metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1065-m1066

Propane-1,3-di­ammonium bis­­[aqua­chlorido(4-hy­droxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)mercurate(II)] tetra­hydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 19 June 2008; accepted 21 July 2008; online 26 July 2008)

The reaction of mercury(II) chloride dihydrate, propane-1,3-diamine and 4-hydroxy­pyridine-2,6-dicarboxylic acid in a 1:1:1 molar ratio in aqueous solution, resulted in the formation of the title compound, (C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2O or (pnH2)[Hg(hypydc)Cl(H2O)]2·4H2O (where pn is propane-1,3-diamine and hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid). The metal atom is coordinated by one chloride group, one water mol­ecule cis to the chloride ligand and one (hypydc)2− ligand. The coordinated water mol­ecule is almost perpendicular to the plane of the aromatic ring of (hypydc)2−. The geometry of the resulting HgClNO3 coordination can be described as distorted square-pyramidal. This structure also contains propane-1,3-diammonium (site symmetry 2) as a counter-ion and four uncoordinated water mol­ecules. There is a wide range of non-covalent inter­actions consisting of hydrogen bonding [of the types O—H⋯O, N—H⋯O and C—H⋯O, with DA ranging from 2.548 (5) to 3.393 (6) Å] and ion pairing.

Related literature

For related literature, see: Aghabozorg et al. (2007[Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985-o2986.], 2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006[Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174-o3176.]); Aghabozorg, Ghadermazi & Ramezanipour (2006[Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143-o1146.]); Agha­bozorg, Ghasemikhah et al. (2006[Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2269-m2271.]); Ramezanipour et al. (2005[Ramezanipour, F., Aghabozorg, H. & Soleimannejad, J. (2005). Acta Cryst. E61, m1194-m1196.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2O

  • Mr = 1018.53

  • Monoclinic, C 2/c

  • a = 29.2207 (13) Å

  • b = 6.7630 (3) Å

  • c = 15.4913 (7) Å

  • β = 114.5130 (10)°

  • V = 2785.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.28 mm−1

  • T = 100 (2) K

  • 0.11 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.284, Tmax = 0.457

  • 9362 measured reflections

  • 3041 independent reflections

  • 2632 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.047

  • S = 0.99

  • 3041 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.92 1.63 2.548 (5) 173
N2—H1C⋯O3Wii 0.89 2.02 2.830 (5) 150
N2—H1D⋯O2Wiii 0.89 2.30 3.096 (6) 149
N2—H1E⋯O2Wiv 0.89 1.96 2.824 (6) 165
O1W—H1A⋯O5ii 0.82 2.08 2.854 (5) 157
O1W—H1B⋯O2v 0.82 2.06 2.837 (6) 157
O2W—H2B⋯O1 0.85 1.98 2.771 (6) 154
O2W—H2C⋯O2vi 0.85 1.94 2.777 (5) 169
O3W—H3A⋯O3v 0.85 2.30 3.019 (6) 142
O3W—H3B⋯O5 0.85 1.93 2.766 (6) 169
C8—H8B⋯O1 0.97 2.45 3.393 (6) 163
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) x, y-1, z; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have defined a plan to prepare water soluble proton-transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which protons transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylicacid, btcH4, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen). These resulted in the formation of some novel proton transfer compounds such as (pnH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi, Ramezanipour, 2006), (pnH2)2(btc).2H2O (Aghabozorg, et al., 2007) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi, Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, et al., 2008).

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively.

The HgII atom is five-coordinated by one chloro group, one water molecule and one 4-hydroxypyridine-2,6-dicarboxylate, or (hypydc)2–, group which is coordinated through one pyridine N atom and two carboxylate O atoms. These distances are in good agreement with our two recently reported HgII structures (Aghabozorg, Ghasemikhah, Ghadermazi, et al., 2006; Ramezanipour et al., 2005).

The sum of the Cl1—Hg1—O1, O1—Hg1—N1, N1—Hg1—O4 and O4—Hg1—Cl1 bond angles equals 361.33 °, which indicates that these four atoms are almost located in the plane. As it can be seen, the O1W atom of the coordinated water molecule occupies the axial position, while the O1, O4, N1 and Cl1 atoms form the equatorial plane of the square pyramid. The O1W—Hg1—Cl1, O1W—Hg1—N1, O1W—Hg1—O1 and O1W—Hg1—O4 angles are 94.63 (7), 96.83 (11), 91.72 (9) and 82.81 (9)°, respectively, indicating that the coordinated water molecule is located at cis position to the chloro ligand and is also almost perpendicular to the square plane of the pyramid. Therefore, the geometry of the resulting HgClNO3 coordination can be described as distorted square pyramidal. The molecular structure of the title compound also contains propane-1,3-diammonium (site symmetry 2) as counter-ion and four uncoordinated water molecules. In the crystal structure, there is a wide range of non-covalent interactions consisting of hydrogen bonding (of the type O—H···O, N—H···O and C—H···O with D···A ranging from 2.548 (5) Å to 3.393 (6) Å) and ion pairing (Table 1).

Related literature top

For related literature, see: Aghabozorg et al. (2007, 2008); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006); Aghabozorg, Ghasemikhah et al. (2006); Ramezanipour et al. (2005).

Experimental top

Aqueous solutions of HgCl2.2H2O (76 mg, 0.2 mmol), propane-1,3-diamine (18 mg, 0.2 mmol) and 4-hydroxypyridine-2,6-dicarboxylic acid (72 mg, 0.2 mmol) were mixed in a 1:1:1 molar ratio, and the reaction mixture was heated at about 313 K for 2 h. Colourless crystals of the title compound were obtained from the solution after three weeks at room temperature.

Refinement top

The hydrogen atoms of the NH3 and OH groups, and also H atoms of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. All H(N) and H(O) atoms were refined in isotropic approximation in rigid model, the H(C) atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ci) and 1.5 Ueq(Cii) for OH, NH3 group and water molecules, where U(C) are the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code A: -x + 1, y, -z + 3/2.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis, hydrogen bonds are shown as dashed lines.
Propane-1,3-diammonium bis[aquachlorido(4-hydroxypyridine-2,6- dicarboxylato-κ3O2,N,O6)mercurate(II)] tetrahydrate top
Crystal data top
(C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2OF(000) = 1928
Mr = 1018.53Dx = 2.429 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.2207 (13) ÅCell parameters from 2868 reflections
b = 6.7630 (3) Åθ = 3–27°
c = 15.4913 (7) ŵ = 11.28 mm1
β = 114.513 (1)°T = 100 K
V = 2785.5 (2) Å3Prism, colourless
Z = 40.11 × 0.08 × 0.07 mm
Data collection top
Bruker SMART APEXII
diffractometer
3041 independent reflections
Radiation source: fine-focus sealed tube2632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3736
Tmin = 0.284, Tmax = 0.457k = 88
9362 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: mixed
wR(F2) = 0.047H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
3041 reflections(Δ/σ)max = 0.003
187 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
(C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2OV = 2785.5 (2) Å3
Mr = 1018.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.2207 (13) ŵ = 11.28 mm1
b = 6.7630 (3) ÅT = 100 K
c = 15.4913 (7) Å0.11 × 0.08 × 0.07 mm
β = 114.513 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
3041 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2632 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.457Rint = 0.036
9362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 0.99Δρmax = 0.79 e Å3
3041 reflectionsΔρmin = 0.84 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.360437 (6)0.72342 (2)0.843452 (11)0.01284 (6)
Cl10.40073 (4)0.88117 (16)0.98816 (7)0.0205 (2)
O10.41510 (10)0.6883 (4)0.7583 (2)0.0163 (6)
O20.40827 (11)0.6472 (5)0.6102 (2)0.0200 (7)
O30.22507 (10)0.4439 (4)0.43123 (19)0.0161 (6)
H30.24220.40650.39560.024*
O40.27295 (10)0.6300 (4)0.8299 (2)0.0159 (6)
O50.19566 (10)0.6269 (5)0.7138 (2)0.0173 (6)
N10.31418 (12)0.6356 (5)0.7000 (2)0.0115 (7)
C10.33511 (15)0.6083 (6)0.6378 (3)0.0118 (8)
C20.30679 (15)0.5421 (6)0.5469 (3)0.0135 (9)
H2A0.32180.52000.50530.016*
C30.25554 (15)0.5084 (6)0.5177 (3)0.0118 (9)
C40.23390 (15)0.5464 (6)0.5813 (3)0.0120 (8)
H4A0.19940.53240.56270.014*
C50.26445 (15)0.6044 (6)0.6713 (3)0.0113 (8)
C60.39097 (15)0.6514 (6)0.6713 (3)0.0130 (8)
C70.24210 (15)0.6239 (6)0.7438 (3)0.0106 (8)
N20.47091 (14)0.1672 (6)0.8789 (3)0.0266 (9)
H1C0.43840.14430.84380.040*
H1D0.47440.23260.93110.040*
H1E0.48730.05280.89490.040*
C80.49190 (17)0.2877 (7)0.8234 (3)0.0254 (11)
H8A0.52370.34550.86590.030*
H8B0.46890.39450.79160.030*
C90.50000.1595 (9)0.75000.0249 (15)
H9A0.47110.07630.71900.030*
O1W0.38232 (10)0.3754 (4)0.91250 (19)0.0169 (6)
H1A0.35820.30010.88950.025*
H1B0.38480.39760.96630.025*
O2W0.50594 (11)0.7731 (4)0.9089 (2)0.0245 (7)
H2B0.48420.74510.85350.037*
H2C0.53150.74790.89770.037*
O3W0.12234 (11)0.6629 (5)0.7822 (2)0.0245 (7)
H3A0.14280.64360.83950.037*
H3B0.14380.63640.76000.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.00977 (9)0.01538 (9)0.01123 (8)0.00051 (7)0.00222 (6)0.00185 (7)
Cl10.0158 (5)0.0230 (6)0.0160 (5)0.0004 (4)0.0002 (4)0.0066 (4)
O10.0102 (15)0.0221 (16)0.0141 (15)0.0007 (12)0.0025 (12)0.0031 (13)
O20.0127 (16)0.0302 (17)0.0187 (16)0.0032 (13)0.0082 (13)0.0011 (14)
O30.0106 (15)0.0279 (17)0.0084 (14)0.0034 (12)0.0026 (12)0.0056 (12)
O40.0095 (15)0.0257 (17)0.0120 (15)0.0008 (12)0.0038 (12)0.0012 (13)
O50.0103 (16)0.0285 (17)0.0128 (15)0.0006 (13)0.0044 (13)0.0003 (13)
N10.0085 (17)0.0113 (16)0.0103 (17)0.0020 (13)0.0004 (14)0.0009 (14)
C10.012 (2)0.010 (2)0.012 (2)0.0019 (15)0.0034 (17)0.0010 (16)
C20.017 (2)0.011 (2)0.014 (2)0.0006 (16)0.0073 (18)0.0031 (16)
C30.013 (2)0.011 (2)0.008 (2)0.0001 (16)0.0018 (18)0.0040 (15)
C40.008 (2)0.015 (2)0.009 (2)0.0020 (16)0.0006 (17)0.0015 (16)
C50.010 (2)0.011 (2)0.014 (2)0.0012 (15)0.0068 (18)0.0022 (16)
C60.012 (2)0.0094 (19)0.016 (2)0.0002 (16)0.0040 (18)0.0009 (17)
C70.012 (2)0.0068 (19)0.012 (2)0.0007 (15)0.0039 (17)0.0015 (15)
N20.018 (2)0.028 (2)0.031 (2)0.0039 (17)0.0067 (18)0.0086 (18)
C80.013 (2)0.017 (2)0.033 (3)0.0037 (18)0.004 (2)0.003 (2)
C90.013 (3)0.017 (3)0.040 (4)0.0000.005 (3)0.000
O1W0.0174 (17)0.0173 (15)0.0139 (15)0.0014 (12)0.0046 (13)0.0020 (12)
O2W0.0126 (16)0.0283 (18)0.0305 (18)0.0014 (13)0.0067 (14)0.0098 (15)
O3W0.0126 (16)0.039 (2)0.0191 (16)0.0034 (14)0.0037 (14)0.0031 (15)
Geometric parameters (Å, º) top
Hg1—N12.151 (3)C2—H2A0.9300
Hg1—Cl12.3151 (10)C3—C41.397 (5)
Hg1—O12.469 (3)C4—C51.365 (6)
Hg1—O1W2.555 (3)C4—Hg1ii4.049 (4)
Hg1—O42.556 (3)C4—H4A0.9300
Hg1—C13.058 (4)C5—C71.521 (5)
Hg1—C53.069 (4)C7—Hg1ii3.844 (4)
Hg1—O5i3.117 (3)N2—C81.489 (6)
Hg1—C63.182 (4)N2—H1C0.8900
Hg1—C73.219 (4)N2—H1D0.8900
Hg1—O3Wi3.700 (3)N2—H1E0.8900
Hg1—C7i3.844 (4)C8—C91.524 (6)
O1—C61.261 (5)C8—H8A0.9700
O2—C61.244 (5)C8—H8B0.9700
O3—C31.337 (5)C9—C8iii1.524 (6)
O3—H30.9220C9—H9A0.9601
O4—C71.263 (5)O1W—H1A0.8205
O5—C71.239 (5)O1W—H1B0.8199
O5—Hg1ii3.117 (3)O2W—H2B0.8500
N1—C51.348 (5)O2W—H2C0.8499
N1—C11.351 (5)O3W—Hg1ii3.700 (3)
C1—C21.379 (6)O3W—H3A0.8501
C1—C61.522 (5)O3W—H3B0.8501
C2—C31.392 (6)
N1—Hg1—Cl1167.66 (9)C3—O3—H3112.8
N1—Hg1—O171.94 (11)C7—O4—Hg1110.2 (2)
Cl1—Hg1—O1112.32 (7)C7—O5—Hg1ii117.2 (2)
N1—Hg1—O1W96.83 (11)C5—N1—C1119.2 (3)
Cl1—Hg1—O1W94.63 (7)C5—N1—Hg1120.9 (3)
O1—Hg1—O1W91.72 (9)C1—N1—Hg1119.9 (3)
N1—Hg1—O470.64 (11)N1—C1—C2121.0 (4)
Cl1—Hg1—O4106.43 (7)N1—C1—C6118.0 (3)
O1—Hg1—O4141.18 (9)C2—C1—C6121.0 (4)
O1W—Hg1—O482.81 (9)C2—C1—Hg1158.4 (3)
N1—Hg1—C122.53 (11)C6—C1—Hg180.5 (2)
Cl1—Hg1—C1158.80 (8)C1—C2—C3119.6 (4)
O1—Hg1—C149.41 (10)C1—C2—H2A120.2
O1W—Hg1—C196.44 (10)C3—C2—H2A120.2
O4—Hg1—C192.87 (10)O3—C3—C2123.9 (4)
N1—Hg1—C522.16 (11)O3—C3—C4117.3 (4)
Cl1—Hg1—C5151.22 (8)C2—C3—C4118.8 (4)
O1—Hg1—C594.09 (10)C5—C4—C3118.5 (4)
O1W—Hg1—C595.85 (10)C5—C4—Hg1ii95.5 (2)
O4—Hg1—C548.81 (9)C3—C4—Hg1ii131.7 (3)
C1—Hg1—C544.68 (10)C5—C4—H4A120.7
N1—Hg1—O5i85.23 (10)C3—C4—H4A120.7
Cl1—Hg1—O5i82.43 (6)N1—C5—C4122.7 (4)
O1—Hg1—O5i108.22 (8)N1—C5—C7118.5 (3)
O1W—Hg1—O5i159.50 (8)C4—C5—C7118.7 (3)
O4—Hg1—O5i78.64 (8)C4—C5—Hg1159.7 (3)
C1—Hg1—O5i93.15 (9)C7—C5—Hg181.6 (2)
C5—Hg1—O5i78.42 (9)O2—C6—O1126.5 (4)
N1—Hg1—C650.66 (11)O2—C6—C1116.9 (4)
Cl1—Hg1—C6132.49 (8)O1—C6—C1116.6 (3)
O1—Hg1—C621.38 (10)O2—C6—Hg1169.9 (3)
O1W—Hg1—C695.82 (9)O1—C6—Hg145.54 (19)
O4—Hg1—C6120.80 (10)C1—C6—Hg171.4 (2)
C1—Hg1—C628.14 (10)O5—C7—O4125.9 (4)
C5—Hg1—C672.81 (10)O5—C7—C5117.6 (3)
O5i—Hg1—C6101.11 (9)O4—C7—C5116.5 (3)
N1—Hg1—C750.00 (11)O5—C7—Hg1165.4 (3)
Cl1—Hg1—C7125.05 (7)O4—C7—Hg148.15 (19)
O1—Hg1—C7121.87 (9)C5—C7—Hg170.6 (2)
O1W—Hg1—C792.32 (9)O5—C7—Hg1ii46.1 (2)
O4—Hg1—C721.60 (9)O4—C7—Hg1ii120.3 (3)
C1—Hg1—C772.52 (10)C5—C7—Hg1ii101.0 (2)
C5—Hg1—C727.86 (9)Hg1—C7—Hg1ii147.28 (12)
O5i—Hg1—C773.33 (9)C8—N2—H1C109.5
C6—Hg1—C7100.66 (10)C8—N2—H1D109.5
N1—Hg1—O3Wi80.95 (10)H1C—N2—H1D109.5
Cl1—Hg1—O3Wi90.78 (6)C8—N2—H1E109.5
O1—Hg1—O3Wi62.42 (8)H1C—N2—H1E109.5
O1W—Hg1—O3Wi153.57 (8)H1D—N2—H1E109.5
O4—Hg1—O3Wi120.33 (8)N2—C8—C9110.3 (4)
C1—Hg1—O3Wi71.54 (9)N2—C8—H8A109.6
C5—Hg1—O3Wi91.63 (9)C9—C8—H8A109.6
O5i—Hg1—O3Wi46.93 (7)N2—C8—H8B109.6
C6—Hg1—O3Wi62.32 (9)C9—C8—H8B109.6
C7—Hg1—O3Wi105.62 (8)H8A—C8—H8B108.1
N1—Hg1—C7i76.55 (11)C8—C9—C8iii110.6 (5)
Cl1—Hg1—C7i91.42 (6)C8—C9—H9A109.3
O1—Hg1—C7i117.56 (9)C8iii—C9—H9A109.6
O1W—Hg1—C7i145.03 (9)Hg1—O1W—H1A111.7
O4—Hg1—C7i62.49 (9)Hg1—O1W—H1B99.1
C1—Hg1—C7i89.81 (9)H1A—O1W—H1B104.6
C5—Hg1—C7i65.25 (9)Hg1—O2W—H2B56.6
O5i—Hg1—C7i16.66 (8)Hg1—O2W—H2C150.6
C6—Hg1—C7i105.18 (9)H2B—O2W—H2C95.7
C7—Hg1—C7i56.86 (4)Hg1ii—O3W—H3A103.6
O3Wi—Hg1—C7i60.36 (7)Hg1ii—O3W—H3B48.2
C6—O1—Hg1113.1 (2)H3A—O3W—H3B94.0
N1—Hg1—O1—C65.0 (3)C7—Hg1—C5—C4175.8 (9)
Cl1—Hg1—O1—C6162.6 (3)O3Wi—Hg1—C5—C462.7 (8)
O1W—Hg1—O1—C6101.6 (3)C7i—Hg1—C5—C4118.8 (8)
O4—Hg1—O1—C621.0 (3)N1—Hg1—C5—C7177.6 (4)
C1—Hg1—O1—C64.6 (3)Cl1—Hg1—C5—C726.9 (3)
C5—Hg1—O1—C65.7 (3)O1—Hg1—C5—C7176.0 (2)
O5i—Hg1—O1—C673.5 (3)O1W—Hg1—C5—C783.9 (2)
C7—Hg1—O1—C67.8 (3)O4—Hg1—C5—C78.77 (19)
O3Wi—Hg1—O1—C684.1 (3)C1—Hg1—C5—C7177.1 (3)
C7i—Hg1—O1—C658.5 (3)O5i—Hg1—C5—C776.2 (2)
N1—Hg1—O4—C715.6 (3)C6—Hg1—C5—C7178.2 (2)
Cl1—Hg1—O4—C7151.8 (2)O3Wi—Hg1—C5—C7121.5 (2)
O1—Hg1—O4—C731.7 (3)C7i—Hg1—C5—C765.42 (19)
O1W—Hg1—O4—C7115.5 (3)Hg1—O1—C6—O2171.9 (3)
C1—Hg1—O4—C719.3 (3)Hg1—O1—C6—C17.9 (4)
C5—Hg1—O4—C711.2 (2)N1—C1—C6—O2172.1 (4)
O5i—Hg1—O4—C773.3 (3)C2—C1—C6—O28.4 (6)
C6—Hg1—O4—C722.9 (3)Hg1—C1—C6—O2173.9 (4)
O3Wi—Hg1—O4—C750.9 (3)N1—C1—C6—O17.8 (5)
C7i—Hg1—O4—C769.0 (2)C2—C1—C6—O1171.7 (4)
Cl1—Hg1—N1—C569.5 (6)Hg1—C1—C6—O16.0 (3)
O1—Hg1—N1—C5178.3 (3)N1—C1—C6—Hg11.8 (3)
O1W—Hg1—N1—C588.7 (3)C2—C1—C6—Hg1177.7 (4)
O4—Hg1—N1—C58.9 (3)N1—Hg1—C6—O2145.7 (18)
C1—Hg1—N1—C5179.1 (5)Cl1—Hg1—C6—O218.5 (18)
O5i—Hg1—N1—C570.8 (3)O1—Hg1—C6—O240.5 (16)
C6—Hg1—N1—C5179.3 (4)O1W—Hg1—C6—O2120.2 (17)
C7—Hg1—N1—C51.4 (3)O4—Hg1—C6—O2154.7 (17)
O3Wi—Hg1—N1—C5117.9 (3)C1—Hg1—C6—O2147.0 (18)
C7i—Hg1—N1—C556.4 (3)C5—Hg1—C6—O2145.4 (17)
Cl1—Hg1—N1—C1111.5 (4)O5i—Hg1—C6—O271.4 (17)
O1—Hg1—N1—C10.8 (3)C7—Hg1—C6—O2146.3 (17)
O1W—Hg1—N1—C190.3 (3)O3Wi—Hg1—C6—O244.1 (17)
O4—Hg1—N1—C1170.2 (3)C7i—Hg1—C6—O288.0 (17)
C5—Hg1—N1—C1179.1 (5)N1—Hg1—C6—O1173.8 (3)
O5i—Hg1—N1—C1110.2 (3)Cl1—Hg1—C6—O122.0 (3)
C6—Hg1—N1—C11.6 (3)O1W—Hg1—C6—O179.8 (3)
C7—Hg1—N1—C1177.6 (4)O4—Hg1—C6—O1164.8 (2)
O3Wi—Hg1—N1—C163.1 (3)C1—Hg1—C6—O1172.5 (4)
C7i—Hg1—N1—C1124.6 (3)C5—Hg1—C6—O1174.1 (3)
C5—N1—C1—C22.5 (6)O5i—Hg1—C6—O1111.9 (3)
Hg1—N1—C1—C2176.6 (3)C7—Hg1—C6—O1173.2 (3)
C5—N1—C1—C6178.0 (3)O3Wi—Hg1—C6—O184.6 (3)
Hg1—N1—C1—C62.9 (5)C7i—Hg1—C6—O1128.5 (3)
C5—N1—C1—Hg1179.1 (5)N1—Hg1—C6—C11.3 (2)
Cl1—Hg1—C1—N1146.6 (3)Cl1—Hg1—C6—C1165.48 (17)
O1—Hg1—C1—N1179.0 (3)O1—Hg1—C6—C1172.5 (4)
O1W—Hg1—C1—N192.3 (3)O1W—Hg1—C6—C192.8 (2)
O4—Hg1—C1—N19.2 (3)O4—Hg1—C6—C17.7 (2)
C5—Hg1—C1—N10.5 (3)C5—Hg1—C6—C11.6 (2)
O5i—Hg1—C1—N169.5 (3)O5i—Hg1—C6—C175.6 (2)
C6—Hg1—C1—N1177.4 (4)C7—Hg1—C6—C10.7 (2)
C7—Hg1—C1—N11.9 (3)O3Wi—Hg1—C6—C1102.9 (2)
O3Wi—Hg1—C1—N1111.8 (3)C7i—Hg1—C6—C159.0 (2)
C7i—Hg1—C1—N153.2 (3)Hg1ii—O5—C7—O499.8 (4)
N1—Hg1—C1—C28.0 (7)Hg1ii—O5—C7—C578.1 (4)
Cl1—Hg1—C1—C2154.6 (6)Hg1ii—O5—C7—Hg1160.3 (10)
O1—Hg1—C1—C2171.0 (8)Hg1—O4—C7—O5162.9 (3)
O1W—Hg1—C1—C284.3 (8)Hg1—O4—C7—C519.2 (4)
O4—Hg1—C1—C21.2 (8)Hg1—O4—C7—Hg1ii141.68 (15)
C5—Hg1—C1—C27.5 (7)N1—C5—C7—O5168.5 (4)
O5i—Hg1—C1—C277.5 (8)C4—C5—C7—O514.8 (5)
C6—Hg1—C1—C2174.6 (9)Hg1—C5—C7—O5166.9 (3)
C7—Hg1—C1—C26.1 (7)N1—C5—C7—O413.4 (5)
O3Wi—Hg1—C1—C2119.9 (8)C4—C5—C7—O4163.3 (4)
C7i—Hg1—C1—C261.2 (8)Hg1—C5—C7—O415.0 (3)
N1—Hg1—C1—C6177.4 (4)N1—C5—C7—Hg11.6 (3)
Cl1—Hg1—C1—C630.7 (4)C4—C5—C7—Hg1178.3 (4)
O1—Hg1—C1—C63.58 (19)N1—C5—C7—Hg1ii145.6 (3)
O1W—Hg1—C1—C690.3 (2)C4—C5—C7—Hg1ii31.2 (4)
O4—Hg1—C1—C6173.4 (2)Hg1—C5—C7—Hg1ii147.18 (11)
C5—Hg1—C1—C6177.9 (3)N1—Hg1—C7—O5128.0 (12)
O5i—Hg1—C1—C6107.8 (2)Cl1—Hg1—C7—O537.8 (12)
C7—Hg1—C1—C6179.3 (2)O1—Hg1—C7—O5131.5 (11)
O3Wi—Hg1—C1—C665.5 (2)O1W—Hg1—C7—O5135.1 (11)
C7i—Hg1—C1—C6124.2 (2)O4—Hg1—C7—O571.4 (11)
N1—C1—C2—C32.0 (6)C1—Hg1—C7—O5128.9 (11)
C6—C1—C2—C3178.5 (4)C5—Hg1—C7—O5126.8 (12)
Hg1—C1—C2—C37.7 (10)O5i—Hg1—C7—O530.0 (11)
C1—C2—C3—O3179.8 (4)C6—Hg1—C7—O5128.6 (11)
C1—C2—C3—C41.1 (6)O3Wi—Hg1—C7—O564.6 (11)
O3—C3—C4—C5177.3 (4)C7i—Hg1—C7—O527.3 (10)
C2—C3—C4—C53.6 (6)N1—Hg1—C7—O4160.7 (3)
O3—C3—C4—Hg1ii48.2 (5)Cl1—Hg1—C7—O433.6 (3)
C2—C3—C4—Hg1ii132.7 (3)O1—Hg1—C7—O4157.2 (2)
C1—N1—C5—C40.2 (6)O1W—Hg1—C7—O463.7 (3)
Hg1—N1—C5—C4179.2 (3)C1—Hg1—C7—O4159.7 (3)
C1—N1—C5—C7176.4 (3)C5—Hg1—C7—O4161.8 (4)
Hg1—N1—C5—C72.7 (5)O5i—Hg1—C7—O4101.4 (3)
C1—N1—C5—Hg1179.1 (5)C6—Hg1—C7—O4160.1 (3)
C3—C4—C5—N13.2 (6)O3Wi—Hg1—C7—O4135.9 (2)
Hg1ii—C4—C5—N1147.6 (3)C7i—Hg1—C7—O498.7 (3)
C3—C4—C5—C7173.3 (3)N1—Hg1—C7—C51.2 (2)
Hg1ii—C4—C5—C729.0 (4)Cl1—Hg1—C7—C5164.56 (18)
C3—C4—C5—Hg11.9 (10)O1—Hg1—C7—C54.7 (2)
Hg1ii—C4—C5—Hg1146.3 (7)O1W—Hg1—C7—C598.1 (2)
Cl1—Hg1—C5—N1155.4 (3)O4—Hg1—C7—C5161.8 (4)
O1—Hg1—C5—N11.6 (3)C1—Hg1—C7—C52.1 (2)
O1W—Hg1—C5—N193.8 (3)O5i—Hg1—C7—C596.8 (2)
O4—Hg1—C5—N1168.9 (3)C6—Hg1—C7—C51.8 (2)
C1—Hg1—C5—N10.5 (3)O3Wi—Hg1—C7—C562.2 (2)
O5i—Hg1—C5—N1106.2 (3)C7i—Hg1—C7—C599.5 (2)
C6—Hg1—C5—N10.5 (3)N1—Hg1—C7—Hg1ii78.7 (2)
C7—Hg1—C5—N1177.6 (4)Cl1—Hg1—C7—Hg1ii115.6 (2)
O3Wi—Hg1—C5—N160.9 (3)O1—Hg1—C7—Hg1ii75.2 (2)
C7i—Hg1—C5—N1116.9 (3)O1W—Hg1—C7—Hg1ii18.3 (2)
N1—Hg1—C5—C41.9 (7)O4—Hg1—C7—Hg1ii82.0 (3)
Cl1—Hg1—C5—C4157.3 (7)C1—Hg1—C7—Hg1ii77.8 (2)
O1—Hg1—C5—C40.2 (8)C5—Hg1—C7—Hg1ii79.9 (3)
O1W—Hg1—C5—C491.9 (8)O5i—Hg1—C7—Hg1ii176.6 (2)
O4—Hg1—C5—C4167.0 (9)C6—Hg1—C7—Hg1ii78.1 (2)
C1—Hg1—C5—C41.3 (8)O3Wi—Hg1—C7—Hg1ii142.1 (2)
O5i—Hg1—C5—C4108.0 (8)C7i—Hg1—C7—Hg1ii179.4 (3)
C6—Hg1—C5—C42.4 (8)N2—C8—C9—C8iii165.1 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4iv0.921.632.548 (5)173
N2—H1C···O3Wii0.892.032.830 (5)150
N2—H1D···O2Wv0.892.303.096 (6)149
N2—H1E···O2Wvi0.891.962.824 (6)165
O1W—H1A···O5ii0.822.082.854 (5)157
O1W—H1B···O2vii0.822.072.837 (6)157
O2W—H2B···O10.851.982.771 (6)154
O2W—H2C···O2iii0.851.942.777 (5)169
O3W—H3A···O3vii0.852.303.019 (6)142
O3W—H3B···O50.851.932.766 (6)169
C8—H8B···O10.972.453.393 (6)163
Symmetry codes: (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y, z+3/2; (iv) x, y+1, z1/2; (v) x+1, y+1, z+2; (vi) x, y1, z; (vii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(C3H12N2)[Hg(C7H3NO5)Cl(H2O)]2·4H2O
Mr1018.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)29.2207 (13), 6.7630 (3), 15.4913 (7)
β (°) 114.513 (1)
V3)2785.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)11.28
Crystal size (mm)0.11 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.284, 0.457
No. of measured, independent and
observed [I > 2σ(I)] reflections
9362, 3041, 2632
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.047, 0.99
No. of reflections3041
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.84

Computer programs: APEX2 (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.921.6312.548 (5)173
N2—H1C···O3Wii0.892.0252.830 (5)150
N2—H1D···O2Wiii0.892.3013.096 (6)149
N2—H1E···O2Wiv0.891.9552.824 (6)165
O1W—H1A···O5ii0.822.0792.854 (5)157
O1W—H1B···O2v0.822.0652.837 (6)157
O2W—H2B···O10.851.9832.771 (6)154
O2W—H2C···O2vi0.851.9392.777 (5)169
O3W—H3A···O3v0.852.3043.019 (6)142
O3W—H3B···O50.851.9262.766 (6)169
C8—H8B···O10.972.453.393 (6)163
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y1, z; (v) x, y+1, z+1/2; (vi) x+1, y, z+3/2.
 

References

First citationAghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.  CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2269–m2271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRamezanipour, F., Aghabozorg, H. & Soleimannejad, J. (2005). Acta Cryst. E61, m1194–m1196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1065-m1066
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds