of Science CrossRef CAS Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The range of rare sugars that are now readily available has increased in recent years due to both chemical (Beadle et al., 1992) and biotechnological (Izumori, 2002,2006; Granstrom et al., 2004) advances. Interest in rare sugars has been prompted by the search for low calorie alternative food stuffs (Sun et al., 2007; Levin, 2002; Skytte, 2002) and also a potential range of other beneficial therapeutic properties (Nakajima et al., 2004; Sui et al., 2005; Hossain et al., 2006).
The methodology developed by Izumori (2002,2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008). The viability of the methodology for the corresponding azido substituted systems was investigated with the synthesis 6-azido-6-deoxy-L-galactose 3 by microbial oxidation of 1-azido-1-deoxy-D-galactitol 1 with K.Pneumoniae 40bR followed by isomerization to the aldose 3 using D-arabinose isomerase (Fig. 1).
6-Azido-6-deoxy sugars have been little investigated and may have similar interesting properties. They are also of interest as Click Chemistry substrates, allowing a wide range of novel sugar substituted triazoles to be synthesized quickly, utilizing a few easy and reliable reactions. A click reaction should be wide in scope and easy to perform, use only readily available reagents, and be insensitive to oxygen and water. Reaction work-up and purification uses benign solvents and avoids chromatography. In many cases the reaction can be performed in, or on top of water; (Kolb and Sharpless, 2003) presenting an obvious environmental benefit to many existing precedures.
6-Azido-6-deoxy-L-galactose monohydrate crystallized solely in the α-pyranose form with the 6-membered ring adopting a chair conformation (Fig. 2). Each molecule acts as a donor and acceptor for 5 hydrogen bonds. A non standard hydrogen bond to the terminal azide nitrogen has been removed from the packing diagrams. The structure exists as discrete chains of molecules run ning parallel to the a-axis and exhibits no unusual crystal packing features. As is common with these materials, the azide group is non linear [N12—N13—N14 171.91° (6)] (Chesterton et al. 2006).