metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A dinuclear copper complex: bis­­(μ-4-amino­benzoato)bis­­[aqua(1,10-phenanthroline)copper(II)] dichloride bis­(4-amino­benzoic acid) dihydrate

aDepartment of Chemistry and Science of life, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 30 June 2008; accepted 26 July 2008; online 31 July 2008)

The title complex, [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2O, consists of a dinuclear [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]2+ cation, two Cl anions, two 4-amino­benzoic acid mol­ecules and two disordered water mol­ecules (site occupancy factors 0.5). The Cu(II) ion adopts a distorted square-pyramidal geometry formed by two N atoms from the 1,10-phenanthroline ligand and two O atoms of the two 4-amino­benzoic acid ligands and one water O atom. The Cu⋯Cu separation is 3.109 (2) Å. A twofold axis passes through the mid-point of the Cu⋯Cu vector.

Related literature

For related literature, see: Lo et al. (2000[Lo, S. M. F., Chui, S. S. Y. & Shek, L. Y. (2000). J. Am. Chem. Soc. 122, 6293-6294.]); Zoroddu et al. (1996[Zoroddu, M. A., Dallocchio, R. & Mosca, S. (1996). Polyhedron, 15, 277-283.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Müller et al. (2003[Müller, A., Das, S. K. & Talismanov, S. (2003). Angew. Chem. Int. Ed. 42, 5039-5044.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2O

  • Mr = 1174.96

  • Monoclinic, C 2/c

  • a = 25.748 (2) Å

  • b = 10.0988 (8) Å

  • c = 20.9156 (17) Å

  • β = 110.3070 (10)°

  • V = 5100.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 291 (2) K

  • 0.49 × 0.40 × 0.37 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.708

  • 18514 measured reflections

  • 4744 independent reflections

  • 3886 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.02

  • 4744 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2W⋯Cl1i 0.85 2.71 3.549 (7) 170
O1—H1W⋯O1ii 0.88 2.32 2.938 (11) 127
O2—H4W⋯O1 0.82 1.80 2.477 (8) 138
O2—H3W⋯N4 0.83 2.30 3.081 (5) 157
O3—H5W⋯Cl1 0.83 2.32 3.1259 (17) 163
O3—H6W⋯O6 0.84 1.90 2.737 (2) 179
N3—H3A⋯Cl1iii 0.86 2.68 3.475 (3) 154
N3—H3B⋯O2iv 0.86 2.07 2.898 (5) 161
N4—H4A⋯Cl1v 0.86 2.71 3.512 (3) 155
N4—H4B⋯Cl1i 0.86 2.59 3.433 (3) 167
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

During the last three decades, copper complexes have received much attention because of their interesting interactions with biological ligands to generate stable mixed coordinated complexes, which play a key role in life processes such as enzymatic catalysis, storage and conveyance of the matter, transfer of copper ions (Müller, et al., 2003; Rao, et al., 2004; Lo, et al., 2000). 4-Aminobenzoic acid, an important part of folic acid, is a constituent of the vitamin B complex and is found in animal and plant tissues, and has been shown to be a growth factor in certain microorganisms, particularly Enterococci and Lactobacilli (Zoroddu et al., 1996). In order to extend further the study of 4-aminobenzoic acid ligand coordinated to copper ion, we have synthesized the title complex, (I) and determined its crystal structure by X-ray diffraction which is presented in this article.

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively. The structure is composed of a dimeric [Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]2+ cation with two five-coordinated Cu(II) ions linked by two oxygen atoms of 4-aminobenzoic acid, two Cl- anions, two 4-aminobenzoic acid molecules and two disordered water molecules lying over four sites with 0.5 occupancy factors each. The Cu(II) ion has a distorted square-pyramidal geometry with two N atoms of 1,10-phenanthroline ligand and two O atoms of two 4-aminobenzoic acid ligands occupying basal sites and the apical position being occupied by an O atom of H2O. The benzoic acid molecules not coordinated to Cu are hydrogen bonded to Cl- ions by amino H-atoms and to water of coordination by hydroxyl H-atoms (details are given in Table 1). As a matter of fact, the complex molecules, Cl- anions, 4-aminobenzoic acid molecules and water molecules are linked by a network of O—H···O, N—H···O and O—H···Cl hydrogen bonds into a three-dimensional supramolecular structure. In the complex, the two 1,10-phenanthroline ligands are stacked with their centroids separated by 3.661 (2) Å indicating significant π-π interactions.

Related literature top

For related literature, see: Lo et al. (2000); Zoroddu et al. (1996); Rao et al. (2004); Müller et al. (2003).

Experimental top

An aqueous solution (5 ml) of CuCl2.3H2O (1 mmol) was added slowly to a mixed solution of 4-aminobenzoic acid (1.5 mmol) in H2O (5 ml) and 1,10-phenanthroline (1 mmol) in ethanol (95%, 5 ml). After refluxing for 3 h, the mixture was filtered off while hot. The dark-green single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature after a week.

Refinement top

The occupancy factors of water molecules not involved in coordination refined close to 0.5 values at the initial stages. Hence, site occupancy factors for both water molecules were fixed at 0.5. H-atoms bonded to water molecules were taken from a difference Fourier map and were fixed at those positions during the refinements with Uiso(H) = 1.5Ueq(O). H atoms bonded to C, N and hydroxyl O atoms were placed geometrically and treated as riding, with distances C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C and N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP-3 (Farrugia, 1997) drawing of the title compound. Displacement ellipsoids are drawn at 30% probability level. Symmetry code for letter "A" in the atomic symbols: -x, y, -z+1/2.
[Figure 2] Fig. 2. Projection of the unit cell showing the three-dimensional structure formed by H-bonding interaction of the compound (I).
bis(µ-4-aminobenzoato)bis[aqua(1,10-phenanthroline)copper(II)] dichloride bis(4-aminobenzoic acid) dihydrate top
Crystal data top
[Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2OF(000) = 2416
Mr = 1174.96Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5516 reflections
a = 25.748 (2) Åθ = 2.3–24.7°
b = 10.0988 (8) ŵ = 1.01 mm1
c = 20.9156 (17) ÅT = 291 K
β = 110.307 (1)°Block, blue
V = 5100.5 (7) Å30.49 × 0.40 × 0.37 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4744 independent reflections
Radiation source: fine-focus sealed tube3886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ & ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3131
Tmin = 0.638, Tmax = 0.708k = 1212
18514 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0477P)2 + 4.1583P]
where P = (Fo2 + 2Fc2)/3
4744 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2OV = 5100.5 (7) Å3
Mr = 1174.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.748 (2) ŵ = 1.01 mm1
b = 10.0988 (8) ÅT = 291 K
c = 20.9156 (17) Å0.49 × 0.40 × 0.37 mm
β = 110.307 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4744 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3886 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.708Rint = 0.030
18514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
4744 reflectionsΔρmin = 0.31 e Å3
352 parameters
Special details top

Experimental. Yield 81%. IR(KBr): 3409(s), 3190(w), 3057(w), 2921(m), 2857(w), 1734(w), 1671(s), 1630(s), 1600(versus), 1550(s), 1516(s), 1494(w), 1418(m), 1389(versus), 1344(w), 1312(m), 1267(s), 1222(vw), 1178(s), 1146(m), 1108(m), 1046(w), 854(s), 844(s), 786(m), 719(s), 702(w), 643(m), 609(m), 511(m), 466(w), 430(w).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.018177 (11)0.03851 (3)0.186473 (14)0.03323 (10)
Cl10.18713 (3)0.11806 (7)0.16975 (4)0.0568 (2)
O10.2421 (2)0.7015 (7)0.0622 (3)0.117 (2)0.50
H2W0.22550.74810.08280.176*0.50
H1W0.26510.74970.04920.176*0.50
O20.29142 (16)0.4893 (4)0.10037 (19)0.0606 (10)0.50
H4W0.29050.56580.08650.091*0.50
H3W0.27220.48210.12460.091*0.50
O40.06914 (7)0.15420 (17)0.25246 (9)0.0441 (4)
O30.05793 (6)0.10211 (15)0.10938 (8)0.0389 (4)
H5W0.09100.12330.12810.058*
H6W0.05540.03840.08300.058*
O50.04104 (7)0.16729 (16)0.34272 (8)0.0416 (4)
O60.05048 (8)0.10828 (17)0.02418 (10)0.0561 (5)
O70.00758 (7)0.29085 (17)0.02501 (9)0.0500 (4)
N10.03250 (8)0.10025 (19)0.12729 (10)0.0363 (4)
N20.06502 (8)0.12213 (19)0.22432 (10)0.0367 (4)
N30.26796 (11)0.4815 (3)0.45449 (15)0.0914 (11)
H3A0.28990.50520.43360.110*
H3B0.27510.50370.49640.110*
N40.22137 (10)0.5522 (2)0.18975 (12)0.0609 (7)
H4A0.25110.51600.21690.073*
H4B0.21880.63700.18670.073*
C10.07507 (9)0.1908 (2)0.31242 (12)0.0338 (5)
C20.12577 (9)0.2661 (2)0.35019 (11)0.0323 (5)
C30.13794 (10)0.2994 (3)0.41806 (12)0.0441 (6)
H3D0.11370.27440.44000.053*
C40.18489 (11)0.3682 (3)0.45348 (13)0.0539 (7)
H40.19250.38830.49920.065*
C50.22162 (11)0.4085 (3)0.42110 (14)0.0515 (7)
C60.21002 (10)0.3726 (2)0.35347 (13)0.0411 (6)
H60.23430.39670.33140.049*
C70.16336 (10)0.3024 (2)0.31893 (12)0.0363 (5)
H7A0.15660.27850.27380.044*
C80.08038 (11)0.0855 (3)0.07639 (13)0.0480 (6)
H80.09350.00030.06320.058*
C90.11160 (12)0.1930 (3)0.04215 (14)0.0582 (8)
H90.14470.17920.00620.070*
C100.09364 (12)0.3183 (3)0.06132 (14)0.0556 (7)
H100.11500.39030.03960.067*
C110.04277 (11)0.3387 (2)0.11407 (13)0.0438 (6)
C120.01910 (14)0.4660 (3)0.13788 (16)0.0540 (7)
H120.03830.54220.11830.065*
C130.03050 (14)0.4771 (3)0.18812 (16)0.0553 (8)
H130.04480.56080.20250.066*
C140.06162 (11)0.3625 (2)0.21979 (13)0.0438 (6)
C150.11401 (13)0.3645 (3)0.27098 (15)0.0593 (8)
H150.13080.44500.28760.071*
C160.14047 (12)0.2497 (3)0.29647 (15)0.0612 (8)
H160.17540.25160.33000.073*
C170.11497 (11)0.1290 (3)0.27211 (14)0.0497 (7)
H170.13350.05080.28980.060*
C180.03912 (10)0.2371 (2)0.19804 (12)0.0358 (5)
C190.01349 (10)0.2252 (2)0.14510 (11)0.0349 (5)
C200.04919 (10)0.2283 (2)0.02199 (12)0.0386 (6)
C210.09205 (10)0.3146 (2)0.06716 (12)0.0364 (5)
C220.08804 (10)0.4523 (2)0.06392 (12)0.0393 (5)
H220.05650.49160.03350.047*
C230.13002 (11)0.5308 (2)0.10500 (13)0.0440 (6)
H230.12650.62240.10200.053*
C240.17799 (10)0.4743 (3)0.15117 (12)0.0422 (6)
C250.18133 (11)0.3366 (3)0.15532 (13)0.0486 (6)
H250.21250.29710.18650.058*
C260.13959 (11)0.2583 (3)0.11425 (12)0.0436 (6)
H260.14290.16660.11770.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02996 (16)0.03028 (16)0.03771 (17)0.00293 (11)0.00953 (12)0.00503 (12)
Cl10.0428 (4)0.0556 (4)0.0662 (5)0.0092 (3)0.0117 (3)0.0103 (3)
O10.077 (4)0.185 (6)0.079 (4)0.016 (4)0.014 (3)0.018 (4)
O20.063 (3)0.070 (3)0.045 (2)0.003 (2)0.0136 (19)0.0081 (19)
O40.0407 (9)0.0462 (10)0.0469 (10)0.0072 (8)0.0169 (8)0.0165 (8)
O30.0351 (9)0.0391 (9)0.0410 (9)0.0007 (7)0.0113 (7)0.0082 (7)
O50.0380 (9)0.0419 (9)0.0465 (10)0.0118 (7)0.0166 (8)0.0016 (8)
O60.0755 (14)0.0345 (10)0.0529 (11)0.0070 (9)0.0154 (10)0.0066 (8)
O70.0495 (10)0.0397 (10)0.0520 (11)0.0027 (8)0.0062 (9)0.0031 (8)
N10.0353 (10)0.0365 (11)0.0361 (11)0.0009 (9)0.0111 (9)0.0023 (9)
N20.0331 (10)0.0374 (11)0.0373 (11)0.0048 (9)0.0095 (9)0.0034 (9)
N30.0673 (18)0.142 (3)0.0690 (18)0.0646 (19)0.0284 (15)0.0421 (19)
N40.0495 (14)0.0600 (16)0.0599 (15)0.0008 (12)0.0019 (12)0.0113 (12)
C10.0342 (12)0.0238 (11)0.0429 (13)0.0006 (9)0.0128 (11)0.0010 (10)
C20.0327 (12)0.0260 (11)0.0388 (12)0.0016 (9)0.0134 (10)0.0024 (9)
C30.0414 (14)0.0528 (16)0.0435 (14)0.0109 (12)0.0217 (12)0.0064 (12)
C40.0495 (16)0.076 (2)0.0372 (14)0.0200 (14)0.0157 (12)0.0175 (13)
C50.0407 (14)0.0609 (17)0.0525 (16)0.0171 (13)0.0158 (12)0.0143 (14)
C60.0351 (13)0.0425 (14)0.0504 (15)0.0054 (11)0.0209 (11)0.0032 (11)
C70.0394 (13)0.0324 (12)0.0401 (13)0.0003 (10)0.0178 (11)0.0041 (10)
C80.0414 (14)0.0509 (16)0.0456 (15)0.0030 (12)0.0074 (12)0.0005 (12)
C90.0472 (16)0.068 (2)0.0487 (16)0.0102 (15)0.0031 (13)0.0110 (15)
C100.0576 (17)0.0569 (18)0.0518 (16)0.0170 (14)0.0181 (14)0.0209 (14)
C110.0547 (16)0.0399 (14)0.0438 (14)0.0092 (12)0.0261 (13)0.0113 (11)
C120.074 (2)0.0357 (14)0.0630 (18)0.0076 (14)0.0373 (17)0.0108 (13)
C130.082 (2)0.0323 (14)0.068 (2)0.0069 (14)0.0465 (19)0.0047 (13)
C140.0550 (16)0.0373 (13)0.0464 (14)0.0112 (12)0.0267 (13)0.0077 (11)
C150.068 (2)0.0518 (17)0.0625 (18)0.0276 (16)0.0289 (16)0.0162 (15)
C160.0493 (17)0.070 (2)0.0561 (18)0.0207 (15)0.0077 (14)0.0072 (16)
C170.0398 (14)0.0534 (16)0.0495 (15)0.0067 (12)0.0072 (12)0.0056 (13)
C180.0419 (13)0.0352 (12)0.0362 (12)0.0046 (10)0.0210 (11)0.0007 (10)
C190.0412 (13)0.0344 (12)0.0332 (12)0.0002 (10)0.0181 (10)0.0034 (10)
C200.0483 (15)0.0356 (14)0.0384 (13)0.0007 (11)0.0234 (12)0.0034 (10)
C210.0414 (13)0.0370 (13)0.0343 (12)0.0019 (11)0.0176 (10)0.0034 (10)
C220.0395 (13)0.0389 (13)0.0376 (13)0.0043 (11)0.0111 (11)0.0055 (11)
C230.0498 (15)0.0359 (14)0.0452 (14)0.0039 (12)0.0153 (12)0.0022 (11)
C240.0419 (14)0.0496 (16)0.0362 (13)0.0001 (12)0.0148 (11)0.0044 (11)
C250.0442 (15)0.0526 (16)0.0441 (15)0.0140 (13)0.0089 (12)0.0028 (12)
C260.0507 (15)0.0367 (13)0.0443 (14)0.0103 (12)0.0176 (12)0.0045 (11)
Geometric parameters (Å, º) top
Cu1—O41.9326 (16)C6—C71.366 (3)
Cu1—O5i1.9346 (16)C6—H60.9300
Cu1—N22.0125 (19)C7—H7A0.9300
Cu1—N12.0192 (19)C8—C91.393 (4)
Cu1—O32.2815 (16)C8—H80.9300
O1—H2W0.8467C9—C101.358 (4)
O1—H1W0.8810C9—H90.9300
O2—H4W0.8235C10—C111.404 (4)
O2—H3W0.8250C10—H100.9300
O4—C11.265 (3)C11—C191.401 (3)
O3—H5W0.8317C11—C121.436 (4)
O3—H6W0.8354C12—C131.348 (4)
O5—C11.269 (3)C12—H120.9300
O5—Cu1i1.9346 (16)C13—C141.432 (4)
O6—C201.213 (3)C13—H130.9300
O7—C201.335 (3)C14—C181.401 (3)
N1—C81.328 (3)C14—C151.401 (4)
N1—C191.358 (3)C15—C161.356 (4)
N2—C171.329 (3)C15—H150.9300
N2—C181.357 (3)C16—C171.395 (4)
N3—C51.370 (3)C16—H160.9300
N3—H3A0.8600C17—H170.9300
N3—H3B0.8600C18—C191.426 (3)
N4—C241.375 (3)C20—C211.465 (3)
N4—H4A0.8600C21—C221.394 (3)
N4—H4B0.8600C21—C261.398 (3)
C1—C21.480 (3)C22—C231.375 (3)
C2—C31.385 (3)C22—H220.9300
C2—C71.392 (3)C23—C241.399 (3)
C3—C41.368 (3)C23—H230.9300
C3—H3D0.9300C24—C251.394 (4)
C4—C51.401 (4)C25—C261.370 (4)
C4—H40.9300C25—H250.9300
C5—C61.389 (4)C26—H260.9300
O4—Cu1—O5i94.84 (7)C10—C9—H9120.1
O4—Cu1—N292.34 (8)C8—C9—H9120.1
O5i—Cu1—N2164.82 (8)C9—C10—C11119.8 (3)
O4—Cu1—N1172.52 (8)C9—C10—H10120.1
O5i—Cu1—N190.13 (7)C11—C10—H10120.1
N2—Cu1—N181.56 (8)C19—C11—C10116.7 (2)
O4—Cu1—O388.54 (6)C19—C11—C12118.4 (2)
O5i—Cu1—O394.90 (6)C10—C11—C12124.9 (3)
N2—Cu1—O398.65 (7)C13—C12—C11121.2 (3)
N1—Cu1—O396.61 (7)C13—C12—H12119.4
H2W—O1—H1W111.3C11—C12—H12119.4
H4W—O2—H3W110.4C12—C13—C14121.3 (3)
C1—O4—Cu1134.68 (15)C12—C13—H13119.3
Cu1—O3—H5W112.1C14—C13—H13119.3
Cu1—O3—H6W107.4C18—C14—C15116.2 (3)
H5W—O3—H6W110.0C18—C14—C13118.5 (2)
C1—O5—Cu1i124.96 (15)C15—C14—C13125.3 (3)
C8—N1—C19118.0 (2)C16—C15—C14120.5 (3)
C8—N1—Cu1129.48 (18)C16—C15—H15119.8
C19—N1—Cu1112.46 (15)C14—C15—H15119.8
C17—N2—C18118.1 (2)C15—C16—C17119.7 (3)
C17—N2—Cu1128.99 (18)C15—C16—H16120.2
C18—N2—Cu1112.80 (15)C17—C16—H16120.2
C5—N3—H3A120.0N2—C17—C16122.0 (3)
C5—N3—H3B120.0N2—C17—H17119.0
H3A—N3—H3B120.0C16—C17—H17119.0
C24—N4—H4A120.0N2—C18—C14123.5 (2)
C24—N4—H4B120.0N2—C18—C19116.3 (2)
H4A—N4—H4B120.0C14—C18—C19120.2 (2)
O4—C1—O5125.0 (2)N1—C19—C11123.2 (2)
O4—C1—C2117.4 (2)N1—C19—C18116.5 (2)
O5—C1—C2117.6 (2)C11—C19—C18120.3 (2)
C3—C2—C7118.1 (2)O6—C20—O7120.3 (2)
C3—C2—C1121.0 (2)O6—C20—C21124.4 (2)
C7—C2—C1120.9 (2)O7—C20—C21115.2 (2)
C4—C3—C2121.4 (2)C22—C21—C26118.2 (2)
C4—C3—H3D119.3C22—C21—C20122.4 (2)
C2—C3—H3D119.3C26—C21—C20119.4 (2)
C3—C4—C5120.2 (2)C23—C22—C21121.1 (2)
C3—C4—H4119.9C23—C22—H22119.5
C5—C4—H4119.9C21—C22—H22119.5
N3—C5—C6120.1 (2)C22—C23—C24120.7 (2)
N3—C5—C4121.6 (3)C22—C23—H23119.6
C6—C5—C4118.3 (2)C24—C23—H23119.6
C7—C6—C5120.9 (2)N4—C24—C25120.9 (2)
C7—C6—H6119.6N4—C24—C23121.0 (2)
C5—C6—H6119.6C25—C24—C23118.1 (2)
C6—C7—C2121.0 (2)C26—C25—C24121.2 (2)
C6—C7—H7A119.5C26—C25—H25119.4
C2—C7—H7A119.5C24—C25—H25119.4
N1—C8—C9122.3 (3)C25—C26—C21120.7 (2)
N1—C8—H8118.9C25—C26—H26119.6
C9—C8—H8118.9C21—C26—H26119.6
C10—C9—C8119.9 (3)
O5i—Cu1—O4—C179.3 (2)C11—C12—C13—C140.0 (4)
N2—Cu1—O4—C187.3 (2)C12—C13—C14—C180.8 (4)
O3—Cu1—O4—C1174.1 (2)C12—C13—C14—C15178.2 (3)
O5i—Cu1—N1—C816.4 (2)C18—C14—C15—C160.5 (4)
N2—Cu1—N1—C8176.4 (2)C13—C14—C15—C16178.5 (3)
O3—Cu1—N1—C878.6 (2)C14—C15—C16—C170.8 (5)
O5i—Cu1—N1—C19162.21 (16)C18—N2—C17—C161.4 (4)
N2—Cu1—N1—C195.03 (15)Cu1—N2—C17—C16175.2 (2)
O3—Cu1—N1—C19102.84 (15)C15—C16—C17—N20.2 (5)
O4—Cu1—N2—C176.6 (2)C17—N2—C18—C141.7 (3)
O5i—Cu1—N2—C17124.8 (3)Cu1—N2—C18—C14175.41 (18)
N1—Cu1—N2—C17177.8 (2)C17—N2—C18—C19177.7 (2)
O3—Cu1—N2—C1782.3 (2)Cu1—N2—C18—C195.2 (2)
O4—Cu1—N2—C18170.09 (16)C15—C14—C18—N20.7 (4)
O5i—Cu1—N2—C1851.9 (4)C13—C14—C18—N2179.8 (2)
N1—Cu1—N2—C185.57 (15)C15—C14—C18—C19178.6 (2)
O3—Cu1—N2—C18101.03 (15)C13—C14—C18—C190.5 (3)
Cu1—O4—C1—O59.1 (4)C8—N1—C19—C112.3 (3)
Cu1—O4—C1—C2170.59 (15)Cu1—N1—C19—C11176.46 (18)
Cu1i—O5—C1—O414.8 (3)C8—N1—C19—C18177.5 (2)
Cu1i—O5—C1—C2164.80 (15)Cu1—N1—C19—C183.7 (2)
O4—C1—C2—C3174.1 (2)C10—C11—C19—N11.2 (4)
O5—C1—C2—C35.6 (3)C12—C11—C19—N1178.9 (2)
O4—C1—C2—C74.2 (3)C10—C11—C19—C18178.6 (2)
O5—C1—C2—C7176.1 (2)C12—C11—C19—C181.3 (3)
C7—C2—C3—C41.3 (4)N2—C18—C19—N11.0 (3)
C1—C2—C3—C4179.6 (2)C14—C18—C19—N1179.6 (2)
C2—C3—C4—C51.0 (4)N2—C18—C19—C11178.8 (2)
C3—C4—C5—N3177.7 (3)C14—C18—C19—C110.6 (3)
C3—C4—C5—C62.3 (4)O6—C20—C21—C22178.2 (2)
N3—C5—C6—C7178.5 (3)O7—C20—C21—C223.6 (3)
C4—C5—C6—C71.5 (4)O6—C20—C21—C263.5 (4)
C5—C6—C7—C20.7 (4)O7—C20—C21—C26174.7 (2)
C3—C2—C7—C62.1 (4)C26—C21—C22—C231.1 (4)
C1—C2—C7—C6179.6 (2)C20—C21—C22—C23177.2 (2)
C19—N1—C8—C91.2 (4)C21—C22—C23—C240.1 (4)
Cu1—N1—C8—C9177.4 (2)C22—C23—C24—N4176.5 (2)
N1—C8—C9—C101.0 (4)C22—C23—C24—C251.4 (4)
C8—C9—C10—C112.1 (4)N4—C24—C25—C26176.2 (2)
C9—C10—C11—C191.1 (4)C23—C24—C25—C261.7 (4)
C9—C10—C11—C12178.8 (3)C24—C25—C26—C210.5 (4)
C19—C11—C12—C131.0 (4)C22—C21—C26—C250.9 (4)
C10—C11—C12—C13178.8 (3)C20—C21—C26—C25177.5 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2W···Cl1ii0.852.713.549 (7)170
O1—H1W···O1iii0.882.322.938 (11)127
O2—H4W···O10.821.802.477 (8)138
O2—H3W···N40.832.303.081 (5)157
O3—H5W···Cl10.832.323.1259 (17)163
O3—H6W···O60.841.902.737 (2)179
N3—H3A···Cl1iv0.862.683.475 (3)154
N3—H3B···O2v0.862.072.898 (5)161
N4—H4A···Cl1vi0.862.713.512 (3)155
N4—H4B···Cl1ii0.862.593.433 (3)167
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, y+3/2, z; (iv) x+1/2, y1/2, z+1/2; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C7H6NO2)2(C12H8N2)2(H2O)2]·2C7H7NO2·2H2O
Mr1174.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)25.748 (2), 10.0988 (8), 20.9156 (17)
β (°) 110.307 (1)
V3)5100.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.49 × 0.40 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.638, 0.708
No. of measured, independent and
observed [I > 2σ(I)] reflections
18514, 4744, 3886
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.02
No. of reflections4744
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2W···Cl1i0.852.713.549 (7)169.5
O1—H1W···O1ii0.882.322.938 (11)126.8
O2—H4W···O10.821.802.477 (8)138.3
O2—H3W···N40.832.303.081 (5)157.1
O3—H5W···Cl10.832.323.1259 (17)162.6
O3—H6W···O60.841.902.737 (2)179.0
N3—H3A···Cl1iii0.862.683.475 (3)153.5
N3—H3B···O2iv0.862.072.898 (5)160.8
N4—H4A···Cl1v0.862.713.512 (3)155.0
N4—H4B···Cl1i0.862.593.433 (3)167.0
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundition of Fujian Province of China (Grant no. Z0513017).

References

First citationBruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLo, S. M. F., Chui, S. S. Y. & Shek, L. Y. (2000). J. Am. Chem. Soc. 122, 6293–6294.  Web of Science CSD CrossRef CAS Google Scholar
First citationMüller, A., Das, S. K. & Talismanov, S. (2003). Angew. Chem. Int. Ed. 42, 5039–5044.  Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoroddu, M. A., Dallocchio, R. & Mosca, S. (1996). Polyhedron, 15, 277–283.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds