metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1143-m1144

Bis(2,6-di­methyl­pyridinium) hexa­chlorido­platinate(IV)

aDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran, and bCollege of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir

(Received 3 August 2008; accepted 5 August 2008; online 9 August 2008)

The asymmetric unit of the title compound, (C7H10N)2[PtCl6], contains one independent protonated 2,6-dimethyl­pyridinium cation and half of a centrosymmetric [PtCl6]2− anion. The Pt atom has an octa­hedral coordination. In the crystal structure, inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds result in the formation of a supra­molecular structure. There is a ππ contact between the pyridine rings [centroid–centroid distance = 4.235 (1) Å].

Related literature

For related literature, see: Abedi et al. (2008[Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.]); Bencini et al. (1992[Bencini, A., Bianchi, A., Dapporto, P., Espana, E. G., Micheloni, M., Ramirez, J. A., Paoletti, P. & Paolil, P. (1992). Inorg. Chem. 31, 1902-1908.]); Bokach et al. (2003[Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560-7568.]); Bowmaker et al. (1998[Bowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 293-309.]); Ciccarese et al. (1998[Ciccarese, A., Clemente, D. A., Fanizzi, F. P., Marzotto, A. & Valle, G. (1998). Inorg. Chim. Acta, 275-276, 419-426.]); Delafontaine et al. (1987[Delafontaine, J.-M., Toffoli, P., Khodadad, P., Rodier, N. & Julien, R. (1987). Acta Cryst. C43, 1048-1050.]); Effendy et al. (2006[Effendy, P. C., Junk, C. J., Kepert, L. M., Louis, T. C., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1312-1325.]); Hasan et al. (2001[Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem. 40, 795-800.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). E64, m840-m841.]); Hu et al. (2003[Hu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335-341.]); Jin et al. (2000[Jin, Z. M., Pan, Y. J., Xu, D. J. & Xu, Y. Z. (2000). J. Chem. Crystallogr. 30, 119-121.], 2003[Jin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903-o904.], 2006[Jin, Z.-M., Ma, X.-J., Zhang, Y., Tu, B. & Hu, M.-L. (2006). Acta Cryst. E62, m106-m108.]); Juan et al. (1998[Juan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem. 37, 4756-4757.]); Kansikas et al. (1994[Kansikas, J., Leskela, M., Kenessey, G., Werner, P. E. & Liptay, G. (1994). Acta Chem. Scand. 48, 951-959.]); Li & Liu (2003[Li, D. & Liu, D. (2003). Anal. Sci. 19, 1089-1090.]); Rafizadeh et al. (2006[Rafizadeh, M. de, Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034-o5035.]); Terzis & Mentzafos (1983[Terzis, A. & Mentzafos, D. (1983). Inorg. Chem. 22, 1140-1143.]); Yousefi, Amani & Khavasi (2007[Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.]); Yousefi, Ahmadi et al. (2007[Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114-m3115.]); Yousefi et al. (2007a[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460-m2461.],b[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748-m2749.]); Zordan & Brammer (2004[Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512-519.]); Zordan et al. (2005[Zordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350-354.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)2[PtCl6]

  • Mr = 624.10

  • Monoclinic, P 21 /n

  • a = 9.9142 (12) Å

  • b = 9.6031 (10) Å

  • c = 11.3305 (14) Å

  • β = 107.117 (10)°

  • V = 1031.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.58 mm−1

  • T = 298 (2) K

  • 0.48 × 0.45 × 0.38 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])Tmin = 0.41, Tmax = 0.60

  • 2756 measured reflections

  • 2756 independent reflections

  • 2387 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.189

  • S = 1.10

  • 2756 reflections

  • 111 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.82 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—Cl2 2.3161 (16)
Pt1—Cl3 2.3239 (16)
Pt1—Cl1 2.3298 (14)
Cl2—Pt1—Cl1 90.25 (6)
Cl2i—Pt1—Cl1 89.75 (6)
Cl2—Pt1—Cl3i 90.20 (8)
Cl2—Pt1—Cl3 89.80 (8)
Cl3—Pt1—Cl1i 89.37 (6)
Cl3—Pt1—Cl1 90.63 (6)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl3ii 0.85 (8) 2.45 (8) 3.279 (6) 168 (7)
C1—H1B⋯Cl1ii 0.96 2.83 3.654 (11) 145
C4—H4⋯Cl2iii 0.93 2.71 3.616 (11) 165
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, there has been considerable interest in proton transfer systems and their structures (Rafizadeh et al., 2006; Yousefi, Amani & Khavasi, 2007; Abedi et al., 2008; Hojjat Kashani et al., 2008). Several proton transfer systems using 2,6-dimethylpyridine, with proton donor molecules, such as [2,6-dmpy.H](NO3), (II), (Jin et al., 2003), [2,6-dmpy.H]2[CoCl4], (III), (Kansikas et al., 1994), [2,6-dmpy.H]Cl, (IV), (Effendy et al., 2006), [2,6-dmpy.H]3[BiBr6], (V), (Bowmaker et al., 1998), [2,6-dmpy.H]2- [O3CrOCrO3], (VI), (Jin et al., 2006) and [2,6-dmpy.H][Ph(COOH)(COO)], (VII), (Jin et al., 2000) [2,6-dmpy.H is 2,6-dimethylpyridinium] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6].2H2O, (XIII), and [HpyI-3]2[PtCl6].2H2O, (IX),(Zordan & Brammer, 2004), [BMIM]2[PtCl6], (X), and [EMIM]2[PtCl6], (XI), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (XII), (Juan et al., 1998), {p-C6H4(CH2ImMe)2[PtCl6]}, (XIII), (Li & Liu, 2003), [het][PtCl6].2H2O, (XIV), (Hu et al., 2003), [9-MeGuaH]2[PtCl6].2H2O, (XV), (Terzis & Mentzafos, 1983), [H10[30]aneN10][PtCl6]2Cl6.2H2O, (XVI), (Bencini et al., 1992), [H2Me2ppz][PtCl6], (XVII), (Ciccarese et al., 1998), [PA]2[PtCl6]Cl, (XVIII), (Delafontaine et al., 1987), [DEA]2[PtCl6], (XIX), (Bokach et al., 2003), [HpyCl-3]3[PtCl6]Cl, (XX), (Zordan et al., 2005), [2,9-dmphen.H]2- [PtCl6], (XXI), (Yousefi, Ahmadi et al., 2007), [H2DA18C6][PtCl6].2H2O, (XXII), (Yousefi et al., 2007a) and [TBA]3[PtCl6]Cl, (XXIII), (Yousefi et al., 2007b) [where hpy is halo- pyridinium, BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methylimidazolium, DABCO is 1,4-diazabicyclooctane, Im is imidazolium, het is 2-(α-hydroxyethyl) thiamine, 9-MeGuaH is 9-methylguaninium, [H10[30]aneN10] is [C20H60N10]10+ cation, H2Me2ppz is N,N'-dimethylpiperazinium, PA is pentane-1,5- diammonium, DEA is diethyl-ammonium, 2,9-dmphen.H is 2,9-dimethyl-1,10 -phenanthrolinium, H2DA18C6 is 1,10-Diazonia-18-crown-6 and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one independent protonated 2,6-di- methylpyridinium cation and half of a centrosymmetric [PtCl6]2- anion. The Pt ion has an octahedral coordination. In cation, the bond lengths and angles are in good agreement with the corresponding values in (II) and (IV). In [PtCl6]2- anion, the Pt-Cl bond lengths and Cl-Pt-Cl bond angles (Table 1) are also within normal ranges, as in (XXI), (XXII) and (XXIII).

In the crystal structure (Fig. 2), intermolecular N-H···Cl and C-H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure. A ππ contact between A (N1/C2-C6) rings Cg1···Cg1i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg1 is centroid of the ring A (N1/C2-C6)] further stabilize the structure, with centroid-centroid distance of 4.235 (1) Å.

Related literature top

For related literature, see: Abedi et al. (2008); Bencini et al. (1992); Bokach et al. (2003); Bowmaker et al. (1998); Ciccarese et al. (1998); Delafontaine et al. (1987); Effendy et al. (2006); Hasan et al. (2001); Hojjat Kashani et al. (2008); Hu et al. (2003); Jin et al. (2000, 2003, 2006); Juan et al. (1998); Kansikas et al. (1994); Li & Liu (2003); Rafizadeh et al. (2006); Terzis & Mentzafos (1983); Yousefi, Amani & Khavasi (2007); Yousefi, Ahmadi et al. (2007); Yousefi et al. (2007a,b); Zordan & Brammer (2004); Zordan et al. (2005).

Experimental top

For the preparation of the title compound, a solution of 2,6-dimethylpyridine (0.16 g, 1.48 mmol, 0.17 ml) in methanol (15 ml) was added to a solution of H2PtCl6.6H2O, (0.38 g, 0.74 mmol) in acetonitrile (15 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, orange prismatic crystals of were isolated (yield; 0.34 g; 73.6%).

Refinement top

H1D atom (for NH) was located in difference syntheses and refined isotropically [N-H = 0.85 (7) Å and Uiso(H) = 0.029 (17) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) -x, 1 - y, -z].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Bis(2,6-dimethylpyridinium) hexachloridoplatinate(IV) top
Crystal data top
(C7H10N)2[PtCl6]F(000) = 596
Mr = 624.10Dx = 2.010 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1071 reflections
a = 9.9142 (12) Åθ = 2.4–29.1°
b = 9.6031 (10) ŵ = 7.58 mm1
c = 11.3305 (14) ÅT = 298 K
β = 107.117 (10)°Prism, orange
V = 1031.0 (2) Å30.48 × 0.45 × 0.38 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube2387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ϕ and ω scansθmax = 29.1°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
h = 1313
Tmin = 0.41, Tmax = 0.60k = 1213
2756 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.1499P)2 + 0.5352P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.019
2756 reflectionsΔρmax = 1.82 e Å3
111 parametersΔρmin = 1.09 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Crystal data top
(C7H10N)2[PtCl6]V = 1031.0 (2) Å3
Mr = 624.10Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.9142 (12) ŵ = 7.58 mm1
b = 9.6031 (10) ÅT = 298 K
c = 11.3305 (14) Å0.48 × 0.45 × 0.38 mm
β = 107.117 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2756 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
2387 reflections with I > 2σ(I)
Tmin = 0.41, Tmax = 0.60Rint = 0.094
2756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.82 e Å3
2756 reflectionsΔρmin = 1.09 e Å3
111 parameters
Special details top

Experimental. shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.50000.00000.0265 (2)
Cl10.14887 (17)0.56949 (18)0.11435 (15)0.0411 (4)
Cl20.0667 (2)0.6927 (2)0.12679 (17)0.0504 (5)
Cl30.18455 (17)0.6275 (2)0.12863 (15)0.0486 (5)
N10.3768 (6)0.8089 (7)0.1075 (5)0.0409 (12)
H1D0.348 (8)0.822 (8)0.170 (7)0.029 (17)*
C10.5069 (11)0.6118 (11)0.2190 (9)0.069 (2)
H1A0.42290.56630.22490.082*
H1B0.54750.66530.29240.082*
H1C0.57350.54310.21000.082*
C20.4710 (8)0.7054 (9)0.1103 (8)0.0503 (18)
C30.5217 (11)0.6928 (17)0.0112 (9)0.062 (3)
H30.58750.62410.01040.074*
C40.4756 (12)0.7819 (14)0.0875 (10)0.076 (3)
H40.50900.77270.15570.091*
C50.3790 (11)0.8854 (11)0.0849 (7)0.064 (3)
H50.34820.94620.15130.077*
C60.3278 (8)0.8987 (8)0.0163 (7)0.0472 (16)
C70.224 (2)1.0036 (8)0.033 (2)0.071 (5)
H7A0.13750.99380.03250.085*
H7B0.26171.09550.03020.085*
H7C0.20720.98920.11090.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (5)0.061 (5)0.073 (6)0.009 (4)0.003 (4)0.008 (4)
C20.034 (3)0.053 (4)0.060 (4)0.009 (3)0.009 (3)0.022 (3)
C30.046 (4)0.071 (7)0.076 (7)0.015 (5)0.028 (4)0.031 (5)
C40.069 (6)0.111 (9)0.061 (5)0.038 (6)0.041 (5)0.029 (6)
C50.067 (5)0.086 (6)0.036 (3)0.035 (5)0.011 (4)0.001 (4)
C60.040 (3)0.051 (4)0.044 (3)0.013 (3)0.003 (3)0.001 (3)
C70.060 (10)0.054 (8)0.092 (15)0.002 (3)0.011 (10)0.016 (4)
N10.039 (3)0.053 (3)0.034 (2)0.005 (2)0.016 (2)0.007 (2)
Pt10.0244 (3)0.0322 (3)0.0223 (3)0.00137 (8)0.00597 (18)0.00008 (7)
Cl10.0382 (8)0.0514 (9)0.0389 (8)0.0048 (6)0.0196 (6)0.0033 (6)
Cl20.0563 (10)0.0491 (9)0.0502 (9)0.0189 (7)0.0224 (8)0.0207 (7)
Cl30.0365 (8)0.0688 (11)0.0390 (8)0.0165 (7)0.0087 (6)0.0169 (7)
Geometric parameters (Å, º) top
Pt1—Cl22.3161 (16)C2—C31.365 (11)
Pt1—Cl2i2.3161 (16)C3—C41.374 (19)
Pt1—Cl3i2.3239 (16)C3—H30.9300
Pt1—Cl32.3239 (16)C4—C51.387 (18)
Pt1—Cl1i2.3298 (14)C4—H40.9300
Pt1—Cl12.3298 (14)C5—C61.390 (12)
N1—H1D0.85 (7)C5—H50.9300
C1—C21.480 (14)C6—N11.323 (10)
C1—H1A0.9600C6—C71.49 (2)
C1—H1B0.9600C7—H7A0.9600
C1—H1C0.9600C7—H7B0.9600
C2—N11.357 (10)C7—H7C0.9600
Cl1i—Pt1—Cl1180.00 (8)H1B—C1—H1C109.5
Cl2—Pt1—Cl1i89.75 (6)N1—C2—C3117.6 (10)
Cl2i—Pt1—Cl1i90.25 (6)N1—C2—C1117.4 (8)
Cl2—Pt1—Cl190.25 (6)C3—C2—C1125.0 (10)
Cl2i—Pt1—Cl189.75 (6)C2—C3—C4120.0 (12)
Cl2—Pt1—Cl2i180.00 (6)C2—C3—H3120.0
Cl2—Pt1—Cl3i90.20 (8)C4—C3—H3120.0
Cl2i—Pt1—Cl3i89.80 (8)C3—C4—C5119.7 (9)
Cl2—Pt1—Cl389.80 (8)C3—C4—H4120.2
Cl2i—Pt1—Cl390.20 (8)C5—C4—H4120.2
Cl3i—Pt1—Cl1i90.63 (6)C4—C5—C6120.4 (9)
Cl3—Pt1—Cl1i89.37 (6)C4—C5—H5119.8
Cl3i—Pt1—Cl3180.0C6—C5—H5119.8
Cl3i—Pt1—Cl189.37 (6)N1—C6—C5116.4 (8)
Cl3—Pt1—Cl190.63 (6)N1—C6—C7116.9 (11)
C6—N1—C2126.0 (7)C5—C6—C7126.7 (12)
C6—N1—H1D115 (5)C6—C7—H7A109.5
C2—N1—H1D119 (5)C6—C7—H7B109.5
C2—C1—H1A109.5H7A—C7—H7B109.5
C2—C1—H1B109.5C6—C7—H7C109.5
H1A—C1—H1B109.5H7A—C7—H7C109.5
C2—C1—H1C109.5H7B—C7—H7C109.5
H1A—C1—H1C109.5
N1—C2—C3—C41.0 (14)C4—C5—C6—C7179.9 (12)
C1—C2—C3—C4176.8 (10)C5—C6—N1—C20.5 (11)
C2—C3—C4—C50.9 (15)C7—C6—N1—C2179.7 (10)
C3—C4—C5—C60.5 (14)C3—C2—N1—C60.8 (11)
C4—C5—C6—N10.3 (11)C1—C2—N1—C6177.1 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl3ii0.85 (8)2.45 (8)3.279 (6)168 (7)
C1—H1B···Cl1ii0.962.833.654 (11)145
C4—H4···Cl2iii0.932.713.616 (11)165
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C7H10N)2[PtCl6]
Mr624.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.9142 (12), 9.6031 (10), 11.3305 (14)
β (°) 107.117 (10)
V3)1031.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)7.58
Crystal size (mm)0.48 × 0.45 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2005)
Tmin, Tmax0.41, 0.60
No. of measured, independent and
observed [I > 2σ(I)] reflections
2756, 2756, 2387
Rint0.094
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.189, 1.10
No. of reflections2756
No. of parameters111
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.82, 1.09

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Pt1—Cl22.3161 (16)Pt1—Cl12.3298 (14)
Pt1—Cl32.3239 (16)
Cl2—Pt1—Cl190.25 (6)Cl2—Pt1—Cl389.80 (8)
Cl2i—Pt1—Cl189.75 (6)Cl3—Pt1—Cl1i89.37 (6)
Cl2—Pt1—Cl3i90.20 (8)Cl3—Pt1—Cl190.63 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl3ii0.85 (8)2.45 (8)3.279 (6)168 (7)
C1—H1B···Cl1ii0.96002.83003.654 (11)145.00
C4—H4···Cl2iii0.93002.71003.616 (11)165.00
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

We are grateful to Shahid Beheshti University for financial support.

References

First citationAbedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBencini, A., Bianchi, A., Dapporto, P., Espana, E. G., Micheloni, M., Ramirez, J. A., Paoletti, P. & Paolil, P. (1992). Inorg. Chem. 31, 1902–1908.  CSD CrossRef CAS Web of Science Google Scholar
First citationBokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560–7568.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 293–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiccarese, A., Clemente, D. A., Fanizzi, F. P., Marzotto, A. & Valle, G. (1998). Inorg. Chim. Acta, 275–276, 419–426.  CSD CrossRef CAS Google Scholar
First citationDelafontaine, J.-M., Toffoli, P., Khodadad, P., Rodier, N. & Julien, R. (1987). Acta Cryst. C43, 1048–1050.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEffendy, P. C., Junk, C. J., Kepert, L. M., Louis, T. C., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1312–1325.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem. 40, 795–800.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). E64, m840-m841.  Google Scholar
First citationHu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335–341.  Web of Science CSD CrossRef Google Scholar
First citationJin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903–o904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Ma, X.-J., Zhang, Y., Tu, B. & Hu, M.-L. (2006). Acta Cryst. E62, m106–m108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z. M., Pan, Y. J., Xu, D. J. & Xu, Y. Z. (2000). J. Chem. Crystallogr. 30, 119–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationJuan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem. 37, 4756–4757.  PubMed Google Scholar
First citationKansikas, J., Leskela, M., Kenessey, G., Werner, P. E. & Liptay, G. (1994). Acta Chem. Scand. 48, 951–959.  CrossRef CAS Web of Science Google Scholar
First citationLi, D. & Liu, D. (2003). Anal. Sci. 19, 1089–1090.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRafizadeh, M. de, Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTerzis, A. & Mentzafos, D. (1983). Inorg. Chem. 22, 1140–1143.  CSD CrossRef CAS Web of Science Google Scholar
First citationYousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460–m2461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748–m2749.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512–519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350–354.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1143-m1144
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds