organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Chloro­phen­yl)-1-(2-fur­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 July 2008; accepted 14 July 2008; online 19 July 2008)

In the title mol­ecule, C13H9ClO2, the benzene and furyl rings are slightly twisted from each other with a dihedral angle of 5.1 (1)°. An intra­molecular C—H⋯O hydrogen-bond inter­action generates an S(5) ring motif. In the crystal structure, mol­ecules are stacked along the b axis and the crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature on the biological and nonlinear optical properties of chalcone derivatives, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Chopra et al. (2007[Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704-o710.]); DiCesare & Lakowicz (2000[DiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615-2618.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.], 2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]); Gu, Ji, Patil & Dharmaprakash (2008[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511.]); Gu, Ji, Patil, Dharmaprakash & Wang (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClO2

  • Mr = 232.65

  • Orthorhombic, P n a 21

  • a = 21.3399 (7) Å

  • b = 3.7912 (1) Å

  • c = 12.9444 (4) Å

  • V = 1047.25 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100.0 (1) K

  • 0.40 × 0.29 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.931

  • 13568 measured reflections

  • 5209 independent reflections

  • 4211 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.08

  • 5209 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2227 Friedel pairs

  • Flack parameter: 0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2 0.93 2.52 2.8411 (17) 101
C13—H13A⋯O2i 0.93 2.48 3.2535 (18) 140
Symmetry code: (i) [-x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcone derivatives continue to attract the interest of chemists, biologists and physicists due to their remarkable biological and nonlinear optical properties (Chopra et al., 2007; DiCesare & Lakowicz, 2000; Patil, et al., 2006, 2007; Agrinskaya et al., 1999; Gu, Ji, Patil & Dharmaprakash, 2008; Gu, Ji, Patil, Dharmaprakash & Wang, 2008). We have synthesized the title compound (I) and its structure is reported here.

The bond lengths and bond angles in (I) have normal values (Allen et al., 1987). The benzene and furyl rings in the molecule are essentially planar with the maximum deviation from planarity being -0.003 (18)Å for atom C12 and -0.004 (14)Å for atom O1 respectively. The dihedral angle between the benzene and the furyl rings is 5.1 (1)°, indicating that they are only slightly twisted from each other.

An intramolecular C—H···O hydrogen bond generates an S(5) ring motif (Bernstein et al., 1995). In the crystal structure, the molecules are are stacked along the b axis. The crystal packing is consolidated by C—H···O hydrogen bond interactions.

Related literature top

For related literature on the biological and nonlinear optical properties of chalcone derivatives, see: Agrinskaya et al. (1999); Chopra et al. (2007); DiCesare & Lakowicz (2000); Patil et al. (2006, 2007); Gu, Ji, Patil & Dharmaprakash (2008); Gu, Ji, Patil, Dharmaprakash & Wang (2008). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The compound (I) was synthesized by the condensation of 4 -chlorobenzaldehyde (0.01 mol, 1.49 g m) with 2-acetylfuran (0.01 mol, 1.01 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Then precipitated compound was recrystallized from N, N-dimethylformamide (DMF).

Refinement top

H atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-3-(4-Chlorophenyl)-1-(2-furyl)prop-2-en-1-one top
Crystal data top
C13H9ClO2F(000) = 480
Mr = 232.65Dx = 1.476 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4886 reflections
a = 21.3399 (7) Åθ = 2.5–37.2°
b = 3.7912 (1) ŵ = 0.34 mm1
c = 12.9444 (4) ÅT = 100 K
V = 1047.25 (5) Å3Block, colourless
Z = 40.40 × 0.29 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5209 independent reflections
Radiation source: fine-focus sealed tube4211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 38.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3137
Tmin = 0.875, Tmax = 0.931k = 66
13568 measured reflectionsl = 2219
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0686P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5209 reflectionsΔρmax = 0.58 e Å3
145 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 2216 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
C13H9ClO2V = 1047.25 (5) Å3
Mr = 232.65Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.3399 (7) ŵ = 0.34 mm1
b = 3.7912 (1) ÅT = 100 K
c = 12.9444 (4) Å0.40 × 0.29 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5209 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4211 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.931Rint = 0.025
13568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.58 e Å3
S = 1.08Δρmin = 0.28 e Å3
5209 reflectionsAbsolute structure: Flack (1983), 2216 Friedel pairs
145 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.249271 (17)0.53749 (9)0.21078 (5)0.02637 (9)
O10.03179 (5)0.2805 (3)0.94149 (7)0.0225 (2)
O20.00152 (6)0.1062 (3)0.74067 (9)0.0266 (2)
C10.06091 (7)0.3896 (4)1.02879 (11)0.0246 (3)
H1A0.04540.35571.09520.030*
C20.11562 (8)0.5548 (4)1.00653 (12)0.0243 (3)
H2A0.14370.65361.05330.029*
C30.12135 (7)0.5463 (4)0.89712 (12)0.0215 (3)
H3A0.15400.63880.85810.026*
C40.06937 (7)0.3752 (4)0.86037 (10)0.0192 (2)
C50.04991 (6)0.2723 (4)0.75621 (9)0.0198 (2)
C60.09349 (7)0.3737 (4)0.67253 (10)0.0202 (2)
H6A0.12740.51900.68750.024*
C70.08493 (6)0.2600 (4)0.57564 (10)0.0188 (2)
H7A0.04960.12230.56330.023*
C80.12568 (6)0.3314 (4)0.48732 (9)0.0178 (2)
C90.18485 (6)0.4918 (4)0.49906 (11)0.0188 (2)
H9A0.19840.55790.56450.023*
C100.22299 (7)0.5524 (4)0.41438 (11)0.0192 (2)
H10A0.26210.65770.42230.023*
C110.20160 (7)0.4524 (4)0.31741 (11)0.0186 (2)
C120.14356 (7)0.2960 (4)0.30286 (10)0.0198 (2)
H12A0.13010.23330.23700.024*
C130.10594 (6)0.2350 (4)0.38834 (9)0.0185 (2)
H13A0.06700.12840.37970.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02847 (16)0.02869 (17)0.02196 (14)0.00201 (13)0.00812 (11)0.00173 (17)
O10.0200 (4)0.0321 (6)0.0156 (4)0.0000 (4)0.0017 (3)0.0021 (4)
O20.0241 (5)0.0361 (6)0.0196 (4)0.0065 (4)0.0001 (4)0.0017 (4)
C10.0265 (7)0.0314 (8)0.0161 (5)0.0055 (6)0.0005 (5)0.0023 (5)
C20.0268 (7)0.0249 (7)0.0211 (6)0.0033 (5)0.0045 (5)0.0027 (5)
C30.0201 (6)0.0220 (7)0.0223 (6)0.0000 (5)0.0018 (5)0.0026 (5)
C40.0201 (5)0.0218 (6)0.0157 (5)0.0029 (5)0.0008 (4)0.0019 (4)
C50.0204 (6)0.0236 (6)0.0153 (5)0.0028 (5)0.0010 (4)0.0013 (4)
C60.0196 (5)0.0224 (6)0.0185 (5)0.0008 (5)0.0010 (4)0.0006 (5)
C70.0186 (5)0.0197 (6)0.0181 (5)0.0006 (5)0.0004 (4)0.0011 (4)
C80.0171 (5)0.0209 (6)0.0153 (5)0.0020 (5)0.0006 (4)0.0002 (4)
C90.0191 (5)0.0212 (6)0.0160 (5)0.0004 (5)0.0007 (4)0.0011 (4)
C100.0181 (6)0.0187 (6)0.0208 (5)0.0012 (5)0.0005 (4)0.0003 (5)
C110.0209 (6)0.0166 (6)0.0185 (5)0.0013 (5)0.0031 (4)0.0016 (4)
C120.0217 (6)0.0212 (6)0.0164 (5)0.0006 (5)0.0006 (4)0.0014 (4)
C130.0173 (5)0.0218 (6)0.0164 (5)0.0001 (5)0.0023 (4)0.0004 (4)
Geometric parameters (Å, º) top
Cl1—C111.7446 (14)C6—H6A0.9300
O1—C11.3543 (18)C7—C81.4617 (18)
O1—C41.3691 (16)C7—H7A0.9300
O2—C51.2261 (18)C8—C131.3974 (17)
C1—C21.356 (2)C8—C91.410 (2)
C1—H1A0.9300C9—C101.384 (2)
C2—C31.422 (2)C9—H9A0.9300
C2—H2A0.9300C10—C111.388 (2)
C3—C41.370 (2)C10—H10A0.9300
C3—H3A0.9300C11—C121.386 (2)
C4—C51.4637 (18)C12—C131.3865 (18)
C5—C61.4786 (18)C12—H12A0.9300
C6—C71.3388 (18)C13—H13A0.9300
C1—O1—C4106.93 (11)C6—C7—H7A116.9
O1—C1—C2111.03 (13)C8—C7—H7A116.9
O1—C1—H1A124.5C13—C8—C9118.80 (12)
C2—C1—H1A124.5C13—C8—C7119.30 (12)
C1—C2—C3105.97 (14)C9—C8—C7121.90 (11)
C1—C2—H2A127.0C10—C9—C8120.85 (12)
C3—C2—H2A127.0C10—C9—H9A119.6
C4—C3—C2106.68 (14)C8—C9—H9A119.6
C4—C3—H3A126.7C9—C10—C11118.51 (12)
C2—C3—H3A126.7C9—C10—H10A120.7
O1—C4—C3109.39 (12)C11—C10—H10A120.7
O1—C4—C5118.06 (12)C12—C11—C10122.24 (12)
C3—C4—C5132.51 (13)C12—C11—Cl1119.52 (11)
O2—C5—C4121.81 (12)C10—C11—Cl1118.23 (11)
O2—C5—C6122.90 (13)C11—C12—C13118.71 (12)
C4—C5—C6115.27 (12)C11—C12—H12A120.6
C7—C6—C5121.11 (13)C13—C12—H12A120.6
C7—C6—H6A119.4C12—C13—C8120.89 (12)
C5—C6—H6A119.4C12—C13—H13A119.6
C6—C7—C8126.29 (13)C8—C13—H13A119.6
C4—O1—C1—C20.69 (17)C5—C6—C7—C8177.75 (13)
O1—C1—C2—C30.41 (18)C6—C7—C8—C13171.24 (14)
C1—C2—C3—C40.02 (18)C6—C7—C8—C99.4 (2)
C1—O1—C4—C30.69 (16)C13—C8—C9—C100.2 (2)
C1—O1—C4—C5177.19 (12)C7—C8—C9—C10179.11 (14)
C2—C3—C4—O10.44 (17)C8—C9—C10—C110.2 (2)
C2—C3—C4—C5177.02 (15)C9—C10—C11—C120.2 (2)
O1—C4—C5—O20.0 (2)C9—C10—C11—Cl1178.75 (11)
C3—C4—C5—O2177.28 (16)C10—C11—C12—C130.6 (2)
O1—C4—C5—C6178.30 (12)Cl1—C11—C12—C13179.09 (11)
C3—C4—C5—C61.0 (2)C11—C12—C13—C80.5 (2)
O2—C5—C6—C76.2 (2)C9—C8—C13—C120.2 (2)
C4—C5—C6—C7172.11 (14)C7—C8—C13—C12179.49 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.932.522.8411 (17)101
C13—H13A···O2i0.932.483.2535 (18)140
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9ClO2
Mr232.65
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)21.3399 (7), 3.7912 (1), 12.9444 (4)
V3)1047.25 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.40 × 0.29 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.875, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
13568, 5209, 4211
Rint0.025
(sin θ/λ)max1)0.870
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.08
No. of reflections5209
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.28
Absolute structureFlack (1983), 2216 Friedel pairs
Absolute structure parameter0.07 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.932.522.8411 (17)100.8
C13—H13A···O2i0.932.483.2535 (18)140.2
Symmetry code: (i) x, y, z1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615–2618.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511.  Web of Science CrossRef Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds