metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1156-m1157

Di­chlorido(4,7-di­phenyl-1,10-phenanthroline-κ2N,N′)gold(III) tetra­chloridoaurate(III)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 5 August 2008; accepted 7 August 2008; online 13 August 2008)

In the cation of the title compound, [AuCl2(C24H16N2)][AuCl4], the AuIII atom is four-coordinated in a distorted square-planar configuration by two N atoms from a 4,7-diphenyl-1,10-phenanthroline ligand and two terminal Cl atoms. In the anion, the AuIII atom has a square-planar coordination. In the crystal structure, intra- and inter­molecular C—H⋯Cl hydrogen bonds are found.

Related literature

For related literature, see: Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Mclnnes et al. (1995[McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023-2025.]); Bjernemose et al. (2004[Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719-m1721.]); Hayoun et al. (2006[Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120-6122.]); Abbate et al. (2000[Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1-5.]); Adams & Strahle (1982[Adams, H. N. & Strahle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl2(C24H16N2)][AuCl4]

  • Mr = 939.03

  • Monoclinic, C 2/c

  • a = 26.2625 (16) Å

  • b = 13.7608 (6) Å

  • c = 14.4292 (9) Å

  • β = 101.207 (5)°

  • V = 5115.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 12.10 mm−1

  • T = 120 (2) K

  • 0.43 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany]) Tmin = 0.580, Tmax = 0.640

  • 18667 measured reflections

  • 6864 independent reflections

  • 6404 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.173

  • S = 1.16

  • 6864 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—N2 2.032 (6)
Au1—N1 2.039 (7)
Au1—Cl2 2.2546 (19)
Au1—Cl1 2.257 (2)
Au2—Cl4 2.281 (2)
Au2—Cl5 2.281 (2)
Au2—Cl6 2.284 (2)
Au2—Cl3 2.285 (2)
N2—Au1—N1 81.1 (3)
N2—Au1—Cl2 175.42 (19)
N1—Au1—Cl2 94.3 (2)
N2—Au1—Cl1 94.92 (19)
N1—Au1—Cl1 175.95 (19)
Cl2—Au1—Cl1 89.62 (8)
Cl4—Au2—Cl5 90.26 (10)
Cl4—Au2—Cl6 178.77 (8)
Cl5—Au2—Cl6 89.67 (9)
Cl4—Au2—Cl3 89.96 (10)
Cl5—Au2—Cl3 178.75 (7)
Cl6—Au2—Cl3 90.14 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 2.68 3.244 (9) 120
C1—H1⋯Cl6i 0.93 2.79 3.668 (8) 159
C18—H18⋯Cl2ii 0.93 2.79 3.653 (8) 155
C22—H22⋯Cl1 0.93 2.66 3.239 (8) 121
C22—H22⋯Cl4iii 0.93 2.76 3.555 (9) 143
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthesis and crystal structure of [H2DA18C6]- [AuCl4].2H2O, (II) (Hojjat Kashani et al., 2008) [where H2DA18C6 is 1,10-Diazonia-18-crown-6]. There are several AuIII complexes, with formula, [AuCl2(N—N)], such as [AuCl2(bipy)][BF4], (III) (Mclnnes et al., 1995), [AuCl2(bipy)](NO3), (IV) (Bjernemose et al., 2004), [AuCl2(bipy)]- [AuBr4], (V) (Hayoun et al., 2006) and [AuCl2(phen)]Cl.H2O, (VI) (Abbate et al., 2000) [where bipy is 2,2'-bipyridine and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods. There are also two AuIII complexes, with formula, [AuCl2L2], such as [AuCl2(py)2][AuCl4], (VII) and [AuCl2(py)2]Cl.H2O, (VIII) (Adams & Strahle, 1982) [where py is pyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one cation and one anion. In the cation, the AuIII atom is four-coordinated in a distorted square-planar configuration by two N atoms from 4,7-diphenyl-1,10-phenanthroline ligand and two terminal Cl atoms. In the anion, the Au ion has a square-planar coordination. In the cation, the Au-Cl and Au-N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (III) and (IV). In the anion, the Au-Cl bond lengths and angles (Table 1) are within normal ranges.

In the crystal structure, intra- and intermolecular C-H···Cl hydrogen bonds (Table 2) link the molecules, in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Hojjat Kashani et al. (2008); Mclnnes et al. (1995); Bjernemose et al. (2004); Hayoun et al. (2006); Abbate et al. (2000); Adams & Strahle (1982).

Experimental top

For the preparation of the title compound, a solution of 4,7-diphenyl-1,10- phenanthroline (0.21 g, 0.63 mmol) in EtOH (30 ml) was added to a solution of HAuCl4.3H2O, (0.25 g, 0.63 mmol) in acetonitrile (40 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals were isolated (yield; 0.45 g, 75.8%, m.p. < 573 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Dichlorido(4,7-diphenyl-1,10-phenanthroline-κ2N,N')gold(III) tetrachloridoaurate(III) top
Crystal data top
[AuCl2(C24H16N2)][AuCl4]F(000) = 3472
Mr = 939.03Dx = 2.439 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2231 reflections
a = 26.2625 (16) Åθ = 1.7–29.2°
b = 13.7608 (6) ŵ = 12.10 mm1
c = 14.4292 (9) ÅT = 120 K
β = 101.207 (5)°Prism, yellow
V = 5115.2 (5) Å30.43 × 0.35 × 0.30 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6864 independent reflections
Radiation source: fine-focus sealed tube6404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 29.2°, θmin = 1.7°
Absorption correction: numerical
shape of crystal determined optically (PROGRAM? Reference?)
h = 3535
Tmin = 0.580, Tmax = 0.640k = 1818
18667 measured reflectionsl = 1913
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0977P)2 + 20.7667P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.048
6864 reflectionsΔρmax = 1.07 e Å3
308 parametersΔρmin = 1.02 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00055 (6)
Crystal data top
[AuCl2(C24H16N2)][AuCl4]V = 5115.2 (5) Å3
Mr = 939.03Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.2625 (16) ŵ = 12.10 mm1
b = 13.7608 (6) ÅT = 120 K
c = 14.4292 (9) Å0.43 × 0.35 × 0.30 mm
β = 101.207 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6864 independent reflections
Absorption correction: numerical
shape of crystal determined optically (PROGRAM? Reference?)
6404 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.640Rint = 0.090
18667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0977P)2 + 20.7667P]
where P = (Fo2 + 2Fc2)/3
6864 reflectionsΔρmax = 1.07 e Å3
308 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.097267 (11)0.152249 (19)0.112685 (18)0.01435 (13)
Au20.165438 (12)0.96986 (2)0.854512 (18)0.01739 (13)
Cl10.12293 (8)0.30783 (14)0.10295 (15)0.0240 (4)
Cl20.01813 (8)0.20496 (16)0.12856 (16)0.0259 (4)
Cl30.21356 (9)1.10394 (18)0.83479 (15)0.0280 (4)
Cl40.23388 (10)0.87252 (19)0.84084 (16)0.0320 (5)
Cl50.11779 (10)0.83657 (16)0.87768 (15)0.0284 (5)
Cl60.09622 (8)1.06689 (16)0.86481 (15)0.0257 (4)
N10.0787 (3)0.0088 (5)0.1182 (5)0.0160 (12)
N20.1667 (2)0.0939 (5)0.1005 (4)0.0138 (11)
C10.0334 (3)0.0290 (6)0.1291 (6)0.0203 (15)
H10.00550.01170.13210.024*
C20.0279 (3)0.1283 (7)0.1359 (6)0.0193 (14)
H20.00410.15350.14220.023*
C30.0691 (3)0.1922 (6)0.1336 (5)0.0159 (13)
C40.0612 (3)0.2989 (6)0.1480 (5)0.0161 (13)
C50.0146 (4)0.3441 (6)0.1051 (6)0.0211 (16)
H50.01140.30900.06610.025*
C60.0082 (3)0.4422 (7)0.1221 (6)0.0239 (16)
H60.02220.47340.09370.029*
C70.0463 (4)0.4939 (6)0.1804 (6)0.0229 (16)
H70.04180.55990.18980.027*
C80.0914 (4)0.4485 (6)0.2254 (6)0.0243 (16)
H80.11670.48340.26600.029*
C90.0985 (4)0.3503 (5)0.2094 (6)0.0194 (15)
H90.12850.31910.24000.023*
C100.1156 (3)0.1527 (5)0.1165 (5)0.0127 (13)
C110.1599 (3)0.2079 (5)0.1012 (5)0.0146 (13)
H110.15770.27540.09980.018*
C120.2050 (3)0.1647 (5)0.0888 (6)0.0161 (13)
H120.23220.20290.07690.019*
C130.2106 (3)0.0604 (5)0.0940 (5)0.0125 (12)
C140.2567 (3)0.0094 (5)0.0877 (5)0.0139 (12)
C150.3067 (3)0.0582 (5)0.0815 (5)0.0133 (12)
C160.3258 (3)0.1344 (6)0.1443 (5)0.0178 (14)
H160.30660.15770.18740.021*
C170.3743 (3)0.1738 (6)0.1401 (6)0.0194 (14)
H170.38680.22540.17960.023*
C180.4039 (3)0.1381 (6)0.0787 (6)0.0202 (15)
H180.43660.16370.07820.024*
C190.3838 (3)0.0621 (6)0.0167 (5)0.0195 (14)
H190.40320.03840.02580.023*
C200.3364 (3)0.0230 (5)0.0182 (5)0.0146 (13)
H200.32360.02720.02300.018*
C210.2552 (3)0.0924 (6)0.0870 (5)0.0160 (13)
H210.28490.12740.08230.019*
C220.2093 (3)0.1420 (6)0.0935 (5)0.0170 (14)
H220.20890.20960.09290.020*
C230.1672 (3)0.0044 (5)0.1023 (4)0.0129 (13)
C240.1190 (3)0.0514 (5)0.1122 (5)0.0113 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01838 (19)0.01279 (17)0.01316 (17)0.00363 (8)0.00622 (12)0.00142 (9)
Au20.0225 (2)0.01961 (19)0.00978 (17)0.00323 (9)0.00248 (12)0.00040 (9)
Cl10.0312 (9)0.0133 (8)0.0308 (9)0.0030 (7)0.0144 (8)0.0002 (7)
Cl20.0258 (9)0.0216 (9)0.0340 (10)0.0098 (7)0.0152 (8)0.0046 (8)
Cl30.0315 (10)0.0319 (11)0.0216 (8)0.0063 (8)0.0079 (8)0.0042 (8)
Cl40.0382 (12)0.0347 (11)0.0229 (9)0.0178 (10)0.0057 (9)0.0016 (9)
Cl50.0424 (12)0.0248 (10)0.0176 (8)0.0076 (8)0.0050 (8)0.0014 (7)
Cl60.0248 (9)0.0259 (10)0.0272 (9)0.0051 (7)0.0066 (8)0.0032 (8)
N10.023 (3)0.012 (3)0.016 (3)0.002 (2)0.010 (2)0.002 (2)
N20.015 (3)0.016 (3)0.013 (2)0.003 (2)0.007 (2)0.001 (2)
C10.022 (4)0.017 (4)0.024 (4)0.005 (3)0.009 (3)0.003 (3)
C20.012 (3)0.026 (4)0.022 (3)0.000 (3)0.008 (3)0.003 (3)
C30.015 (3)0.016 (3)0.016 (3)0.003 (3)0.001 (3)0.004 (3)
C40.024 (3)0.014 (3)0.014 (3)0.004 (3)0.011 (3)0.002 (3)
C50.027 (4)0.018 (4)0.018 (3)0.005 (3)0.007 (3)0.003 (3)
C60.025 (4)0.027 (4)0.023 (4)0.014 (3)0.015 (3)0.004 (3)
C70.038 (5)0.016 (3)0.021 (3)0.001 (3)0.022 (3)0.002 (3)
C80.031 (4)0.016 (3)0.025 (4)0.003 (3)0.003 (3)0.004 (3)
C90.030 (4)0.012 (3)0.016 (3)0.002 (3)0.002 (3)0.001 (3)
C100.014 (3)0.014 (3)0.012 (3)0.002 (2)0.007 (2)0.000 (2)
C110.016 (3)0.015 (3)0.015 (3)0.002 (2)0.006 (3)0.002 (3)
C120.015 (3)0.012 (3)0.022 (3)0.006 (2)0.006 (3)0.002 (3)
C130.009 (3)0.015 (3)0.015 (3)0.001 (2)0.006 (2)0.000 (3)
C140.018 (3)0.012 (3)0.012 (3)0.002 (2)0.003 (3)0.001 (2)
C150.007 (3)0.017 (3)0.015 (3)0.003 (2)0.001 (2)0.003 (3)
C160.016 (3)0.018 (3)0.017 (3)0.002 (3)0.001 (3)0.002 (3)
C170.021 (4)0.015 (3)0.022 (3)0.001 (3)0.006 (3)0.000 (3)
C180.019 (4)0.016 (3)0.026 (4)0.001 (3)0.005 (3)0.001 (3)
C190.019 (3)0.024 (4)0.016 (3)0.001 (3)0.005 (3)0.001 (3)
C200.018 (3)0.018 (3)0.010 (3)0.001 (2)0.008 (3)0.001 (2)
C210.017 (3)0.016 (3)0.018 (3)0.002 (2)0.009 (3)0.001 (3)
C220.024 (4)0.016 (3)0.013 (3)0.004 (3)0.008 (3)0.002 (3)
C230.018 (3)0.017 (3)0.005 (3)0.003 (3)0.004 (2)0.004 (3)
C240.015 (3)0.009 (3)0.011 (3)0.006 (2)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
Au1—N22.032 (6)C10—C111.442 (10)
Au1—N12.039 (7)C11—C121.367 (10)
Au1—Cl22.2546 (19)C11—H110.9300
Au1—Cl12.257 (2)C12—C131.444 (10)
Au2—Cl42.281 (2)C12—H120.9300
Au2—Cl52.281 (2)C13—C231.401 (9)
Au2—Cl62.284 (2)C13—C141.417 (10)
Au2—Cl32.285 (2)C14—C211.400 (10)
C1—N11.335 (10)C14—C151.494 (10)
C1—C21.379 (11)C15—C201.398 (9)
C1—H10.9300C15—C161.412 (11)
C2—C31.399 (10)C16—C171.395 (11)
C2—H20.9300C16—H160.9300
C3—C101.403 (10)C17—C181.378 (12)
C3—C41.502 (10)C17—H170.9300
C4—C91.381 (11)C18—C191.411 (11)
C4—C51.404 (11)C18—H180.9300
C5—C61.389 (11)C19—C201.361 (10)
C5—H50.9300C19—H190.9300
C6—C71.373 (14)C20—H200.9300
C6—H60.9300C21—C221.405 (11)
C7—C81.383 (13)C21—H210.9300
C7—H70.9300C22—N21.320 (10)
C8—C91.390 (11)C22—H220.9300
C8—H80.9300C23—N21.352 (9)
C9—H90.9300C23—C241.454 (9)
C10—C241.399 (9)C24—N11.359 (9)
N2—Au1—N181.1 (3)C11—C12—C13120.6 (7)
N2—Au1—Cl2175.42 (19)C11—C12—H12119.7
N1—Au1—Cl294.3 (2)C13—C12—H12119.7
N2—Au1—Cl194.92 (19)C23—C13—C14116.9 (7)
N1—Au1—Cl1175.95 (19)C23—C13—C12118.3 (6)
Cl2—Au1—Cl189.62 (8)C14—C13—C12124.8 (6)
Cl4—Au2—Cl590.26 (10)C21—C14—C13118.2 (7)
Cl4—Au2—Cl6178.77 (8)C21—C14—C15118.3 (7)
Cl5—Au2—Cl689.67 (9)C13—C14—C15123.5 (7)
Cl4—Au2—Cl389.96 (10)C20—C15—C16120.2 (7)
Cl5—Au2—Cl3178.75 (7)C20—C15—C14119.4 (7)
Cl6—Au2—Cl390.14 (9)C16—C15—C14120.2 (6)
N1—C1—C2120.1 (7)C17—C16—C15118.3 (7)
N1—C1—H1119.9C17—C16—H16120.8
C2—C1—H1119.9C15—C16—H16120.9
C1—C2—C3121.9 (7)C18—C17—C16121.5 (8)
C1—C2—H2119.0C18—C17—H17119.2
C3—C2—H2119.0C16—C17—H17119.2
C2—C3—C10117.7 (7)C17—C18—C19118.9 (8)
C2—C3—C4118.9 (7)C17—C18—H18120.6
C10—C3—C4123.5 (7)C19—C18—H18120.5
C9—C4—C5120.3 (7)C20—C19—C18120.9 (7)
C9—C4—C3119.3 (7)C20—C19—H19119.5
C5—C4—C3120.2 (7)C18—C19—H19119.6
C6—C5—C4118.5 (8)C19—C20—C15120.1 (7)
C6—C5—H5120.7C19—C20—H20119.9
C4—C5—H5120.8C15—C20—H20120.0
C7—C6—C5120.9 (8)C14—C21—C22120.7 (7)
C7—C6—H6119.6C14—C21—H21119.6
C5—C6—H6119.5C22—C21—H21119.7
C6—C7—C8120.6 (8)N2—C22—C21120.7 (7)
C6—C7—H7119.7N2—C22—H22119.7
C8—C7—H7119.7C21—C22—H22119.6
C7—C8—C9119.4 (8)N2—C23—C13123.6 (6)
C7—C8—H8120.3N2—C23—C24116.2 (6)
C9—C8—H8120.3C13—C23—C24120.2 (6)
C4—C9—C8120.2 (8)N1—C24—C10123.2 (7)
C4—C9—H9119.9N1—C24—C23116.0 (6)
C8—C9—H9119.9C10—C24—C23120.8 (6)
C24—C10—C3117.3 (7)C1—N1—C24119.5 (7)
C24—C10—C11117.3 (6)C1—N1—Au1127.4 (5)
C3—C10—C11125.4 (7)C24—N1—Au1113.1 (5)
C12—C11—C10122.4 (7)C22—N2—C23119.9 (6)
C12—C11—H11118.8C22—N2—Au1126.6 (5)
C10—C11—H11118.8C23—N2—Au1113.5 (5)
N1—C1—C2—C31.3 (13)C18—C19—C20—C150.2 (12)
C1—C2—C3—C105.0 (12)C16—C15—C20—C190.0 (11)
C1—C2—C3—C4175.9 (8)C14—C15—C20—C19175.1 (7)
C2—C3—C4—C9133.5 (8)C13—C14—C21—C220.7 (10)
C10—C3—C4—C947.4 (10)C15—C14—C21—C22179.4 (7)
C2—C3—C4—C541.7 (10)C14—C21—C22—N20.1 (11)
C10—C3—C4—C5137.4 (8)C14—C13—C23—N22.9 (10)
C9—C4—C5—C63.2 (12)C12—C13—C23—N2174.8 (7)
C3—C4—C5—C6178.3 (7)C14—C13—C23—C24178.0 (6)
C4—C5—C6—C70.7 (12)C12—C13—C23—C244.3 (10)
C5—C6—C7—C81.6 (13)C3—C10—C24—N13.9 (10)
C6—C7—C8—C91.5 (13)C11—C10—C24—N1175.0 (6)
C5—C4—C9—C83.3 (12)C3—C10—C24—C23175.0 (6)
C3—C4—C9—C8178.5 (8)C11—C10—C24—C236.1 (10)
C7—C8—C9—C40.9 (13)N2—C23—C24—N10.2 (9)
C2—C3—C10—C246.1 (10)C13—C23—C24—N1179.0 (6)
C4—C3—C10—C24174.8 (7)N2—C23—C24—C10178.9 (6)
C2—C3—C10—C11172.7 (7)C13—C23—C24—C102.0 (10)
C4—C3—C10—C116.4 (11)C2—C1—N1—C241.2 (12)
C24—C10—C11—C124.0 (11)C2—C1—N1—Au1176.9 (6)
C3—C10—C11—C12177.2 (7)C10—C24—N1—C10.2 (11)
C10—C11—C12—C132.3 (11)C23—C24—N1—C1178.8 (7)
C11—C12—C13—C236.5 (11)C10—C24—N1—Au1178.6 (5)
C11—C12—C13—C14176.1 (7)C23—C24—N1—Au10.4 (7)
C23—C13—C14—C212.1 (10)N2—Au1—N1—C1178.6 (7)
C12—C13—C14—C21175.4 (7)Cl2—Au1—N1—C10.7 (7)
C23—C13—C14—C15178.1 (6)N2—Au1—N1—C240.4 (5)
C12—C13—C14—C154.4 (11)Cl2—Au1—N1—C24179.0 (5)
C21—C14—C15—C2042.6 (10)C21—C22—N2—C230.6 (10)
C13—C14—C15—C20137.3 (7)C21—C22—N2—Au1178.9 (5)
C21—C14—C15—C16132.5 (7)C13—C23—N2—C222.2 (10)
C13—C14—C15—C1647.7 (10)C24—C23—N2—C22178.7 (6)
C20—C15—C16—C171.0 (11)C13—C23—N2—Au1179.3 (5)
C14—C15—C16—C17176.0 (7)C24—C23—N2—Au10.2 (7)
C15—C16—C17—C182.1 (12)N1—Au1—N2—C22178.7 (6)
C16—C17—C18—C192.2 (13)N1—Au1—N2—C230.3 (5)
C17—C18—C19—C201.2 (12)Cl1—Au1—N2—C23179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.683.244 (9)120
C1—H1···Cl6i0.932.793.668 (8)159
C18—H18···Cl2ii0.932.793.653 (8)155
C22—H22···Cl10.932.663.239 (8)121
C22—H22···Cl4iii0.932.763.555 (9)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[AuCl2(C24H16N2)][AuCl4]
Mr939.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)26.2625 (16), 13.7608 (6), 14.4292 (9)
β (°) 101.207 (5)
V3)5115.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)12.10
Crystal size (mm)0.43 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (PROGRAM? Reference?)
Tmin, Tmax0.580, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
18667, 6864, 6404
Rint0.090
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.173, 1.16
No. of reflections6864
No. of parameters308
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0977P)2 + 20.7667P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.07, 1.02

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Au1—N22.032 (6)Au2—Cl42.281 (2)
Au1—N12.039 (7)Au2—Cl52.281 (2)
Au1—Cl22.2546 (19)Au2—Cl62.284 (2)
Au1—Cl12.257 (2)Au2—Cl32.285 (2)
N2—Au1—N181.1 (3)Cl4—Au2—Cl590.26 (10)
N2—Au1—Cl2175.42 (19)Cl4—Au2—Cl6178.77 (8)
N1—Au1—Cl294.3 (2)Cl5—Au2—Cl689.67 (9)
N2—Au1—Cl194.92 (19)Cl4—Au2—Cl389.96 (10)
N1—Au1—Cl1175.95 (19)Cl5—Au2—Cl3178.75 (7)
Cl2—Au1—Cl189.62 (8)Cl6—Au2—Cl390.14 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.683.244 (9)120.00
C1—H1···Cl6i0.932.793.668 (8)159.00
C18—H18···Cl2ii0.932.793.653 (8)155.00
C22—H22···Cl10.932.663.239 (8)121.00
C22—H22···Cl4iii0.932.763.555 (9)143.00
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAbbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdams, H. N. & Strahle, J. (1982). Z. Anorg. Allg. Chem. 485, 65–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationBjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120–6122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1156-m1157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds