organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 30 July 2008; accepted 31 July 2008; online 6 August 2008)

In the crystal structure of the title compound, C14H15NO2S, the N—H bond is trans to one of the S=O double bonds, similar to what is observed in N-(2-methyl­phen­yl)benzene­sulfonamide and other aryl sulfonamides. The two aromatic rings enclose a dihedral angle of 44.9 (1)°. The mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds into chains running along the a axis. An intermolecular C—H⋯O hydrogen bond is also present.

Related literature

For related literature, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.], 2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.]); Gowda, Babitha et al. (2007[Gowda, B. T., Babitha, K. S., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3361.]); Gowda, Foro et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3325.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2S

  • Mr = 261.33

  • Monoclinic, P 21 /n

  • a = 5.2133 (7) Å

  • b = 17.971 (2) Å

  • c = 14.040 (1) Å

  • β = 91.681 (9)°

  • V = 1314.8 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.13 mm−1

  • T = 299 (2) K

  • 0.55 × 0.35 × 0.33 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2622 measured reflections

  • 2340 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.071

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.08

  • 2340 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.55 3.179 (2) 131
C5—H5⋯O2ii 0.93 2.57 3.229 (3) 129
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-sulfonamides, in the present work, the structure of N-(2,6-dimethylphenyl)-benzenesulfonamide (N26DMPBSA) has been determined (Gowda et al., 2005, 2008; Gowda, Babitha et al. 2007; Gowda, Foro et al. 2007). The the N—H bond is trans to one of the S—O double bonds (Fig. 1), similar to what is observed in N-(2-methylphenyl)-benzenesulfonamide (N2MPBSA)(Gowda et al., 2008) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007;). The two aromatic rings are rotated relative to each other by 44.9 (1)°, compared with the value of 61.5 (1)° in N2MPBSA. The other bond parameters in N26DMPBSA are similar to those observed in N2MPBSA and other N-(aryl)-sulfonamides (Gowda, Babitha et al., 2007; Gowda, Foro et al. 2007; Gowda et al. 2008; Perlovich et al., 2006; Gelbrich et al., 2007). The packing diagram of N26DMPBSA via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For related literature, see: Gelbrich et al. (2007); Gowda et al. (2005, 2008); Gowda, Babitha et al. (2007); Gowda, Foro et al. (2007); Perlovich et al. (2006)

Experimental top

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2,6-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(2,6-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(2,6-Dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H15NO2SF(000) = 552
Mr = 261.33Dx = 1.320 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 5.2133 (7) Åθ = 4.0–19.2°
b = 17.971 (2) ŵ = 2.14 mm1
c = 14.040 (1) ÅT = 299 K
β = 91.681 (9)°Prism, colourless
V = 1314.8 (2) Å30.55 × 0.35 × 0.33 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.071
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 4.0°
Graphite monochromatorh = 61
ω/2θ scansk = 210
2622 measured reflectionsl = 1616
2340 independent reflections3 standard reflections every 120 min
2197 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.6081P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2340 reflectionsΔρmax = 0.35 e Å3
164 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (9)
Crystal data top
C14H15NO2SV = 1314.8 (2) Å3
Mr = 261.33Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.2133 (7) ŵ = 2.14 mm1
b = 17.971 (2) ÅT = 299 K
c = 14.040 (1) Å0.55 × 0.35 × 0.33 mm
β = 91.681 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.071
2622 measured reflections3 standard reflections every 120 min
2340 independent reflections intensity decay: 1.0%
2197 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
2340 reflectionsΔρmin = 0.42 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0070 (4)0.19125 (11)0.78195 (15)0.0359 (5)
C20.2175 (4)0.23812 (13)0.7860 (2)0.0518 (6)
H20.33030.24340.73390.062*
C30.2557 (5)0.27695 (15)0.8699 (3)0.0677 (8)
H30.39720.30810.87440.081*
C40.0875 (6)0.26990 (16)0.9461 (2)0.0666 (8)
H40.11410.29691.00140.080*
C50.1186 (6)0.22354 (15)0.94146 (19)0.0590 (7)
H50.23090.21860.99380.071*
C60.1608 (4)0.18376 (13)0.85885 (17)0.0453 (5)
H60.30170.15220.85540.054*
C70.0178 (4)0.00007 (11)0.74093 (15)0.0373 (5)
C80.1139 (4)0.01229 (12)0.83144 (16)0.0437 (5)
C90.0176 (6)0.07186 (15)0.8839 (2)0.0609 (7)
H90.07880.08090.94440.073*
C100.1675 (7)0.11784 (16)0.8480 (3)0.0730 (9)
H100.23360.15680.88480.088*
C110.2541 (6)0.10620 (14)0.7582 (2)0.0680 (8)
H110.37690.13820.73430.082*
C120.1628 (5)0.04751 (13)0.70148 (18)0.0498 (6)
C130.3213 (5)0.03545 (14)0.87194 (18)0.0521 (6)
H13A0.47400.03160.83230.063*
H13B0.26510.08630.87410.063*
H13C0.35700.01890.93520.063*
C140.2511 (6)0.03980 (16)0.6006 (2)0.0683 (8)
H14A0.26900.01200.58530.082*
H14B0.12700.06220.55760.082*
H14C0.41350.06430.59470.082*
N10.1132 (3)0.06164 (9)0.68444 (12)0.0371 (4)
H1N0.25730.05710.65360.044*
O10.3127 (3)0.12146 (10)0.67758 (12)0.0478 (4)
O20.0692 (4)0.17882 (10)0.59926 (12)0.0576 (5)
S10.04474 (9)0.13941 (3)0.67748 (3)0.0358 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0330 (10)0.0277 (9)0.0476 (11)0.0044 (7)0.0082 (8)0.0010 (8)
C20.0383 (11)0.0382 (12)0.0794 (17)0.0005 (9)0.0079 (11)0.0024 (11)
C30.0519 (14)0.0440 (14)0.109 (2)0.0011 (11)0.0324 (16)0.0178 (14)
C40.0731 (18)0.0538 (15)0.0749 (19)0.0173 (14)0.0336 (15)0.0237 (14)
C50.0697 (16)0.0576 (15)0.0500 (14)0.0172 (13)0.0086 (12)0.0106 (12)
C60.0437 (11)0.0425 (12)0.0500 (12)0.0010 (9)0.0044 (9)0.0046 (9)
C70.0377 (10)0.0300 (10)0.0437 (11)0.0023 (8)0.0068 (8)0.0014 (8)
C80.0421 (11)0.0398 (11)0.0490 (12)0.0076 (9)0.0027 (9)0.0031 (9)
C90.0698 (17)0.0511 (14)0.0614 (16)0.0060 (12)0.0037 (12)0.0180 (12)
C100.088 (2)0.0455 (14)0.085 (2)0.0092 (14)0.0165 (17)0.0183 (14)
C110.0701 (18)0.0419 (14)0.091 (2)0.0179 (13)0.0075 (15)0.0061 (14)
C120.0523 (13)0.0388 (12)0.0579 (14)0.0040 (10)0.0045 (10)0.0108 (10)
C130.0489 (13)0.0557 (14)0.0523 (13)0.0057 (11)0.0106 (10)0.0054 (11)
C140.0828 (19)0.0587 (16)0.0638 (17)0.0143 (14)0.0110 (14)0.0211 (13)
N10.0333 (8)0.0372 (9)0.0402 (9)0.0016 (7)0.0069 (7)0.0004 (7)
O10.0331 (8)0.0539 (9)0.0569 (10)0.0006 (7)0.0104 (7)0.0048 (7)
O20.0690 (11)0.0563 (10)0.0473 (9)0.0011 (8)0.0016 (8)0.0193 (8)
S10.0351 (3)0.0364 (3)0.0361 (3)0.00027 (18)0.0040 (2)0.00487 (18)
Geometric parameters (Å, º) top
C1—C61.376 (3)C9—C101.377 (5)
C1—C21.386 (3)C9—H90.9300
C1—S11.765 (2)C10—C111.368 (5)
C2—C31.388 (4)C10—H100.9300
C2—H20.9300C11—C121.397 (4)
C3—C41.369 (5)C11—H110.9300
C3—H30.9300C12—C141.508 (4)
C4—C51.363 (4)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.386 (3)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.397 (3)C14—H14C0.9600
C7—C121.398 (3)N1—S11.6263 (17)
C7—N11.441 (3)N1—H1N0.8600
C8—C91.386 (3)O1—S11.4334 (16)
C8—C131.505 (3)O2—S11.4221 (17)
C6—C1—C2120.9 (2)C9—C10—H10120.0
C6—C1—S1119.41 (16)C10—C11—C12121.7 (3)
C2—C1—S1119.71 (18)C10—C11—H11119.2
C1—C2—C3118.3 (3)C12—C11—H11119.2
C1—C2—H2120.8C11—C12—C7117.3 (3)
C3—C2—H2120.8C11—C12—C14119.8 (2)
C4—C3—C2120.8 (2)C7—C12—C14122.9 (2)
C4—C3—H3119.6C8—C13—H13A109.5
C2—C3—H3119.6C8—C13—H13B109.5
C5—C4—C3120.5 (3)H13A—C13—H13B109.5
C5—C4—H4119.8C8—C13—H13C109.5
C3—C4—H4119.8H13A—C13—H13C109.5
C4—C5—C6120.0 (3)H13B—C13—H13C109.5
C4—C5—H5120.0C12—C14—H14A109.5
C6—C5—H5120.0C12—C14—H14B109.5
C1—C6—C5119.5 (2)H14A—C14—H14B109.5
C1—C6—H6120.2C12—C14—H14C109.5
C5—C6—H6120.2H14A—C14—H14C109.5
C8—C7—C12121.8 (2)H14B—C14—H14C109.5
C8—C7—N1119.69 (19)C7—N1—S1121.72 (13)
C12—C7—N1118.5 (2)C7—N1—H1N119.1
C9—C8—C7118.2 (2)S1—N1—H1N119.1
C9—C8—C13119.5 (2)O2—S1—O1119.85 (11)
C7—C8—C13122.3 (2)O2—S1—N1105.89 (10)
C10—C9—C8121.0 (3)O1—S1—N1107.55 (10)
C10—C9—H9119.5O2—S1—C1107.95 (11)
C8—C9—H9119.5O1—S1—C1106.89 (10)
C11—C10—C9120.0 (3)N1—S1—C1108.28 (9)
C11—C10—H10120.0
C6—C1—C2—C30.4 (3)C10—C11—C12—C14176.0 (3)
S1—C1—C2—C3178.70 (18)C8—C7—C12—C113.2 (3)
C1—C2—C3—C40.9 (4)N1—C7—C12—C11179.3 (2)
C2—C3—C4—C51.1 (4)C8—C7—C12—C14174.0 (2)
C3—C4—C5—C60.7 (4)N1—C7—C12—C143.5 (3)
C2—C1—C6—C50.1 (3)C8—C7—N1—S199.9 (2)
S1—C1—C6—C5179.04 (18)C12—C7—N1—S182.5 (2)
C4—C5—C6—C10.2 (4)C7—N1—S1—O2165.74 (17)
C12—C7—C8—C92.6 (3)C7—N1—S1—O136.48 (19)
N1—C7—C8—C9179.8 (2)C7—N1—S1—C178.70 (18)
C12—C7—C8—C13175.8 (2)C6—C1—S1—O2153.98 (17)
N1—C7—C8—C131.8 (3)C2—C1—S1—O226.9 (2)
C7—C8—C9—C100.1 (4)C6—C1—S1—O123.8 (2)
C13—C8—C9—C10178.3 (3)C2—C1—S1—O1157.06 (17)
C8—C9—C10—C111.7 (5)C6—C1—S1—N191.81 (18)
C9—C10—C11—C121.2 (5)C2—C1—S1—N187.33 (18)
C10—C11—C12—C71.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.553.179 (2)131
C5—H5···O2ii0.932.573.229 (3)129
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15NO2S
Mr261.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)5.2133 (7), 17.971 (2), 14.040 (1)
β (°) 91.681 (9)
V3)1314.8 (2)
Z4
Radiation typeCu Kα
µ (mm1)2.14
Crystal size (mm)0.55 × 0.35 × 0.33
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2622, 2340, 2197
Rint0.071
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.08
No. of reflections2340
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.553.179 (2)130.5
C5—H5···O2ii0.932.573.229 (3)128.5
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Babitha, K. S., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds