metal-organic compounds
Bis(2,6-dimethylpyridinium) hexachloridoplatinate(IV)
aDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran, and bCollege of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir
The 7H10N)2[PtCl6], contains one independent protonated 2,6-dimethylpyridinium cation and half of a centrosymmetric [PtCl6]2− anion. The Pt atom has an octahedral coordination. In the intermolecular N—H⋯Cl and C—H⋯Cl hydrogen bonds result in the formation of a supramolecular structure. There is a π–π contact between the pyridine rings [centroid–centroid distance = 4.235 (1) Å].
of the title compound, (CRelated literature
For related literature, see: Abedi et al. (2008); Bencini et al. (1992); Bokach et al. (2003); Bowmaker et al. (1998); Ciccarese et al. (1998); Delafontaine et al. (1987); Effendy et al. (2006); Hasan et al. (2001); Hojjat Kashani et al. (2008); Hu et al. (2003); Jin et al. (2000, 2003, 2006); Juan et al. (1998); Kansikas et al. (1994); Li & Liu (2003); Rafizadeh et al. (2006); Terzis & Mentzafos (1983); Yousefi, Amani & Khavasi (2007); Yousefi, Ahmadi et al. (2007); Yousefi et al. (2007a,b); Zordan & Brammer (2004); Zordan et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808025257/hk2508sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808025257/hk2508Isup2.hkl
For the preparation of the title compound, a solution of 2,6-dimethylpyridine (0.16 g, 1.48 mmol, 0.17 ml) in methanol (15 ml) was added to a solution of H2PtCl6.6H2O, (0.38 g, 0.74 mmol) in acetonitrile (15 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, orange prismatic crystals of were isolated (yield; 0.34 g; 73.6%).
H1D atom (for NH) was located in difference syntheses and refined isotropically [N-H = 0.85 (7) Å and Uiso(H) = 0.029 (17) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) -x, 1 - y, -z]. | |
Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines. |
(C7H10N)2[PtCl6] | F(000) = 596 |
Mr = 624.10 | Dx = 2.010 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1071 reflections |
a = 9.9142 (12) Å | θ = 2.4–29.1° |
b = 9.6031 (10) Å | µ = 7.58 mm−1 |
c = 11.3305 (14) Å | T = 298 K |
β = 107.117 (10)° | Prism, orange |
V = 1031.0 (2) Å3 | 0.48 × 0.45 × 0.38 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2756 independent reflections |
Radiation source: fine-focus sealed tube | 2387 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.094 |
ϕ and ω scans | θmax = 29.1°, θmin = 2.4° |
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) | h = −13→13 |
Tmin = 0.41, Tmax = 0.60 | k = −12→13 |
2756 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.189 | w = 1/[σ2(Fo2) + (0.1499P)2 + 0.5352P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.019 |
2756 reflections | Δρmax = 1.82 e Å−3 |
111 parameters | Δρmin = −1.09 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.029 (3) |
(C7H10N)2[PtCl6] | V = 1031.0 (2) Å3 |
Mr = 624.10 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.9142 (12) Å | µ = 7.58 mm−1 |
b = 9.6031 (10) Å | T = 298 K |
c = 11.3305 (14) Å | 0.48 × 0.45 × 0.38 mm |
β = 107.117 (10)° |
Bruker SMART CCD area-detector diffractometer | 2756 independent reflections |
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) | 2387 reflections with I > 2σ(I) |
Tmin = 0.41, Tmax = 0.60 | Rint = 0.094 |
2756 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.189 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 1.82 e Å−3 |
2756 reflections | Δρmin = −1.09 e Å−3 |
111 parameters |
Experimental. shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.0000 | 0.5000 | 0.0000 | 0.0265 (2) | |
Cl1 | 0.14887 (17) | 0.56949 (18) | −0.11435 (15) | 0.0411 (4) | |
Cl2 | 0.0667 (2) | 0.6927 (2) | 0.12679 (17) | 0.0504 (5) | |
Cl3 | −0.18455 (17) | 0.6275 (2) | −0.12863 (15) | 0.0486 (5) | |
N1 | 0.3768 (6) | 0.8089 (7) | 0.1075 (5) | 0.0409 (12) | |
H1D | 0.348 (8) | 0.822 (8) | 0.170 (7) | 0.029 (17)* | |
C1 | 0.5069 (11) | 0.6118 (11) | 0.2190 (9) | 0.069 (2) | |
H1A | 0.4229 | 0.5663 | 0.2249 | 0.082* | |
H1B | 0.5475 | 0.6653 | 0.2924 | 0.082* | |
H1C | 0.5735 | 0.5431 | 0.2100 | 0.082* | |
C2 | 0.4710 (8) | 0.7054 (9) | 0.1103 (8) | 0.0503 (18) | |
C3 | 0.5217 (11) | 0.6928 (17) | 0.0112 (9) | 0.062 (3) | |
H3 | 0.5875 | 0.6241 | 0.0104 | 0.074* | |
C4 | 0.4756 (12) | 0.7819 (14) | −0.0875 (10) | 0.076 (3) | |
H4 | 0.5090 | 0.7727 | −0.1557 | 0.091* | |
C5 | 0.3790 (11) | 0.8854 (11) | −0.0849 (7) | 0.064 (3) | |
H5 | 0.3482 | 0.9462 | −0.1513 | 0.077* | |
C6 | 0.3278 (8) | 0.8987 (8) | 0.0163 (7) | 0.0472 (16) | |
C7 | 0.224 (2) | 1.0036 (8) | 0.033 (2) | 0.071 (5) | |
H7A | 0.1375 | 0.9938 | −0.0325 | 0.085* | |
H7B | 0.2617 | 1.0955 | 0.0302 | 0.085* | |
H7C | 0.2072 | 0.9892 | 0.1109 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.057 (5) | 0.061 (5) | 0.073 (6) | 0.009 (4) | −0.003 (4) | −0.008 (4) |
C2 | 0.034 (3) | 0.053 (4) | 0.060 (4) | −0.009 (3) | 0.009 (3) | −0.022 (3) |
C3 | 0.046 (4) | 0.071 (7) | 0.076 (7) | −0.015 (5) | 0.028 (4) | −0.031 (5) |
C4 | 0.069 (6) | 0.111 (9) | 0.061 (5) | −0.038 (6) | 0.041 (5) | −0.029 (6) |
C5 | 0.067 (5) | 0.086 (6) | 0.036 (3) | −0.035 (5) | 0.011 (4) | 0.001 (4) |
C6 | 0.040 (3) | 0.051 (4) | 0.044 (3) | −0.013 (3) | 0.003 (3) | 0.001 (3) |
C7 | 0.060 (10) | 0.054 (8) | 0.092 (15) | −0.002 (3) | 0.011 (10) | 0.016 (4) |
N1 | 0.039 (3) | 0.053 (3) | 0.034 (2) | −0.005 (2) | 0.016 (2) | −0.007 (2) |
Pt1 | 0.0244 (3) | 0.0322 (3) | 0.0223 (3) | −0.00137 (8) | 0.00597 (18) | 0.00008 (7) |
Cl1 | 0.0382 (8) | 0.0514 (9) | 0.0389 (8) | −0.0048 (6) | 0.0196 (6) | 0.0033 (6) |
Cl2 | 0.0563 (10) | 0.0491 (9) | 0.0502 (9) | −0.0189 (7) | 0.0224 (8) | −0.0207 (7) |
Cl3 | 0.0365 (8) | 0.0688 (11) | 0.0390 (8) | 0.0165 (7) | 0.0087 (6) | 0.0169 (7) |
Pt1—Cl2 | 2.3161 (16) | C2—C3 | 1.365 (11) |
Pt1—Cl2i | 2.3161 (16) | C3—C4 | 1.374 (19) |
Pt1—Cl3i | 2.3239 (16) | C3—H3 | 0.9300 |
Pt1—Cl3 | 2.3239 (16) | C4—C5 | 1.387 (18) |
Pt1—Cl1i | 2.3298 (14) | C4—H4 | 0.9300 |
Pt1—Cl1 | 2.3298 (14) | C5—C6 | 1.390 (12) |
N1—H1D | 0.85 (7) | C5—H5 | 0.9300 |
C1—C2 | 1.480 (14) | C6—N1 | 1.323 (10) |
C1—H1A | 0.9600 | C6—C7 | 1.49 (2) |
C1—H1B | 0.9600 | C7—H7A | 0.9600 |
C1—H1C | 0.9600 | C7—H7B | 0.9600 |
C2—N1 | 1.357 (10) | C7—H7C | 0.9600 |
Cl1i—Pt1—Cl1 | 180.00 (8) | H1B—C1—H1C | 109.5 |
Cl2—Pt1—Cl1i | 89.75 (6) | N1—C2—C3 | 117.6 (10) |
Cl2i—Pt1—Cl1i | 90.25 (6) | N1—C2—C1 | 117.4 (8) |
Cl2—Pt1—Cl1 | 90.25 (6) | C3—C2—C1 | 125.0 (10) |
Cl2i—Pt1—Cl1 | 89.75 (6) | C2—C3—C4 | 120.0 (12) |
Cl2—Pt1—Cl2i | 180.00 (6) | C2—C3—H3 | 120.0 |
Cl2—Pt1—Cl3i | 90.20 (8) | C4—C3—H3 | 120.0 |
Cl2i—Pt1—Cl3i | 89.80 (8) | C3—C4—C5 | 119.7 (9) |
Cl2—Pt1—Cl3 | 89.80 (8) | C3—C4—H4 | 120.2 |
Cl2i—Pt1—Cl3 | 90.20 (8) | C5—C4—H4 | 120.2 |
Cl3i—Pt1—Cl1i | 90.63 (6) | C4—C5—C6 | 120.4 (9) |
Cl3—Pt1—Cl1i | 89.37 (6) | C4—C5—H5 | 119.8 |
Cl3i—Pt1—Cl3 | 180.0 | C6—C5—H5 | 119.8 |
Cl3i—Pt1—Cl1 | 89.37 (6) | N1—C6—C5 | 116.4 (8) |
Cl3—Pt1—Cl1 | 90.63 (6) | N1—C6—C7 | 116.9 (11) |
C6—N1—C2 | 126.0 (7) | C5—C6—C7 | 126.7 (12) |
C6—N1—H1D | 115 (5) | C6—C7—H7A | 109.5 |
C2—N1—H1D | 119 (5) | C6—C7—H7B | 109.5 |
C2—C1—H1A | 109.5 | H7A—C7—H7B | 109.5 |
C2—C1—H1B | 109.5 | C6—C7—H7C | 109.5 |
H1A—C1—H1B | 109.5 | H7A—C7—H7C | 109.5 |
C2—C1—H1C | 109.5 | H7B—C7—H7C | 109.5 |
H1A—C1—H1C | 109.5 | ||
N1—C2—C3—C4 | −1.0 (14) | C4—C5—C6—C7 | −179.9 (12) |
C1—C2—C3—C4 | 176.8 (10) | C5—C6—N1—C2 | −0.5 (11) |
C2—C3—C4—C5 | 0.9 (15) | C7—C6—N1—C2 | 179.7 (10) |
C3—C4—C5—C6 | −0.5 (14) | C3—C2—N1—C6 | 0.8 (11) |
C4—C5—C6—N1 | 0.3 (11) | C1—C2—N1—C6 | −177.1 (7) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl3ii | 0.85 (8) | 2.45 (8) | 3.279 (6) | 168 (7) |
C1—H1B···Cl1ii | 0.96 | 2.83 | 3.654 (11) | 145 |
C4—H4···Cl2iii | 0.93 | 2.71 | 3.616 (11) | 165 |
Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | (C7H10N)2[PtCl6] |
Mr | 624.10 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 9.9142 (12), 9.6031 (10), 11.3305 (14) |
β (°) | 107.117 (10) |
V (Å3) | 1031.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.58 |
Crystal size (mm) | 0.48 × 0.45 × 0.38 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) |
Tmin, Tmax | 0.41, 0.60 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2756, 2756, 2387 |
Rint | 0.094 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.189, 1.10 |
No. of reflections | 2756 |
No. of parameters | 111 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.82, −1.09 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Pt1—Cl2 | 2.3161 (16) | Pt1—Cl1 | 2.3298 (14) |
Pt1—Cl3 | 2.3239 (16) | ||
Cl2—Pt1—Cl1 | 90.25 (6) | Cl2—Pt1—Cl3 | 89.80 (8) |
Cl2i—Pt1—Cl1 | 89.75 (6) | Cl3—Pt1—Cl1i | 89.37 (6) |
Cl2—Pt1—Cl3i | 90.20 (8) | Cl3—Pt1—Cl1 | 90.63 (6) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl3ii | 0.85 (8) | 2.45 (8) | 3.279 (6) | 168 (7) |
C1—H1B···Cl1ii | 0.9600 | 2.8300 | 3.654 (11) | 145.00 |
C4—H4···Cl2iii | 0.9300 | 2.7100 | 3.616 (11) | 165.00 |
Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2. |
Acknowledgements
We are grateful to Shahid Beheshti University for financial support.
References
Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bencini, A., Bianchi, A., Dapporto, P., Espana, E. G., Micheloni, M., Ramirez, J. A., Paoletti, P. & Paolil, P. (1992). Inorg. Chem. 31, 1902–1908. CSD CrossRef CAS Web of Science Google Scholar
Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560–7568. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 293–309. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ciccarese, A., Clemente, D. A., Fanizzi, F. P., Marzotto, A. & Valle, G. (1998). Inorg. Chim. Acta, 275–276, 419–426. CSD CrossRef CAS Google Scholar
Delafontaine, J.-M., Toffoli, P., Khodadad, P., Rodier, N. & Julien, R. (1987). Acta Cryst. C43, 1048–1050. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Effendy, P. C., Junk, C. J., Kepert, L. M., Louis, T. C., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1312–1325. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem. 40, 795–800. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). E64, m840-m841. Google Scholar
Hu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335–341. Web of Science CSD CrossRef Google Scholar
Jin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903–o904. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jin, Z.-M., Ma, X.-J., Zhang, Y., Tu, B. & Hu, M.-L. (2006). Acta Cryst. E62, m106–m108. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jin, Z. M., Pan, Y. J., Xu, D. J. & Xu, Y. Z. (2000). J. Chem. Crystallogr. 30, 119–121. Web of Science CSD CrossRef CAS Google Scholar
Juan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem. 37, 4756–4757. PubMed Google Scholar
Kansikas, J., Leskela, M., Kenessey, G., Werner, P. E. & Liptay, G. (1994). Acta Chem. Scand. 48, 951–959. CrossRef CAS Web of Science Google Scholar
Li, D. & Liu, D. (2003). Anal. Sci. 19, 1089–1090. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rafizadeh, M. de, Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Terzis, A. & Mentzafos, D. (1983). Inorg. Chem. 22, 1140–1143. CSD CrossRef CAS Web of Science Google Scholar
Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460–m2461. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748–m2749. Web of Science CrossRef IUCr Journals Google Scholar
Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512–519. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350–354. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, there has been considerable interest in proton transfer systems and their structures (Rafizadeh et al., 2006; Yousefi, Amani & Khavasi, 2007; Abedi et al., 2008; Hojjat Kashani et al., 2008). Several proton transfer systems using 2,6-dimethylpyridine, with proton donor molecules, such as [2,6-dmpy.H](NO3), (II), (Jin et al., 2003), [2,6-dmpy.H]2[CoCl4], (III), (Kansikas et al., 1994), [2,6-dmpy.H]Cl, (IV), (Effendy et al., 2006), [2,6-dmpy.H]3[BiBr6], (V), (Bowmaker et al., 1998), [2,6-dmpy.H]2- [O3CrOCrO3], (VI), (Jin et al., 2006) and [2,6-dmpy.H][Ph(COOH)(COO)], (VII), (Jin et al., 2000) [2,6-dmpy.H is 2,6-dimethylpyridinium] have been synthesized and characterized by single-crystal X-ray diffraction methods.
There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6].2H2O, (XIII), and [HpyI-3]2[PtCl6].2H2O, (IX),(Zordan & Brammer, 2004), [BMIM]2[PtCl6], (X), and [EMIM]2[PtCl6], (XI), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (XII), (Juan et al., 1998), {p-C6H4(CH2ImMe)2[PtCl6]}, (XIII), (Li & Liu, 2003), [het][PtCl6].2H2O, (XIV), (Hu et al., 2003), [9-MeGuaH]2[PtCl6].2H2O, (XV), (Terzis & Mentzafos, 1983), [H10[30]aneN10][PtCl6]2Cl6.2H2O, (XVI), (Bencini et al., 1992), [H2Me2ppz][PtCl6], (XVII), (Ciccarese et al., 1998), [PA]2[PtCl6]Cl, (XVIII), (Delafontaine et al., 1987), [DEA]2[PtCl6], (XIX), (Bokach et al., 2003), [HpyCl-3]3[PtCl6]Cl, (XX), (Zordan et al., 2005), [2,9-dmphen.H]2- [PtCl6], (XXI), (Yousefi, Ahmadi et al., 2007), [H2DA18C6][PtCl6].2H2O, (XXII), (Yousefi et al., 2007a) and [TBA]3[PtCl6]Cl, (XXIII), (Yousefi et al., 2007b) [where hpy is halo- pyridinium, BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methylimidazolium, DABCO is 1,4-diazabicyclooctane, Im is imidazolium, het is 2-(α-hydroxyethyl) thiamine, 9-MeGuaH is 9-methylguaninium, [H10[30]aneN10] is [C20H60N10]10+ cation, H2Me2ppz is N,N'-dimethylpiperazinium, PA is pentane-1,5- diammonium, DEA is diethyl-ammonium, 2,9-dmphen.H is 2,9-dimethyl-1,10 -phenanthrolinium, H2DA18C6 is 1,10-Diazonia-18-crown-6 and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of (I), (Fig. 1) contains one independent protonated 2,6-di- methylpyridinium cation and half of a centrosymmetric [PtCl6]2- anion. The Pt ion has an octahedral coordination. In cation, the bond lengths and angles are in good agreement with the corresponding values in (II) and (IV). In [PtCl6]2- anion, the Pt-Cl bond lengths and Cl-Pt-Cl bond angles (Table 1) are also within normal ranges, as in (XXI), (XXII) and (XXIII).
In the crystal structure (Fig. 2), intermolecular N-H···Cl and C-H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure. A π—π contact between A (N1/C2-C6) rings Cg1···Cg1i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg1 is centroid of the ring A (N1/C2-C6)] further stabilize the structure, with centroid-centroid distance of 4.235 (1) Å.