metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1218-m1219

Di­aquabis(4-bromo­benzoato-κO)­bis­(N,N′-di­ethyl­nicotinamide-κN1)zinc(II)

aHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, and bKafkas University, Department of Chemistry, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 19 August 2008; accepted 22 August 2008; online 30 August 2008)

The title compound, [Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2], is a monomeric complex with the ZnII atom lying on an inversion center. It contains two 4-bromo­benzoate, two diethyl­nicotinamide ligands and two water mol­ecules, all of which are monodentate. The four O atoms in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the distorted octa­hedral geometry is completed by two N atoms in the axial positions. The methyl group of one of the ethyl groups is disordered over two positions, with occupancies of ca 0.65 and 0.35. The two aromatic rings are oriented at an angle of 77.22 (14)°. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into chains along the a axis.

Related literature

For general background, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]). For related literature, see: Clegg et al. (1986a[Clegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919-920.],b[Clegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701-1703.]); Capilla & Aranda (1979[Capilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795-798.]); Usubaliev et al. (1992[Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, 203-207.]); Hökelek et al. (1995[Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049-1051.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187-189.]); Necefoğlu et al. (2002[Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758-m761.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2]

  • Mr = 857.89

  • Triclinic, [P \overline 1]

  • a = 7.3761 (14) Å

  • b = 8.677 (2) Å

  • c = 16.072 (3) Å

  • α = 84.32 (2)°

  • β = 78.917 (17)°

  • γ = 67.029 (18)°

  • V = 929.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 294 (2) K

  • 0.40 × 0.25 × 0.15 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.467, Tmax = 0.650

  • 4005 measured reflections

  • 3746 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.177

  • S = 1.06

  • 3746 reflections

  • 242 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.097 (3)
Zn1—O4 2.143 (3)
Zn1—N1 2.157 (3)
O1—Zn1—O4i 87.83 (12)
O1—Zn1—O4 92.17 (12)
O1—Zn1—N1i 88.24 (12)
O4—Zn1—N1i 93.29 (13)
O1—Zn1—N1 91.76 (12)
O4—Zn1—N1 86.71 (13)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2 0.84 (4) 1.83 (5) 2.658 (5) 168 (3)
O4—H42⋯O3ii 0.84 (3) 1.95 (3) 2.786 (6) 169 (2)
Symmetry code: (ii) -x, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). The structure-function-coordination relationships of the arylcarboxylate ions in ZnII complexes of benzoic acid derivatives may be changed, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981).

The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Clegg et al., 1986a), two-dimensional (Clegg et al., 1986b) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discrete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (Usubaliev et al., 1992).

N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant. The structures of several complexes obtained by reacting divalent transition metal ions with DENA have been determined, including those of Cu2(DENA)2(C6H5COO)4 (Hökelek et al., 1995), [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996), [Co(DENA)2(C7H5O3)2(H2O)2] (Hökelek & Necefoğlu, 1997) and [Cu(DENA)2(C7H4NO4)2(H2O)2] (Hökelek et al., 1997).

The structure determination of the title compound, a zinc complex with two bromobenzoate (BB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the BB and DENA ligands and also to compare the results obtained with those reported previously.

The title compound is a monomeric complex, with the Zn atom on a centre of symmetry. It contains two BB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and their symmetry-related atoms, O1', O4') in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination geometry is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.257 (5) Å] and C1—O2 [1.246 (5) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, as in other zinc(II) complexes: bis(4-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II) (Necefoğlu et al., 2002) and diaquabis(N,N'-diethylnicotinamide-κN)bis(4-fluorobenzoato-κO)- zinc(II) (Hökelek et al., 2007). This may be due to the intramolecular O—H···O hydrogen bonding of the carboxylate O atoms (Table 2). The Zn atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.885 (1) Å. The planar carboxylate group form dihedral angles of 3.09 (35)° and 80.21 (35)°, respectively, with the benzene (C2-C7) and pyridine (N1/C8-C12) rings. The dihedral angle between C2-C7 and N1/C8-C12 rings is 77.22 (14)°.

As can be seen from the packing diagram (Fig. 2), the molecules are linked into chains, along the a axis, by intermolecular O—H···O hydrogen bonds (Table 2).

Related literature top

For general background, see: Antolini et al. (1982); Nadzhafov et al. (1981). For related literature, see: Clegg et al. (1986a,b); Capilla & Aranda (1979); Usubaliev et al. (1992); Hökelek et al. (1995, 1997, 2007); Hökelek & Necefoğlu (1996, 1997); Necefoğlu et al. (2002).

Experimental top

The title compound was prepared by the reaction of ZnNO3 (1.27 g, 10 mmol) in H2O (25 ml) and DENA (3.56 g, 20 mmol) in H2O (25 ml) with sodium p-bromobenzoate (4.46 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement top

The H atoms of C14 atom and the C15 methyl group were disordered. During the refinement process the disordered atoms were refined over two positions with occupancies of 0.65 (3) (for C15, H15A, H15B, H15C, H14A and H14B) and 0.35 (3) (for C15A, H15D, H15E, H15F, H14C and H14D). H atoms of water molecule were located in a difference map and refined isotropically with the O-H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically [C-H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl)] and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. Primed atoms are generated by the symmetry operator (1 -x, -y, 1 -z). Only the major disorder component is shown.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, viewed down the b axis, showing hydrogen bonds (dashed lines) linking the molecules into chains. H atoms not involved in hydrogen bonding are omitted. The disordered atoms are omitted for clarity. Only the major disorder component is shown.
Diaquabis(4-bromobenzoato-κO)bis(N,N'- diethylnicotinamide-κN1)zinc(II) top
Crystal data top
[Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 857.89F(000) = 436
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3761 (14) ÅCell parameters from 25 reflections
b = 8.677 (2) Åθ = 5.5–13.7°
c = 16.072 (3) ŵ = 2.87 mm1
α = 84.32 (2)°T = 294 K
β = 78.917 (17)°Block, colourless
γ = 67.029 (18)°0.40 × 0.25 × 0.15 mm
V = 929.1 (4) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2570 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 26.3°, θmin = 2.6°
non–profiled ω scansh = 89
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.467, Tmax = 0.650l = 1920
4005 measured reflections3 standard reflections every 120 min
3746 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1119P)2]
where P = (Fo2 + 2Fc2)/3
3746 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.87 e Å3
16 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2]γ = 67.029 (18)°
Mr = 857.89V = 929.1 (4) Å3
Triclinic, P1Z = 1
a = 7.3761 (14) ÅMo Kα radiation
b = 8.677 (2) ŵ = 2.87 mm1
c = 16.072 (3) ÅT = 294 K
α = 84.32 (2)°0.40 × 0.25 × 0.15 mm
β = 78.917 (17)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2570 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.467, Tmax = 0.6503 standard reflections every 120 min
4005 measured reflections intensity decay: 1%
3746 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05816 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.87 e Å3
3746 reflectionsΔρmin = 0.71 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.23888 (10)0.16715 (11)0.03176 (4)0.0880 (3)
Zn10.50000.00000.50000.0356 (2)
O10.6060 (4)0.1244 (4)0.39536 (19)0.0414 (7)
O20.4176 (5)0.1310 (4)0.3013 (2)0.0524 (8)
O30.3317 (5)0.3246 (4)0.6209 (2)0.0541 (9)
O40.2761 (5)0.0147 (4)0.4372 (2)0.0461 (8)
H410.305 (9)0.035 (5)0.3919 (18)0.08 (2)*
H420.302 (7)0.114 (2)0.425 (3)0.044 (13)*
N10.2774 (5)0.2327 (4)0.5504 (2)0.0364 (8)
N20.3276 (7)0.4115 (6)0.7461 (3)0.0619 (12)
C10.5726 (6)0.1316 (5)0.3210 (3)0.0392 (10)
C20.7355 (6)0.1412 (5)0.2502 (3)0.0373 (9)
C30.9095 (7)0.1478 (6)0.2676 (3)0.0420 (10)
H30.92590.14550.32370.050*
C41.0587 (7)0.1578 (6)0.2035 (3)0.0483 (11)
H41.17390.16400.21570.058*
C51.0324 (7)0.1583 (6)0.1206 (3)0.0503 (12)
C60.8638 (8)0.1483 (7)0.1016 (3)0.0536 (12)
H60.84930.14780.04540.064*
C70.7161 (7)0.1390 (6)0.1666 (3)0.0446 (11)
H70.60200.13130.15400.054*
C80.3051 (6)0.3789 (5)0.5402 (3)0.0416 (10)
H80.42480.38040.50930.050*
C90.1628 (7)0.5253 (6)0.5737 (3)0.0465 (11)
H90.18700.62370.56590.056*
C100.0151 (7)0.5256 (6)0.6188 (3)0.0451 (11)
H100.11270.62400.64190.054*
C110.0477 (6)0.3765 (5)0.6296 (3)0.0376 (9)
C120.1022 (6)0.2355 (5)0.5923 (3)0.0371 (9)
H120.07900.13690.59670.045*
C130.2459 (7)0.3684 (6)0.6665 (3)0.0441 (11)
C140.2330 (11)0.4635 (9)0.8056 (4)0.0805 (18)
H14A0.10400.46070.77610.097*0.65 (3)
H14B0.31460.57880.82020.097*0.65 (3)
H14C0.32910.54300.84560.097*0.35 (3)
H14D0.13870.50900.77550.097*0.35 (3)
C150.203 (3)0.365 (3)0.8832 (11)0.109 (6)0.65 (3)
H15A0.14070.40920.91670.164*0.65 (3)
H15B0.11970.25110.87010.164*0.65 (3)
H15C0.33020.37040.91450.164*0.65 (3)
C15A0.128 (4)0.301 (2)0.837 (3)0.099 (10)0.35 (3)
H15D0.04730.30790.87550.148*0.35 (3)
H15E0.04320.23270.79010.148*0.35 (3)
H15F0.22080.25340.86520.148*0.35 (3)
C160.5345 (9)0.4168 (8)0.7762 (5)0.0759 (18)
H16A0.59680.48890.82460.091*
H16B0.61380.46240.73150.091*
C170.5281 (12)0.2459 (9)0.8008 (5)0.103 (3)
H17A0.45430.20290.84670.154*
H17B0.46410.17430.75320.154*
H17C0.66170.24980.81840.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0663 (5)0.1420 (7)0.0592 (4)0.0549 (5)0.0153 (3)0.0050 (4)
Zn10.0288 (4)0.0375 (4)0.0394 (4)0.0128 (3)0.0004 (3)0.0065 (3)
O10.0395 (17)0.0430 (17)0.0413 (18)0.0169 (14)0.0014 (13)0.0052 (13)
O20.0335 (17)0.070 (2)0.055 (2)0.0237 (16)0.0073 (14)0.0055 (17)
O30.0423 (19)0.068 (2)0.062 (2)0.0294 (17)0.0069 (16)0.0144 (17)
O40.0414 (18)0.048 (2)0.055 (2)0.0232 (16)0.0061 (15)0.0058 (16)
N10.0312 (18)0.0340 (19)0.042 (2)0.0118 (15)0.0010 (14)0.0038 (15)
N20.050 (3)0.082 (3)0.059 (3)0.036 (2)0.008 (2)0.016 (2)
C10.036 (2)0.030 (2)0.048 (3)0.0112 (18)0.0031 (19)0.0024 (18)
C20.038 (2)0.033 (2)0.041 (2)0.0152 (18)0.0018 (18)0.0043 (17)
C30.040 (2)0.047 (3)0.041 (2)0.018 (2)0.0066 (19)0.0036 (19)
C40.039 (3)0.058 (3)0.051 (3)0.024 (2)0.003 (2)0.001 (2)
C50.041 (3)0.057 (3)0.049 (3)0.020 (2)0.005 (2)0.005 (2)
C60.049 (3)0.073 (3)0.038 (3)0.022 (3)0.004 (2)0.002 (2)
C70.037 (2)0.056 (3)0.043 (3)0.020 (2)0.0056 (19)0.003 (2)
C80.033 (2)0.047 (3)0.048 (3)0.020 (2)0.0011 (19)0.005 (2)
C90.047 (3)0.036 (2)0.058 (3)0.018 (2)0.004 (2)0.008 (2)
C100.036 (2)0.038 (2)0.057 (3)0.0086 (19)0.004 (2)0.014 (2)
C110.031 (2)0.041 (2)0.040 (2)0.0115 (17)0.0050 (17)0.0080 (18)
C120.030 (2)0.038 (2)0.045 (2)0.0152 (18)0.0011 (17)0.0041 (18)
C130.036 (2)0.043 (2)0.052 (3)0.014 (2)0.002 (2)0.009 (2)
C140.080 (5)0.080 (4)0.075 (4)0.028 (4)0.003 (3)0.006 (3)
C150.118 (9)0.139 (10)0.077 (8)0.048 (7)0.038 (7)0.006 (7)
C15A0.092 (12)0.089 (12)0.118 (14)0.038 (9)0.009 (9)0.013 (8)
C160.059 (4)0.067 (4)0.094 (5)0.025 (3)0.015 (3)0.020 (3)
C170.116 (6)0.079 (5)0.102 (6)0.047 (5)0.025 (5)0.001 (4)
Geometric parameters (Å, º) top
Br1—C51.897 (5)C8—C91.372 (6)
Zn1—O1i2.097 (3)C8—H80.93
Zn1—O12.097 (3)C9—C101.371 (6)
Zn1—O4i2.143 (3)C9—H90.93
Zn1—O42.143 (3)C10—C111.394 (6)
Zn1—N1i2.157 (3)C10—H100.93
Zn1—N12.157 (3)C11—C121.383 (6)
O1—C11.257 (5)C11—C131.493 (6)
O2—C11.246 (5)C12—H120.93
O3—C131.226 (6)C14—C15A1.409 (16)
O4—H410.84 (4)C14—C151.441 (12)
O4—H420.84 (3)C14—H14A0.97
N1—C121.330 (5)C14—H14B0.97
N1—C81.352 (5)C14—H14C0.96
N2—C131.328 (6)C14—H14D0.96
N2—C141.481 (8)C15—H15A0.96
N2—C161.494 (7)C15—H15B0.96
C1—C21.510 (6)C15—H15C0.96
C2—C71.381 (6)C15A—H15D0.96
C2—C31.389 (6)C15A—H15E0.96
C3—C41.379 (6)C15A—H15F0.96
C3—H30.93C16—C171.481 (9)
C4—C51.382 (7)C16—H16A0.97
C4—H40.93C16—H16B0.97
C5—C61.373 (7)C17—H17A0.96
C6—C71.378 (6)C17—H17B0.96
C6—H60.93C17—H17C0.96
C7—H70.93
O1i—Zn1—O1180C9—C10—C11119.1 (4)
O1i—Zn1—O4i92.17 (12)C9—C10—H10120.4
O1—Zn1—O4i87.83 (12)C11—C10—H10120.4
O1i—Zn1—O487.83 (12)C12—C11—C10117.5 (4)
O1—Zn1—O492.17 (12)C12—C11—C13118.7 (4)
O4i—Zn1—O4180C10—C11—C13123.1 (4)
O1i—Zn1—N1i91.76 (12)N1—C12—C11123.9 (4)
O1—Zn1—N1i88.24 (12)N1—C12—H12118.0
O4i—Zn1—N1i86.71 (13)C11—C12—H12118.0
O4—Zn1—N1i93.29 (13)O3—C13—N2121.3 (4)
O1i—Zn1—N188.24 (12)O3—C13—C11118.3 (4)
O1—Zn1—N191.76 (12)N2—C13—C11120.3 (4)
O4i—Zn1—N193.29 (13)C15A—C14—N296.5 (14)
O4—Zn1—N186.71 (13)C15—C14—N2116.4 (8)
N1i—Zn1—N1180C15—C14—H14A108.2
C1—O1—Zn1126.3 (3)N2—C14—H14A108.2
Zn1—O4—H4196 (4)C15—C14—H14B108.2
Zn1—O4—H42111 (3)N2—C14—H14B108.2
H41—O4—H42107 (2)H14A—C14—H14B107.3
C12—N1—C8117.5 (3)C15A—C14—H14C117.8
C12—N1—Zn1119.3 (3)N2—C14—H14C112.5
C8—N1—Zn1123.1 (3)C15A—C14—H14D108.9
C13—N2—C14124.7 (5)N2—C14—H14D111.0
C13—N2—C16117.5 (5)H14C—C14—H14D109.6
C14—N2—C16117.7 (5)C14—C15—H15A109.5
O2—C1—O1125.5 (4)H14C—C15—H15A94.4
O2—C1—C2117.9 (4)C14—C15—H15B109.5
O1—C1—C2116.7 (4)H14C—C15—H15B145.2
C7—C2—C3118.7 (4)H15A—C15—H15B109.5
C7—C2—C1120.3 (4)C14—C15—H15C109.5
C3—C2—C1120.9 (4)H14C—C15—H15C84.6
C4—C3—C2121.4 (5)H15A—C15—H15C109.5
C4—C3—H3119.3H15B—C15—H15C109.5
C2—C3—H3119.3C14—C15A—H15D109.5
C3—C4—C5118.2 (5)C14—C15A—H15E109.5
C3—C4—H4120.9H15D—C15A—H15E109.5
C5—C4—H4120.9C14—C15A—H15F109.5
C6—C5—C4121.6 (4)H15D—C15A—H15F109.5
C6—C5—Br1119.7 (4)H15E—C15A—H15F109.5
C4—C5—Br1118.6 (4)C17—C16—N2110.0 (6)
C5—C6—C7119.3 (5)C17—C16—H16A109.7
C5—C6—H6120.3N2—C16—H16A109.7
C7—C6—H6120.3C17—C16—H16B109.7
C6—C7—C2120.7 (4)N2—C16—H16B109.7
C6—C7—H7119.6H16A—C16—H16B108.2
C2—C7—H7119.6C16—C17—H17A109.5
N1—C8—C9122.3 (4)C16—C17—H17B109.5
N1—C8—H8118.8H17A—C17—H17B109.5
C9—C8—H8118.8C16—C17—H17C109.5
C8—C9—C10119.6 (4)H17A—C17—H17C109.5
C8—C9—H9120.2H17B—C17—H17C109.5
C10—C9—H9120.2
O4i—Zn1—O1—C1163.0 (3)C3—C2—C7—C61.9 (7)
O4—Zn1—O1—C117.0 (3)C1—C2—C7—C6179.8 (4)
N1i—Zn1—O1—C176.3 (3)C12—N1—C8—C92.3 (7)
N1—Zn1—O1—C1103.7 (3)Zn1—N1—C8—C9179.1 (3)
O1i—Zn1—N1—C1233.6 (3)N1—C8—C9—C100.5 (7)
O1—Zn1—N1—C12146.4 (3)C8—C9—C10—C110.0 (7)
O4i—Zn1—N1—C12125.7 (3)C9—C10—C11—C121.2 (7)
O4—Zn1—N1—C1254.3 (3)C9—C10—C11—C13170.8 (5)
O1i—Zn1—N1—C8147.8 (3)C8—N1—C12—C113.7 (6)
O1—Zn1—N1—C832.2 (3)Zn1—N1—C12—C11177.6 (3)
O4i—Zn1—N1—C855.7 (4)C10—C11—C12—N13.2 (7)
O4—Zn1—N1—C8124.3 (4)C13—C11—C12—N1173.3 (4)
Zn1—O1—C1—O231.6 (6)C14—N2—C13—O3179.1 (5)
Zn1—O1—C1—C2148.2 (3)C16—N2—C13—O34.4 (7)
O2—C1—C2—C73.8 (6)C14—N2—C13—C112.4 (8)
O1—C1—C2—C7176.0 (4)C16—N2—C13—C11174.1 (5)
O2—C1—C2—C3177.9 (4)C12—C11—C13—O354.7 (6)
O1—C1—C2—C32.3 (6)C10—C11—C13—O3114.9 (5)
C7—C2—C3—C42.2 (6)C12—C11—C13—N2126.8 (5)
C1—C2—C3—C4179.5 (4)C10—C11—C13—N263.7 (7)
C2—C3—C4—C51.0 (7)C13—N2—C14—C15A87.7 (16)
C3—C4—C5—C60.4 (8)C16—N2—C14—C15A95.7 (16)
C3—C4—C5—Br1178.7 (4)C13—N2—C14—C15121.7 (12)
C4—C5—C6—C70.6 (8)C16—N2—C14—C1561.7 (13)
Br1—C5—C6—C7178.9 (4)C13—N2—C16—C1781.6 (7)
C5—C6—C7—C20.6 (8)C14—N2—C16—C17101.6 (7)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O20.84 (4)1.83 (5)2.658 (5)168 (3)
O4—H42···O3ii0.84 (3)1.95 (3)2.786 (6)169 (2)
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2]
Mr857.89
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.3761 (14), 8.677 (2), 16.072 (3)
α, β, γ (°)84.32 (2), 78.917 (17), 67.029 (18)
V3)929.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.467, 0.650
No. of measured, independent and
observed [I > 2σ(I)] reflections
4005, 3746, 2570
Rint0.057
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.177, 1.06
No. of reflections3746
No. of parameters242
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.71

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—O12.097 (3)Zn1—N12.157 (3)
Zn1—O42.143 (3)
O1—Zn1—O4i87.83 (12)O4—Zn1—N1i93.29 (13)
O1—Zn1—O492.17 (12)O1—Zn1—N191.76 (12)
O1—Zn1—N1i88.24 (12)O4—Zn1—N186.71 (13)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O20.84 (4)1.83 (5)2.658 (5)168 (3)
O4—H42···O3ii0.84 (3)1.95 (3)2.786 (6)169 (2)
Symmetry code: (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the purchase of a CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationCapilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795–798.  Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919–920.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701–1703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, 203–207.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1218-m1219
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds