metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1063-m1064

Tetra­kis(2,4,6-tri­amino-1,3,5-triazin-1-ium) tris­­(pyridine-2,6-di­carboxyl­ato)calcate(II) hexa­hydrate

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and bDepartment of Chemistry, Islamic Azad University, Ardabil Branch, Ardabil, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 26 June 2008; accepted 21 July 2008; online 26 July 2008)

The title compound, (C3H7N6)4[Ca(C7H3NO4)3]·6H2O or (tataH)4[Ca(pydc)3]·6H2O (where tata is 2,4,6-triamino-1,3,5-triazine and pydcH2 is pyridine-2,6-dicarboxylic acid), was obtained by reaction of Ca(NO3)2·4H2O with the proton-transfer compound (tataH)2(pydc) in aqueous solution. The [Ca(pydc)3]4− anion has twofold crystallographic symmetry. It is a nine-coordinate CaII complex with a distorted tricapped trigonal-prismatic coordination geometry. The structure also contains four tataH+ cations and six uncoordinated water mol­ecules. There are extensive O—H⋯O, O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds in the crystal structure.

Related literature

For related literature, see: Aghabozorg et al. (2006[Aghabozorg, H., Aghajani, Z. & Sharif, M. A. (2006). Acta Cryst. E62, m1930-m1932.]); Aghabozorg, Attar Gharamaleki et al. (2008[Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187-m188.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Aghajani et al. (2006[Aghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830-m832.]); Sharif et al. (2007[Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599-m1601.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H7N6)4[Ca(C7H3NO4)3]·6H2O

  • Mr = 1152.07

  • Monoclinic, C 2/c

  • a = 17.9605 (15) Å

  • b = 10.1672 (9) Å

  • c = 25.922 (2) Å

  • β = 94.467 (2)°

  • V = 4719.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.954

  • 16983 measured reflections

  • 6215 independent reflections

  • 4412 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.127

  • S = 1.09

  • 6215 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2i 0.84 1.91 2.710 (3) 160
O1W—H1WA⋯O6ii 0.84 1.92 2.751 (3) 170
O2W—H2WB⋯N4iii 0.84 2.26 3.022 (3) 151
N3—H3N⋯O2 0.88 1.79 2.667 (2) 176
O2W—H2WA⋯O5 0.84 2.05 2.888 (3) 175
O3W—H3WB⋯O2Wiv 0.84 2.18 2.963 (3) 154
O3W—H3WA⋯N14v 0.84 2.17 3.007 (3) 180
N6—H6NA⋯O1Wi 0.88 2.45 3.294 (3) 162
N6—H6NB⋯O1W 0.88 1.90 2.740 (3) 160
N7—H7NA⋯N11v 0.88 2.22 3.103 (3) 176
N7—H7NB⋯O2Wii 0.88 2.44 3.205 (3) 146
N7—H7NB⋯O4ii 0.88 2.53 3.111 (2) 124
N8—H8NA⋯O1 0.88 2.07 2.948 (2) 172
N12—H11A⋯N10vi 0.88 2.23 3.109 (2) 178
N12—H11B⋯O5 0.88 2.32 3.196 (2) 175
N8—H8NB⋯O3W 0.88 2.15 2.832 (4) 134
N9—H9NA⋯O3 0.88 1.89 2.754 (2) 165
N13—H13A⋯O4vii 0.88 2.08 2.925 (2) 160
N13—H13B⋯O6vi 0.88 1.96 2.790 (2) 157
N14—H14A⋯O3 0.88 2.39 3.143 (2) 144
N14—H14B⋯N5viii 0.88 2.10 2.978 (3) 178
C4—H4A⋯O2ix 0.95 2.55 3.370 (3) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y+1, -z+{\script{1\over 2}}]; (vi) -x, -y+1, -z+1; (vii) -x, -y, -z+1; (viii) [-x, y-1, -z+{\script{1\over 2}}]; (ix) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrogen bonding plays a key role in chemical, catalytic and biochemical processes, as well as in supramolecular chemistry and crystal engineering. Recently we have reported the reaction between the proton-transfer compound, (tataH)2(pydc) with metal salts Co(NO3)2.6H2O, Bi(NO3)3.5H2O, Zn(NO3)2.4H2O and Cd(NO3)2.2H2O in a 2:1 molar ratio. These reactions lead to the formation of the (tataH)2[Co(H2O)6][Co(pydc)2]2.4H2O (Aghabozorg, Attar Gharamaleki et al., 2008), (tataH)n [Bi(pydc)2(H2O)]n(Sharif et al., 2007), (tataH)2 [Zn(pydc)2].10H2O (Aghajani et al., 2006) and (tataH)2 [Cd(pydc)2] (Aghabozorg, Aghajani et al., 2006) compounds respectively. For more details and related literature see our recent review article (Aghabozorg, Manteghi et al., 2008).

The structure of the title compound is shown in Fig.1. The anion has crystallographic 2-fold symmetry. The compound contains [Ca(pydc)3]4– anion, four (tataH)+ cations and six uncoordinated water molecules. In the [Ca(pydc)3]4– anions, CaII atom is nine-coordinated by three N atoms (N1, N1a and N2) and six O atoms (O1, O1a, O3, O3a, O5 and O5a) with the range of 2.5031 (14)–2.5472 (15)Å from the carboxylate groups of three (pydc)2– groups that act as tridentate ligands. The coordination geometry around the CaII atom is distorted tricapped trigonal prism (Fig.2). Three N atoms (N1, N1a and N2) occupying three cap positions and make a flat triangle with N1—Ca1—N1a: 119.78 (8)°, N1—Ca1—N2: 120.11 (4)° and N1a—Ca1—N2: 120.11 (4)° that the sum of these angles is 360.00° and six O atoms (O1, O1a, O3, O3a, O5 and O5a) forming the trigonal prism positions.

There are various hydrogen bonds such as O—H···O, O—H···N, N—H···O and N—H···N [in the range 2.667 (2)–3.294 (3) Å] in this structure (Fig.3) and C—H···O hydrogen bonds [with D···A 3.370 (3) Å] are also present (Table 1). These extensive hydrogen bonds between [Ca(pydc)3]4– anions, (tataH)+ cations and uncoordinated water molecules play an important role in stabilization of the crystal packing.

Related literature top

For related literature, see: Aghabozorg et al. (2006); Aghabozorg, Attar Gharamaleki et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008); Aghajani et al. (2006); Sharif et al. (2007).

Experimental top

The proton-transfer compound, (tataH)2(pydc), was prepared by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2) with 2,4,6-triamino-1,3,5-triazine (tata). The reaction between Ca(NO3)2.4H2O (118 mg, 0.5 mmol) in water (20 ml) and (tataH)2(pydc) (420 mg, 1.0 mmol) in water (20 ml), in 1:2 molar ratio gave a colorless compound after slow evaporation of the solvent at the room temperature.

Refinement top

The hydrogen atoms of NH groups and also H atoms of water molecule were found in difference Fourier synthesis. The hydrogen atoms of the H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Xi), where U(Xi) the equivalent thermal parameters of the carbon or nitrogen or oxygen atom to which corresponding H atom is bonded. Distances employed in the riding model are, N-H, 0.88 Å; O-H, 0.84 Å; C-H, 0.95 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The anion is located on a 2-fold axis and thus, the asymmetric unit contains one half anion, two cations and three water molecules.
[Figure 2] Fig. 2. A view of the distorted tricapped trigonal prism around the CaII atom.
[Figure 3] Fig. 3. Crystal packing with hydrogen bonds shown as dashed lines.
Tetrakis(2,4,6-triamino-1,3,5-triazin-1-ium) tris(pyridine-2,6-dicarboxylato)calcate(II) hexahydrate top
Crystal data top
(C3H7N6)4[Ca(C7H3NO4)3]·6H2OF(000) = 2400
Mr = 1152.07Dx = 1.622 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 935 reflections
a = 17.9605 (15) Åθ = 3–29°
b = 10.1672 (9) ŵ = 0.24 mm1
c = 25.922 (2) ÅT = 100 K
β = 94.467 (2)°Prism, colourless
V = 4719.1 (7) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
6215 independent reflections
Radiation source: fine-focus sealed tube4412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 29.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1924
Tmin = 0.928, Tmax = 0.954k = 1313
16983 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0392P)2 + 1P]
where P = (Fo2 + 2Fc2)/3
6215 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
(C3H7N6)4[Ca(C7H3NO4)3]·6H2OV = 4719.1 (7) Å3
Mr = 1152.07Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.9605 (15) ŵ = 0.24 mm1
b = 10.1672 (9) ÅT = 100 K
c = 25.922 (2) Å0.30 × 0.20 × 0.20 mm
β = 94.467 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
6215 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4412 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.954Rint = 0.031
16983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
6215 reflectionsΔρmin = 0.77 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.00000.32225 (5)0.25000.01468 (13)
C10.17008 (12)0.2206 (2)0.21823 (8)0.0189 (4)
N10.12161 (10)0.19798 (16)0.25401 (6)0.0167 (3)
O10.08882 (8)0.38891 (14)0.18496 (5)0.0198 (3)
O1W0.25538 (11)0.3625 (2)0.08194 (7)0.0511 (6)
H1WB0.28000.31960.10250.061*
H1WA0.21500.37920.09920.061*
O2W0.20543 (11)0.3177 (2)0.38198 (7)0.0464 (5)
H2WB0.20930.35750.41050.056*
H2WA0.17040.35020.36270.056*
O20.18167 (9)0.32683 (15)0.13789 (6)0.0225 (3)
N20.00000.5723 (2)0.25000.0160 (5)
C20.23993 (13)0.1634 (3)0.21999 (9)0.0291 (5)
H2A0.27330.18240.19430.035*
O3W0.16530 (16)0.8783 (3)0.17830 (10)0.0743 (8)
H3WB0.20940.86770.17040.089*
H3WA0.13670.91320.15500.089*
N30.16153 (10)0.53273 (18)0.07458 (7)0.0222 (4)
H3N0.16660.46630.09630.027*
O30.02261 (8)0.15716 (14)0.32346 (5)0.0203 (3)
C30.26030 (14)0.0777 (3)0.26017 (9)0.0345 (6)
H3A0.30790.03660.26240.041*
O40.10324 (9)0.02965 (15)0.37134 (6)0.0252 (3)
C40.21035 (14)0.0525 (2)0.29714 (9)0.0292 (5)
H4A0.22300.00630.32490.035*
N40.18475 (10)0.62366 (18)0.00573 (7)0.0217 (4)
O50.08073 (9)0.43271 (14)0.32086 (6)0.0220 (3)
C50.14127 (12)0.1153 (2)0.29278 (8)0.0183 (4)
N50.12433 (10)0.75024 (17)0.05810 (7)0.0207 (4)
N60.22996 (11)0.41835 (19)0.01860 (8)0.0275 (4)
H6NA0.23380.35540.04190.033*
H6NB0.24770.41180.01200.033*
O60.11801 (9)0.61386 (15)0.36402 (6)0.0236 (3)
C60.14421 (12)0.3194 (2)0.17714 (7)0.0174 (4)
N70.13887 (10)0.83102 (18)0.02277 (7)0.0224 (4)
H7NA0.11880.90490.01290.027*
H7NB0.15260.82460.05450.027*
C70.08494 (12)0.09839 (19)0.33279 (8)0.0171 (4)
N80.09931 (11)0.64715 (19)0.13431 (7)0.0257 (4)
H8NA0.09720.57430.15250.031*
H8NB0.09230.72190.15030.031*
C80.04098 (11)0.6393 (2)0.28661 (8)0.0175 (4)
N90.02526 (10)0.21627 (17)0.41916 (6)0.0189 (4)
H9NA0.00850.21240.38820.023*
C90.04259 (14)0.7762 (2)0.28768 (9)0.0250 (5)
H9A0.07240.82150.31380.030*
C100.00000.8452 (3)0.25000.0301 (8)
H10A0.00000.93860.25000.036*
N100.03939 (10)0.32331 (17)0.49808 (6)0.0179 (4)
C110.08390 (11)0.5555 (2)0.32701 (8)0.0170 (4)
N110.07504 (10)0.09514 (17)0.48552 (7)0.0187 (4)
N120.01468 (10)0.42995 (18)0.43181 (7)0.0219 (4)
H11A0.02260.49860.45220.041 (8)*
H11B0.03040.42730.40050.033 (7)*
C120.15006 (12)0.7326 (2)0.01068 (8)0.0199 (4)
N130.08510 (11)0.19908 (18)0.56239 (7)0.0230 (4)
H13A0.09830.12400.57590.039 (8)*
H13B0.08420.26830.58280.029 (7)*
C130.12875 (12)0.6464 (2)0.08866 (8)0.0206 (4)
N140.06375 (11)0.00349 (19)0.40544 (7)0.0273 (4)
H14A0.04590.01260.37500.033 (7)*
H14B0.08300.07060.41580.036 (8)*
C140.19208 (12)0.5258 (2)0.02825 (8)0.0217 (4)
C150.01687 (11)0.3235 (2)0.45053 (8)0.0171 (4)
C160.06599 (12)0.2060 (2)0.51433 (8)0.0183 (4)
C170.05485 (11)0.1040 (2)0.43758 (8)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0160 (3)0.0136 (3)0.0145 (3)0.0000.0015 (2)0.000
C10.0193 (11)0.0216 (10)0.0160 (9)0.0004 (8)0.0023 (8)0.0019 (8)
N10.0178 (9)0.0173 (8)0.0150 (8)0.0001 (7)0.0020 (6)0.0004 (6)
O10.0198 (8)0.0186 (7)0.0215 (7)0.0008 (6)0.0044 (6)0.0036 (6)
O1W0.0303 (10)0.0852 (16)0.0357 (10)0.0236 (10)0.0111 (8)0.0261 (10)
O2W0.0510 (12)0.0472 (12)0.0378 (10)0.0222 (10)0.0160 (9)0.0154 (9)
O20.0240 (8)0.0243 (8)0.0200 (7)0.0016 (6)0.0077 (6)0.0054 (6)
N20.0160 (12)0.0156 (11)0.0168 (11)0.0000.0044 (9)0.000
C20.0240 (12)0.0416 (14)0.0227 (11)0.0080 (11)0.0074 (9)0.0077 (10)
O3W0.089 (2)0.0615 (16)0.0691 (17)0.0005 (15)0.0175 (14)0.0047 (13)
N30.0229 (10)0.0190 (9)0.0250 (9)0.0023 (7)0.0041 (8)0.0065 (7)
O30.0202 (8)0.0223 (8)0.0187 (7)0.0012 (6)0.0037 (6)0.0027 (6)
C30.0242 (13)0.0500 (16)0.0300 (13)0.0167 (11)0.0075 (10)0.0120 (11)
O40.0322 (9)0.0242 (8)0.0197 (7)0.0030 (7)0.0047 (6)0.0077 (6)
C40.0303 (13)0.0347 (13)0.0227 (11)0.0120 (11)0.0038 (9)0.0097 (10)
N40.0190 (9)0.0227 (9)0.0230 (9)0.0009 (7)0.0003 (7)0.0035 (7)
O50.0249 (8)0.0161 (7)0.0238 (8)0.0007 (6)0.0048 (6)0.0004 (6)
C50.0209 (11)0.0182 (10)0.0160 (9)0.0029 (8)0.0022 (8)0.0008 (7)
N50.0205 (9)0.0192 (9)0.0220 (9)0.0017 (7)0.0004 (7)0.0015 (7)
N60.0297 (11)0.0248 (10)0.0290 (10)0.0063 (8)0.0080 (8)0.0063 (8)
O60.0250 (8)0.0246 (8)0.0205 (7)0.0011 (7)0.0031 (6)0.0052 (6)
C60.0188 (10)0.0183 (10)0.0149 (9)0.0030 (8)0.0006 (8)0.0002 (7)
N70.0233 (10)0.0222 (9)0.0217 (9)0.0012 (8)0.0006 (7)0.0037 (7)
C70.0231 (11)0.0117 (9)0.0167 (9)0.0021 (8)0.0029 (8)0.0013 (7)
N80.0339 (11)0.0198 (9)0.0241 (9)0.0005 (8)0.0065 (8)0.0028 (7)
C80.0183 (10)0.0171 (9)0.0178 (9)0.0006 (8)0.0055 (8)0.0011 (7)
N90.0219 (9)0.0207 (9)0.0147 (8)0.0016 (7)0.0050 (7)0.0009 (7)
C90.0322 (13)0.0194 (10)0.0228 (11)0.0025 (9)0.0019 (9)0.0030 (8)
C100.044 (2)0.0179 (15)0.0273 (17)0.0000.0032 (15)0.000
N100.0215 (9)0.0158 (8)0.0167 (8)0.0008 (7)0.0032 (7)0.0012 (6)
C110.0146 (10)0.0199 (10)0.0168 (9)0.0012 (8)0.0034 (7)0.0010 (7)
N110.0197 (9)0.0173 (8)0.0193 (8)0.0011 (7)0.0038 (7)0.0011 (7)
N120.0249 (10)0.0214 (9)0.0200 (9)0.0006 (8)0.0068 (7)0.0025 (7)
C120.0144 (10)0.0228 (10)0.0217 (10)0.0031 (8)0.0035 (8)0.0027 (8)
N130.0356 (11)0.0160 (9)0.0182 (8)0.0043 (8)0.0071 (8)0.0012 (7)
C130.0185 (10)0.0201 (10)0.0227 (10)0.0027 (8)0.0004 (8)0.0012 (8)
N140.0353 (11)0.0258 (10)0.0221 (9)0.0079 (9)0.0106 (8)0.0068 (8)
C140.0152 (10)0.0234 (11)0.0265 (11)0.0008 (8)0.0009 (8)0.0033 (8)
C150.0150 (10)0.0172 (9)0.0189 (9)0.0024 (8)0.0004 (7)0.0021 (8)
C160.0170 (10)0.0183 (10)0.0197 (10)0.0016 (8)0.0014 (8)0.0009 (8)
C170.0155 (10)0.0206 (10)0.0204 (10)0.0015 (8)0.0020 (8)0.0013 (8)
Geometric parameters (Å, º) top
Ca1—O12.5031 (14)O5—C111.259 (2)
Ca1—O1i2.5032 (14)C5—C71.514 (3)
Ca1—O5i2.5145 (15)N5—C131.319 (3)
Ca1—O52.5145 (15)N5—C121.358 (3)
Ca1—N1i2.5184 (18)N6—C141.321 (3)
Ca1—N12.5184 (18)N6—H6NA0.8800
Ca1—N22.542 (2)N6—H6NB0.8798
Ca1—O3i2.5472 (15)O6—C111.248 (2)
Ca1—O32.5472 (15)N7—C121.329 (3)
C1—N11.340 (3)N7—H7NA0.8800
C1—C21.380 (3)N7—H7NB0.8800
C1—C61.511 (3)N8—C131.333 (3)
N1—C51.337 (3)N8—H8NA0.8800
O1—C61.250 (2)N8—H8NB0.8800
O1W—H1WB0.8400C8—C91.393 (3)
O1W—H1WA0.8400C8—C111.514 (3)
O2W—H2WB0.8400N9—C151.362 (3)
O2W—H2WA0.8400N9—C171.361 (3)
O2—C61.265 (2)N9—H9NA0.8800
N2—C8i1.340 (2)C9—C101.384 (3)
N2—C81.340 (2)C9—H9A0.9500
C2—C31.385 (3)C10—C9i1.384 (3)
C2—H2A0.9500C10—H10A0.9500
O3W—H3WB0.8400N10—C151.327 (3)
O3W—H3WA0.8401N10—C161.363 (3)
N3—C131.360 (3)N11—C171.324 (3)
N3—C141.360 (3)N11—C161.355 (3)
N3—H3N0.8800N12—C151.330 (3)
O3—C71.275 (3)N12—H11A0.8801
C3—C41.386 (3)N12—H11B0.8799
C3—H3A0.9500N13—C161.319 (3)
O4—C71.243 (2)N13—H13A0.8800
C4—C51.392 (3)N13—H13B0.8799
C4—H4A0.9500N14—C171.320 (3)
N4—C141.329 (3)N14—H14A0.8800
N4—C121.356 (3)N14—H14B0.8800
O1—Ca1—O1i148.58 (7)N1—C5—C4122.08 (19)
O1—Ca1—O5i75.43 (5)N1—C5—C7115.77 (18)
O1i—Ca1—O5i90.55 (5)C4—C5—C7122.11 (19)
O1—Ca1—O590.55 (5)C13—N5—C12115.43 (19)
O1i—Ca1—O575.43 (5)C14—N6—H6NA119.0
O5i—Ca1—O5126.94 (7)C14—N6—H6NB117.5
O1—Ca1—N1i134.76 (5)H6NA—N6—H6NB123.4
O1i—Ca1—N1i64.37 (5)O1—C6—O2125.19 (19)
O5i—Ca1—N1i75.23 (5)O1—C6—C1117.84 (17)
O5—Ca1—N1i134.68 (5)O2—C6—C1116.96 (18)
O1—Ca1—N164.37 (5)C12—N7—H7NA119.8
O1i—Ca1—N1134.76 (5)C12—N7—H7NB121.1
O5i—Ca1—N1134.68 (5)H7NA—N7—H7NB119.1
O5—Ca1—N175.23 (5)O4—C7—O3126.11 (19)
N1i—Ca1—N1119.78 (8)O4—C7—C5117.75 (19)
O1—Ca1—N274.29 (4)O3—C7—C5116.14 (17)
O1i—Ca1—N274.29 (4)C13—N8—H8NA120.4
O5i—Ca1—N263.47 (4)C13—N8—H8NB120.4
O5—Ca1—N263.47 (4)H8NA—N8—H8NB117.4
N1i—Ca1—N2120.11 (4)N2—C8—C9122.1 (2)
N1—Ca1—N2120.11 (4)N2—C8—C11115.19 (18)
O1—Ca1—O3i75.39 (5)C9—C8—C11122.70 (19)
O1i—Ca1—O3i127.53 (5)C15—N9—C17119.35 (17)
O5i—Ca1—O3i72.48 (5)C15—N9—H9NA123.4
O5—Ca1—O3i152.84 (5)C17—N9—H9NA117.0
N1i—Ca1—O3i63.34 (5)C10—C9—C8118.9 (2)
N1—Ca1—O3i77.73 (5)C10—C9—H9A120.6
N2—Ca1—O3i131.22 (3)C8—C9—H9A120.6
O1—Ca1—O3127.53 (5)C9i—C10—C9119.1 (3)
O1i—Ca1—O375.39 (5)C9i—C10—H10A120.5
O5i—Ca1—O3152.84 (5)C9—C10—H10A120.5
O5—Ca1—O372.48 (5)C15—N10—C16115.35 (18)
N1i—Ca1—O377.73 (5)O6—C11—O5125.73 (19)
N1—Ca1—O363.34 (5)O6—C11—C8117.19 (18)
N2—Ca1—O3131.22 (3)O5—C11—C8117.06 (18)
O3i—Ca1—O397.56 (7)C17—N11—C16115.51 (18)
N1—C1—C2122.86 (19)C15—N12—H11A118.7
N1—C1—C6114.91 (18)C15—N12—H11B119.2
C2—C1—C6122.16 (19)H11A—N12—H11B121.9
C5—N1—C1118.70 (18)N7—C12—N4117.41 (19)
C5—N1—Ca1121.61 (13)N7—C12—N5116.5 (2)
C1—N1—Ca1119.56 (13)N4—C12—N5126.05 (19)
C6—O1—Ca1120.86 (12)C16—N13—H13A121.4
H1WB—O1W—H1WA104.1C16—N13—H13B122.1
H2WB—O2W—H2WA109.9H13A—N13—H13B116.5
C8i—N2—C8118.9 (2)N5—C13—N8121.3 (2)
C8i—N2—Ca1120.53 (12)N5—C13—N3121.8 (2)
C8—N2—Ca1120.53 (12)N8—C13—N3116.96 (19)
C3—C2—C1118.4 (2)C17—N14—H14A116.7
C3—C2—H2A120.8C17—N14—H14B120.1
C1—C2—H2A120.8H14A—N14—H14B123.0
H3WB—O3W—H3WA114.4N6—C14—N4121.3 (2)
C13—N3—C14119.60 (18)N6—C14—N3117.3 (2)
C13—N3—H3N120.4N4—C14—N3121.4 (2)
C14—N3—H3N119.8N10—C15—N12120.64 (19)
C7—O3—Ca1122.48 (12)N10—C15—N9121.73 (18)
C2—C3—C4119.2 (2)N12—C15—N9117.63 (18)
C2—C3—H3A120.4N13—C16—N11116.54 (19)
C4—C3—H3A120.4N13—C16—N10117.51 (19)
C3—C4—C5118.7 (2)N11—C16—N10125.96 (18)
C3—C4—H4A120.7N14—C17—N11120.7 (2)
C5—C4—H4A120.7N14—C17—N9117.33 (19)
C14—N4—C12115.36 (18)N11—C17—N9121.95 (19)
C11—O5—Ca1123.58 (13)
C2—C1—N1—C50.8 (3)N1—Ca1—O5—C11138.44 (17)
C6—C1—N1—C5177.72 (18)N2—Ca1—O5—C113.08 (14)
C2—C1—N1—Ca1175.25 (18)O3i—Ca1—O5—C11132.90 (16)
C6—C1—N1—Ca11.6 (2)O3—Ca1—O5—C11155.35 (17)
O1—Ca1—N1—C5171.11 (17)C1—N1—C5—C40.2 (3)
O1i—Ca1—N1—C522.09 (19)Ca1—N1—C5—C4175.81 (17)
O5i—Ca1—N1—C5158.97 (14)C1—N1—C5—C7177.82 (18)
O5—Ca1—N1—C573.20 (15)Ca1—N1—C5—C71.8 (2)
N1i—Ca1—N1—C560.19 (14)C3—C4—C5—N10.4 (4)
N2—Ca1—N1—C5119.81 (14)C3—C4—C5—C7177.1 (2)
O3i—Ca1—N1—C5109.38 (16)Ca1—O1—C6—O2162.52 (16)
O3—Ca1—N1—C54.32 (14)Ca1—O1—C6—C119.1 (2)
O1—Ca1—N1—C14.88 (14)N1—C1—C6—O113.5 (3)
O1i—Ca1—N1—C1153.89 (14)C2—C1—C6—O1163.4 (2)
O5i—Ca1—N1—C125.05 (18)N1—C1—C6—O2167.97 (18)
O5—Ca1—N1—C1102.78 (15)C2—C1—C6—O215.1 (3)
N1i—Ca1—N1—C1123.83 (16)Ca1—O3—C7—O4170.52 (16)
N2—Ca1—N1—C156.17 (16)Ca1—O3—C7—C59.4 (2)
O3i—Ca1—N1—C174.64 (15)N1—C5—C7—O4175.02 (18)
O3—Ca1—N1—C1179.70 (17)C4—C5—C7—O42.6 (3)
O1i—Ca1—O1—C6148.51 (15)N1—C5—C7—O34.9 (3)
O5i—Ca1—O1—C6145.46 (15)C4—C5—C7—O3177.5 (2)
O5—Ca1—O1—C686.33 (15)C8i—N2—C8—C90.29 (15)
N1i—Ca1—O1—C694.42 (16)Ca1—N2—C8—C9179.71 (15)
N1—Ca1—O1—C613.04 (14)C8i—N2—C8—C11178.57 (19)
N2—Ca1—O1—C6148.51 (15)Ca1—N2—C8—C111.43 (19)
O3i—Ca1—O1—C670.16 (15)N2—C8—C9—C100.6 (3)
O3—Ca1—O1—C618.19 (17)C11—C8—C9—C10178.21 (17)
O1—Ca1—N2—C8i80.76 (10)C8—C9—C10—C9i0.27 (14)
O1i—Ca1—N2—C8i99.24 (10)Ca1—O5—C11—O6173.48 (15)
O5i—Ca1—N2—C8i0.53 (11)Ca1—O5—C11—C85.0 (2)
O5—Ca1—N2—C8i179.47 (11)N2—C8—C11—O6174.49 (16)
N1i—Ca1—N2—C8i52.29 (11)C9—C8—C11—O64.4 (3)
N1—Ca1—N2—C8i127.71 (11)N2—C8—C11—O54.1 (3)
O3i—Ca1—N2—C8i27.26 (11)C9—C8—C11—O5177.1 (2)
O3—Ca1—N2—C8i152.74 (11)C14—N4—C12—N7177.40 (19)
O1—Ca1—N2—C899.24 (10)C14—N4—C12—N51.4 (3)
O1i—Ca1—N2—C880.76 (10)C13—N5—C12—N7172.95 (19)
O5i—Ca1—N2—C8179.47 (11)C13—N5—C12—N45.9 (3)
O5—Ca1—N2—C80.53 (11)C12—N5—C13—N8173.9 (2)
N1i—Ca1—N2—C8127.71 (11)C12—N5—C13—N34.3 (3)
N1—Ca1—N2—C852.29 (11)C14—N3—C13—N51.3 (3)
O3i—Ca1—N2—C8152.74 (11)C14—N3—C13—N8179.6 (2)
O3—Ca1—N2—C827.26 (11)C12—N4—C14—N6174.6 (2)
N1—C1—C2—C30.8 (4)C12—N4—C14—N34.7 (3)
C6—C1—C2—C3177.5 (2)C13—N3—C14—N6173.2 (2)
O1—Ca1—O3—C72.23 (17)C13—N3—C14—N46.2 (3)
O1i—Ca1—O3—C7153.52 (15)C16—N10—C15—N12175.54 (19)
O5i—Ca1—O3—C7145.59 (14)C16—N10—C15—N94.7 (3)
O5—Ca1—O3—C774.48 (15)C17—N9—C15—N102.6 (3)
N1i—Ca1—O3—C7140.11 (15)C17—N9—C15—N12177.67 (18)
N1—Ca1—O3—C77.43 (14)C17—N11—C16—N13179.39 (19)
N2—Ca1—O3—C7100.42 (14)C17—N11—C16—N100.9 (3)
O3i—Ca1—O3—C779.58 (14)C15—N10—C16—N13176.27 (19)
C1—C2—C3—C40.2 (4)C15—N10—C16—N114.0 (3)
C2—C3—C4—C50.4 (4)C16—N11—C17—N14177.5 (2)
O1—Ca1—O5—C1175.17 (16)C16—N11—C17—N91.6 (3)
O1i—Ca1—O5—C1176.38 (16)C15—N9—C17—N14178.31 (19)
O5i—Ca1—O5—C113.08 (14)C15—N9—C17—N110.8 (3)
N1i—Ca1—O5—C11104.08 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2ii0.841.912.710 (3)160
O1W—H1WA···O6iii0.841.922.751 (3)170
O2W—H2WB···N4iv0.842.263.022 (3)151
N3—H3N···O20.881.792.667 (2)176
O2W—H2WA···O50.842.052.888 (3)175
O3W—H3WB···O2Wv0.842.182.963 (3)154
O3W—H3WA···N14vi0.842.173.007 (3)180
N6—H6NA···O1Wii0.882.453.294 (3)162
N6—H6NB···O1W0.881.902.740 (3)160
N7—H7NA···N11vi0.882.223.103 (3)176
N7—H7NB···O2Wiii0.882.443.205 (3)146
N7—H7NB···O4iii0.882.533.111 (2)124
N8—H8NA···O10.882.072.948 (2)172
N12—H11A···N10vii0.882.233.109 (2)178
N12—H11B···O50.882.323.196 (2)175
N8—H8NB···O3W0.882.152.832 (4)134
N9—H9NA···O30.881.892.754 (2)165
N13—H13A···O4viii0.882.082.925 (2)160
N13—H13B···O6vii0.881.962.790 (2)157
N14—H14A···O30.882.393.143 (2)144
N14—H14B···N5ix0.882.102.978 (3)178
C4—H4A···O2x0.952.553.370 (3)145
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, y+1, z1/2; (iv) x, y+1, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x, y1, z+1/2; (x) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C3H7N6)4[Ca(C7H3NO4)3]·6H2O
Mr1152.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)17.9605 (15), 10.1672 (9), 25.922 (2)
β (°) 94.467 (2)
V3)4719.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
16983, 6215, 4412
Rint0.031
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.127, 1.09
No. of reflections6215
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.77

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2i0.841.912.710 (3)160
O1W—H1WA···O6ii0.841.922.751 (3)170
O2W—H2WB···N4iii0.842.263.022 (3)151
N3—H3N···O20.881.792.667 (2)176
O2W—H2WA···O50.842.052.888 (3)175
O3W—H3WB···O2Wiv0.842.182.963 (3)154
O3W—H3WA···N14v0.842.173.007 (3)180
N6—H6NA···O1Wi0.882.453.294 (3)162
N6—H6NB···O1W0.881.902.740 (3)160
N7—H7NA···N11v0.882.223.103 (3)176
N7—H7NB···O2Wii0.882.443.205 (3)146
N7—H7NB···O4ii0.882.533.111 (2)124
N8—H8NA···O10.882.072.948 (2)172
N12—H11A···N10vi0.882.233.109 (2)178
N12—H11B···O50.882.323.196 (2)175
N8—H8NB···O3W0.882.152.832 (4)134
N9—H9NA···O30.881.892.754 (2)165
N13—H13A···O4vii0.882.082.925 (2)160
N13—H13B···O6vi0.881.962.790 (2)157
N14—H14A···O30.882.393.143 (2)144
N14—H14B···N5viii0.882.102.978 (3)178
C4—H4A···O2ix0.952.553.370 (3)145
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z+1/2; (vi) x, y+1, z+1; (vii) x, y, z+1; (viii) x, y1, z+1/2; (ix) x+1/2, y1/2, z+1/2.
 

References

First citationAghabozorg, H., Aghajani, Z. & Sharif, M. A. (2006). Acta Cryst. E62, m1930–m1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.  CrossRef CAS Google Scholar
First citationAghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830–m832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599–m1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1063-m1064
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds