metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­[μ2-1,1′-(butane-1,4-di­yl)di­imidazole](μ2-naphthalene-1,4-di­carboxyl­ato)nickel(II)]

aDepartment of Chemistry, College of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China
*Correspondence e-mail: jlsxzz@126.com

(Received 24 July 2008; accepted 29 July 2008; online 6 August 2008)

In the title compound, [Ni(C12H6O4)(C10H14N4)(H2O)]n, the coordination polyhedron around each NiII atom is a distorted cis-NiN2O4 octa­hedron. The naphthalene-1,4-dicarboxyl­ate and 1,1′-(butane-1,4-di­yl)diimidazole ligands bridge the Ni centres to form a two-dimensional (4,4)-network, and O—H⋯O hydrogen bonds complete the structure.

Related literature

For general background, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]). For a related structure, see: Ma et al., (2003[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H6O4)(C10H14N4)(H2O)]

  • Mr = 481.15

  • Monoclinic, P 21 /n

  • a = 12.4213 (12) Å

  • b = 13.2543 (13) Å

  • c = 13.4328 (13) Å

  • β = 107.361 (2)°

  • V = 2110.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 293 (2) K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.827, Tmax = 0.866

  • 11720 measured reflections

  • 4157 independent reflections

  • 2982 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.097

  • S = 1.05

  • 4157 reflections

  • 297 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1W 2.125 (2)
Ni1—O2 2.040 (2)
Ni1—O1i 2.116 (2)
Ni1—O3i 2.347 (2)
Ni1—N1 2.060 (3)
Ni1—N4ii 2.099 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW12⋯O1iii 0.819 (16) 1.847 (18) 2.661 (3) 172 (3)
O1W—HW11⋯O4 0.83 (4) 1.83 (4) 2.651 (3) 169 (3)
Symmetry code: (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks are currently of great interest because of their interesting structures and potential applications. So far, some interesting interpenetrated or entangled metal-organic networks with bis(imidazole)-containing ligands have been documented (Batten & Robson, 1998). Flexible ligands such as 1,1'-(1,4-butanediyl)bis(imidazole) (L) have been less explored to date (Ma et al., 2003). In this work, we selected 1,4-naphthalenedicarboxylic acid (H2ndc) and L as linkers, generating a new coordination polymer, [Ni(ndc)(L)(H2O)], (I), which is reported here.

In compound (I) each NiII atom is six-coordinated by two N atoms from two different L ligands, and four O atoms from three carboxylate oxygen atoms (one bidentate, one monodentate) and one water molecule in a distorted cis-NiN2O4 octohedral coordination sphere (Fig. 1). The two neighbouring NiII atoms are bridged by the ndc and L ligands to form a two-dimensional (4,4) network (Fig. 2) and O—H···O hydrogen bonds arising from the water molecule (Table 2) complete the structure.

Related literature top

For general background, see: Batten & Robson (1998). For a related structure, see: Ma et al., (2003).

Experimental top

A mixture of H2ndc (0.5 mmol), L (0.5 mmol), NaOH (1 mmol) and NiCl2.6H2O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 433 K for one week, the autoclave was slowly cooled to room temperature. Green blocks of (I) were collected, washed with deionized water and dried.

Refinement top

The H atoms on C atoms were generated geometrically and refined as riding with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier map and refined with the O—H distance restrained to 0.85±0.01 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Symmetry codes: (i) x, y - 1, z; (ii) 1/2 + x, 0.5 - y, z - 1/2.
[Figure 2] Fig. 2. View of part of the polymeric layer structure of (I).
Poly[aqua[µ2-1,1'-(butane-1,4-diyl)diimidazole](µ2-naphthalene-1,4- dicarboxylato)nickel(II)] top
Crystal data top
[Ni(C12H6O4)(C10H14N4)(H2O)]F(000) = 1000
Mr = 481.15Dx = 1.514 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4157 reflections
a = 12.4213 (12) Åθ = 1.9–26.1°
b = 13.2543 (13) ŵ = 0.96 mm1
c = 13.4328 (13) ÅT = 293 K
β = 107.361 (2)°Block, green
V = 2110.8 (4) Å30.19 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
4157 independent reflections
Radiation source: fine-focus sealed tube2982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 26.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 915
Tmin = 0.827, Tmax = 0.866k = 1614
11720 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0253P)2]
where P = (Fo2 + 2Fc2)/3
4157 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.54 e Å3
3 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ni(C12H6O4)(C10H14N4)(H2O)]V = 2110.8 (4) Å3
Mr = 481.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4213 (12) ŵ = 0.96 mm1
b = 13.2543 (13) ÅT = 293 K
c = 13.4328 (13) Å0.19 × 0.17 × 0.15 mm
β = 107.361 (2)°
Data collection top
Bruker APEX CCD
diffractometer
4157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2982 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.866Rint = 0.063
11720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
4157 reflectionsΔρmin = 0.40 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2969 (3)0.1196 (2)0.2222 (3)0.0208 (8)
C20.2145 (3)0.1584 (2)0.2758 (2)0.0190 (8)
C30.2114 (3)0.2586 (2)0.2946 (3)0.0264 (9)
H30.25830.30190.27210.032*
C40.1392 (3)0.2986 (2)0.3472 (3)0.0238 (8)
H40.13990.36770.35970.029*
C50.0674 (3)0.2376 (2)0.3805 (2)0.0203 (8)
C60.0034 (3)0.2829 (2)0.4420 (3)0.0218 (8)
C70.0636 (3)0.1328 (2)0.3576 (2)0.0180 (7)
C80.1382 (3)0.0919 (2)0.3055 (2)0.0172 (7)
C90.1306 (3)0.0118 (2)0.2806 (3)0.0256 (8)
H90.17950.03930.24730.031*
C100.0536 (3)0.0723 (3)0.3042 (3)0.0281 (9)
H100.04970.14040.28680.034*
C110.0196 (3)0.0320 (3)0.3546 (3)0.0312 (9)
H110.07220.07380.37060.037*
C120.0157 (3)0.0664 (2)0.3806 (3)0.0257 (8)
H120.06570.09140.41410.031*
C130.1710 (3)0.2460 (3)0.1581 (3)0.0335 (10)
H130.16440.19370.20560.040*
C140.1151 (4)0.3340 (3)0.1787 (3)0.0430 (11)
H140.06440.35370.24180.052*
C150.2219 (3)0.3312 (3)0.0198 (3)0.0310 (9)
H150.25810.35100.04840.037*
C160.1118 (3)0.4914 (2)0.0714 (3)0.0274 (9)
H16A0.12680.50240.00290.033*
H16B0.03110.49760.10390.033*
C170.1715 (3)0.5711 (2)0.1149 (3)0.0296 (9)
H17A0.14980.56480.19030.036*
H17B0.25230.56050.08820.036*
C180.1434 (3)0.6771 (2)0.0863 (3)0.0293 (9)
H18A0.06220.68620.10830.035*
H18B0.17050.68550.01120.035*
C190.1971 (3)0.7560 (2)0.1379 (3)0.0293 (9)
H19A0.27540.73810.12770.035*
H19B0.15900.75590.21230.035*
C200.1050 (3)0.9021 (3)0.0704 (3)0.0395 (11)
H200.03530.87340.07490.047*
C210.2746 (3)0.9270 (2)0.0777 (3)0.0238 (8)
H210.34360.91630.08980.029*
N40.2477 (2)1.01080 (19)0.0399 (2)0.0212 (7)
C230.1402 (3)0.9948 (3)0.0365 (3)0.0378 (10)
H230.09731.04190.01370.045*
N10.2384 (2)0.2446 (2)0.0581 (2)0.0224 (7)
N20.1476 (2)0.38862 (19)0.0887 (2)0.0232 (7)
N30.1920 (2)0.8579 (2)0.0970 (2)0.0240 (7)
O10.05860 (18)0.36339 (16)0.40707 (17)0.0227 (5)
O20.3062 (2)0.17401 (16)0.14730 (18)0.0266 (6)
O1W0.4733 (2)0.04150 (17)0.12115 (19)0.0208 (6)
O30.00731 (19)0.24467 (16)0.52507 (17)0.0265 (6)
O40.35191 (19)0.04171 (16)0.25344 (18)0.0257 (6)
Ni10.35134 (4)0.13565 (3)0.01819 (3)0.02231 (14)
HW120.495 (2)0.0135 (16)0.107 (2)0.020 (10)*
HW110.440 (3)0.034 (2)0.166 (2)0.053 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.0180 (19)0.0236 (19)0.0040 (15)0.0094 (15)0.0067 (15)
C20.025 (2)0.0174 (19)0.0172 (18)0.0032 (14)0.0099 (15)0.0011 (14)
C30.034 (2)0.0166 (19)0.037 (2)0.0033 (16)0.0226 (18)0.0027 (16)
C40.033 (2)0.0108 (18)0.033 (2)0.0005 (15)0.0184 (18)0.0043 (15)
C50.024 (2)0.0201 (19)0.0198 (19)0.0018 (15)0.0110 (15)0.0017 (15)
C60.023 (2)0.0178 (19)0.028 (2)0.0063 (15)0.0133 (17)0.0083 (16)
C70.0207 (18)0.0162 (18)0.0187 (17)0.0009 (14)0.0085 (14)0.0007 (14)
C80.0238 (19)0.0136 (17)0.0162 (17)0.0012 (14)0.0088 (15)0.0009 (13)
C90.030 (2)0.021 (2)0.030 (2)0.0018 (16)0.0157 (17)0.0013 (16)
C100.034 (2)0.0147 (19)0.039 (2)0.0018 (16)0.0167 (19)0.0041 (16)
C110.037 (2)0.022 (2)0.041 (2)0.0094 (17)0.021 (2)0.0018 (17)
C120.030 (2)0.025 (2)0.028 (2)0.0024 (16)0.0182 (17)0.0027 (16)
C130.047 (3)0.023 (2)0.029 (2)0.0090 (18)0.0076 (19)0.0050 (17)
C140.057 (3)0.035 (2)0.026 (2)0.019 (2)0.004 (2)0.0003 (18)
C150.035 (2)0.024 (2)0.027 (2)0.0056 (17)0.0011 (18)0.0046 (16)
C160.027 (2)0.019 (2)0.037 (2)0.0056 (15)0.0124 (18)0.0005 (16)
C170.030 (2)0.020 (2)0.039 (2)0.0018 (16)0.0105 (18)0.0001 (17)
C180.029 (2)0.020 (2)0.039 (2)0.0005 (16)0.0105 (18)0.0004 (17)
C190.033 (2)0.020 (2)0.036 (2)0.0053 (16)0.0123 (18)0.0043 (17)
C200.025 (2)0.025 (2)0.074 (3)0.0038 (17)0.023 (2)0.005 (2)
C210.019 (2)0.024 (2)0.031 (2)0.0005 (15)0.0100 (16)0.0025 (16)
N40.0213 (17)0.0140 (15)0.0293 (17)0.0003 (12)0.0092 (13)0.0001 (13)
C230.025 (2)0.023 (2)0.071 (3)0.0001 (17)0.023 (2)0.011 (2)
N10.0244 (17)0.0182 (16)0.0264 (17)0.0042 (12)0.0104 (14)0.0006 (13)
N20.0265 (17)0.0127 (16)0.0304 (17)0.0036 (12)0.0086 (14)0.0024 (12)
N30.0238 (17)0.0149 (16)0.0341 (17)0.0021 (13)0.0099 (14)0.0015 (13)
O10.0282 (14)0.0136 (12)0.0333 (14)0.0018 (10)0.0196 (11)0.0008 (11)
O20.0385 (16)0.0226 (14)0.0284 (14)0.0093 (11)0.0246 (12)0.0068 (11)
O1W0.0230 (15)0.0157 (14)0.0277 (15)0.0028 (11)0.0138 (12)0.0024 (11)
O30.0388 (16)0.0215 (13)0.0276 (14)0.0028 (11)0.0226 (12)0.0014 (11)
O40.0309 (15)0.0202 (14)0.0316 (14)0.0091 (11)0.0178 (12)0.0062 (11)
Ni10.0259 (3)0.0180 (2)0.0269 (3)0.0016 (2)0.0137 (2)0.0008 (2)
Geometric parameters (Å, º) top
C1—O41.240 (4)C16—C171.505 (5)
C1—O21.270 (4)C16—H16A0.9700
C1—C21.508 (4)C16—H16B0.9700
C2—C31.356 (4)C17—C181.525 (4)
C2—C81.434 (4)C17—H17A0.9700
C3—C41.400 (4)C17—H17B0.9700
C3—H30.9300C18—C191.515 (4)
C4—C51.375 (4)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C71.420 (4)C19—N31.466 (4)
C5—C61.500 (4)C19—H19A0.9700
C6—O31.240 (4)C19—H19B0.9700
C6—O11.279 (4)C20—C231.338 (5)
C7—C121.421 (4)C20—N31.368 (4)
C7—C81.424 (4)C20—H200.9300
C8—C91.412 (4)C21—N41.306 (4)
C9—C101.356 (4)C21—N31.341 (4)
C9—H90.9300C21—H210.9300
C10—C111.392 (5)N4—C231.367 (4)
C10—H100.9300N4—Ni1i2.099 (3)
C11—C121.347 (4)C23—H230.9300
C11—H110.9300O1—Ni1ii2.116 (2)
C12—H120.9300O1W—HW120.819 (16)
C13—C141.343 (5)O1W—HW110.83 (4)
C13—N11.355 (4)O3—Ni1ii2.347 (2)
C13—H130.9300Ni1—O1W2.125 (2)
C14—N21.363 (4)Ni1—O22.040 (2)
C14—H140.9300Ni1—O1iii2.116 (2)
C15—N11.299 (4)Ni1—O3iii2.347 (2)
C15—N21.334 (4)Ni1—N12.060 (3)
C15—H150.9300Ni1—N4iv2.099 (3)
C16—N21.472 (4)
O4—C1—O2124.8 (3)H17A—C17—H17B107.9
O4—C1—C2120.4 (3)C19—C18—C17110.8 (3)
O2—C1—C2114.8 (3)C19—C18—H18A109.5
C3—C2—C8119.5 (3)C17—C18—H18A109.5
C3—C2—C1118.9 (3)C19—C18—H18B109.5
C8—C2—C1121.5 (3)C17—C18—H18B109.5
C2—C3—C4121.6 (3)H18A—C18—H18B108.1
C2—C3—H3119.2N3—C19—C18113.0 (3)
C4—C3—H3119.2N3—C19—H19A109.0
C5—C4—C3121.1 (3)C18—C19—H19A109.0
C5—C4—H4119.5N3—C19—H19B109.0
C3—C4—H4119.5C18—C19—H19B109.0
C4—C5—C7119.2 (3)H19A—C19—H19B107.8
C4—C5—C6119.1 (3)C23—C20—N3106.2 (3)
C7—C5—C6121.7 (3)C23—C20—H20126.9
O3—C6—O1120.7 (3)N3—C20—H20126.9
O3—C6—C5121.2 (3)N4—C21—N3112.7 (3)
O1—C6—C5118.1 (3)N4—C21—H21123.6
C5—C7—C12122.5 (3)N3—C21—H21123.6
C5—C7—C8119.6 (3)C21—N4—C23104.3 (3)
C12—C7—C8117.8 (3)C21—N4—Ni1i128.0 (2)
C9—C8—C7118.6 (3)C23—N4—Ni1i127.4 (2)
C9—C8—C2122.4 (3)C20—C23—N4110.8 (3)
C7—C8—C2118.9 (3)C20—C23—H23124.6
C10—C9—C8121.5 (3)N4—C23—H23124.6
C10—C9—H9119.2C15—N1—C13104.8 (3)
C8—C9—H9119.2C15—N1—Ni1126.0 (2)
C9—C10—C11119.7 (3)C13—N1—Ni1129.1 (2)
C9—C10—H10120.2C15—N2—C14105.8 (3)
C11—C10—H10120.2C15—N2—C16126.7 (3)
C12—C11—C10121.3 (3)C14—N2—C16127.5 (3)
C12—C11—H11119.4C21—N3—C20106.0 (3)
C10—C11—H11119.4C21—N3—C19125.8 (3)
C11—C12—C7121.1 (3)C20—N3—C19128.1 (3)
C11—C12—H12119.5C6—O1—Ni1ii94.87 (19)
C7—C12—H12119.5C1—O2—Ni1130.1 (2)
C14—C13—N1110.2 (3)Ni1—O1W—HW12126 (2)
C14—C13—H13124.9Ni1—O1W—HW1197 (3)
N1—C13—H13124.9HW12—O1W—HW11110 (2)
C13—C14—N2106.3 (3)C6—O3—Ni1ii85.3 (2)
C13—C14—H14126.9O2—Ni1—N185.93 (10)
N2—C14—H14126.9O2—Ni1—N4iv102.65 (10)
N1—C15—N2112.9 (3)N1—Ni1—N4iv96.70 (11)
N1—C15—H15123.6O2—Ni1—O1iii159.34 (9)
N2—C15—H15123.6N1—Ni1—O1iii94.01 (10)
N2—C16—C17112.4 (3)N4iv—Ni1—O1iii97.87 (10)
N2—C16—H16A109.1O2—Ni1—O1W85.20 (9)
C17—C16—H16A109.1N1—Ni1—O1W169.33 (10)
N2—C16—H16B109.1N4iv—Ni1—O1W91.03 (10)
C17—C16—H16B109.1O1iii—Ni1—O1W92.20 (9)
H16A—C16—H16B107.9O2—Ni1—O3iii100.97 (9)
C16—C17—C18111.9 (3)N1—Ni1—O3iii86.35 (10)
C16—C17—H17A109.2N4iv—Ni1—O3iii156.33 (9)
C18—C17—H17A109.2O1iii—Ni1—O3iii58.47 (8)
C16—C17—H17B109.2O1W—Ni1—O3iii89.53 (8)
C18—C17—H17B109.2
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O1v0.82 (2)1.85 (2)2.661 (3)172 (3)
O1W—HW11···O40.83 (4)1.83 (4)2.651 (3)169 (3)
Symmetry code: (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H6O4)(C10H14N4)(H2O)]
Mr481.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.4213 (12), 13.2543 (13), 13.4328 (13)
β (°) 107.361 (2)
V3)2110.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.827, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
11720, 4157, 2982
Rint0.063
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.097, 1.05
No. of reflections4157
No. of parameters297
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O1W2.125 (2)Ni1—O3i2.347 (2)
Ni1—O22.040 (2)Ni1—N12.060 (3)
Ni1—O1i2.116 (2)Ni1—N4ii2.099 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O1iii0.819 (16)1.847 (18)2.661 (3)172 (3)
O1W—HW11···O40.83 (4)1.83 (4)2.651 (3)169 (3)
Symmetry code: (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The author thanks Beihua University for supporting this work.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds