organic compounds
4,4′-Dimethoxy-2,2′-[1,1′-(propane-1,3-diyldinitrilo)diethylidyne]diphenol
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the 21H26N2O4, has twofold rotation symmetry. The imino group is coplanar with the aromatic ring. An intramolecular O—H⋯N hydrogen bond forms a six- membered ring, producing an S(6) ring motif. The two benzene rings are almost perpendicular to each other, making a dihedral angle of 85.00 (2)°. The methoxy group is approximately coplanar with the benzene ring, with a C—O—C—C torsion angle of 2.34 (12)°. Neighbouring molecules are linked together by weak intermolecular C—H⋯O hydrogen bonds and a C—H⋯π interaction, forming a sheet parallel to the ab plane. The molecules also adopt a zigzag arrangement along the c axis.
the title Schiff base compound, CRelated literature
For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes, and their applications, see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun, Mirkhani et al. (2008a,b); Calligaris & Randaccio (1987); Casellato & Vigato (1977); Kia, Mirkhani, Kalman & Deak (2007); Kia, Mirkhani, Harkema & van Hummel (2007); Pal et al. (2005); Reglinski et al. (2004); Hou et al. (2001); Ren et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2003) and PARST95 (Nardelli, 1995).
Supporting information
10.1107/S1600536808023738/is2318sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023738/is2318Isup2.hkl
The synthetic method has been described earlier (Reglinski et al., 2004). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.
H atom bound to O1 was located from a difference Fourier map and refined as riding, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93 – 0.96 Å) and refined using a riding model. A rotating-group model was applied for the methyl groups.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and PARST95 (Nardelli, 1995).C21H26N2O4 | F(000) = 792 |
Mr = 370.44 | Dx = 1.332 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9900 reflections |
a = 12.8042 (2) Å | θ = 2.9–38.4° |
b = 5.0508 (1) Å | µ = 0.09 mm−1 |
c = 28.6019 (6) Å | T = 100 K |
β = 93.109 (2)° | Block, yellow |
V = 1847.00 (6) Å3 | 0.47 × 0.44 × 0.29 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 5229 independent reflections |
Radiation source: fine-focus sealed tube | 4304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and ω scans | θmax = 38.8°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −22→18 |
Tmin = 0.884, Tmax = 0.974 | k = −8→8 |
34801 measured reflections | l = −48→50 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0571P)2 + 1.5152P] where P = (Fo2 + 2Fc2)/3 |
5229 reflections | (Δ/σ)max < 0.001 |
125 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C21H26N2O4 | V = 1847.00 (6) Å3 |
Mr = 370.44 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.8042 (2) Å | µ = 0.09 mm−1 |
b = 5.0508 (1) Å | T = 100 K |
c = 28.6019 (6) Å | 0.47 × 0.44 × 0.29 mm |
β = 93.109 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5229 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4304 reflections with I > 2σ(I) |
Tmin = 0.884, Tmax = 0.974 | Rint = 0.031 |
34801 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.45 e Å−3 |
5229 reflections | Δρmin = −0.28 e Å−3 |
125 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.59948 (5) | 0.57780 (14) | 0.14698 (2) | 0.01790 (13) | |
H1O1 | 0.5565 | 0.4795 | 0.1680 | 0.027* | |
O2 | 0.32409 (5) | 1.27531 (14) | 0.05669 (2) | 0.01928 (13) | |
N1 | 0.44774 (6) | 0.41178 (14) | 0.19154 (2) | 0.01406 (12) | |
C1 | 0.53083 (6) | 0.74582 (16) | 0.12471 (3) | 0.01383 (13) | |
C2 | 0.56814 (6) | 0.91899 (18) | 0.09166 (3) | 0.01619 (14) | |
H2A | 0.6385 | 0.9140 | 0.0851 | 0.019* | |
C3 | 0.50202 (7) | 1.09968 (17) | 0.06815 (3) | 0.01633 (14) | |
H3A | 0.5281 | 1.2150 | 0.0463 | 0.020* | |
C4 | 0.39649 (6) | 1.10628 (16) | 0.07764 (3) | 0.01411 (13) | |
C5 | 0.35797 (6) | 0.93301 (16) | 0.11033 (3) | 0.01378 (13) | |
H5A | 0.2873 | 0.9380 | 0.1162 | 0.017* | |
C6 | 0.42331 (6) | 0.75110 (15) | 0.13460 (3) | 0.01242 (13) | |
C7 | 0.38248 (6) | 0.57157 (16) | 0.17015 (3) | 0.01281 (13) | |
C8 | 0.41119 (7) | 0.23770 (17) | 0.22797 (3) | 0.01519 (14) | |
H8A | 0.3572 | 0.1216 | 0.2145 | 0.018* | |
H8B | 0.3807 | 0.3436 | 0.2520 | 0.018* | |
C9 | 0.5000 | 0.0715 (2) | 0.2500 | 0.01590 (19) | |
H9 | 0.4651 | −0.0665 | 0.2746 | 0.019* | |
C10 | 0.35993 (8) | 1.44822 (19) | 0.02170 (3) | 0.01964 (16) | |
H10A | 0.3025 | 1.5528 | 0.0090 | 0.029* | |
H10B | 0.3883 | 1.3457 | −0.0029 | 0.029* | |
H10C | 0.4131 | 1.5628 | 0.0353 | 0.029* | |
C11 | 0.26922 (7) | 0.57899 (19) | 0.18136 (4) | 0.01984 (16) | |
H11A | 0.2370 | 0.4123 | 0.1733 | 0.030* | |
H11B | 0.2343 | 0.7180 | 0.1638 | 0.030* | |
H11C | 0.2639 | 0.6114 | 0.2142 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0124 (2) | 0.0187 (3) | 0.0228 (3) | 0.0024 (2) | 0.0023 (2) | 0.0063 (2) |
O2 | 0.0159 (3) | 0.0187 (3) | 0.0233 (3) | 0.0031 (2) | 0.0012 (2) | 0.0076 (2) |
N1 | 0.0143 (3) | 0.0140 (3) | 0.0139 (3) | −0.0006 (2) | 0.0013 (2) | 0.0014 (2) |
C1 | 0.0119 (3) | 0.0142 (3) | 0.0155 (3) | 0.0007 (2) | 0.0015 (2) | 0.0006 (2) |
C2 | 0.0130 (3) | 0.0177 (3) | 0.0181 (3) | 0.0002 (3) | 0.0032 (2) | 0.0024 (3) |
C3 | 0.0160 (3) | 0.0162 (3) | 0.0170 (3) | −0.0008 (3) | 0.0028 (3) | 0.0027 (3) |
C4 | 0.0137 (3) | 0.0132 (3) | 0.0154 (3) | 0.0011 (2) | 0.0008 (2) | 0.0010 (2) |
C5 | 0.0120 (3) | 0.0139 (3) | 0.0155 (3) | 0.0005 (2) | 0.0015 (2) | 0.0005 (2) |
C6 | 0.0114 (3) | 0.0124 (3) | 0.0135 (3) | 0.0001 (2) | 0.0018 (2) | −0.0001 (2) |
C7 | 0.0122 (3) | 0.0125 (3) | 0.0137 (3) | −0.0008 (2) | 0.0013 (2) | −0.0009 (2) |
C8 | 0.0156 (3) | 0.0152 (3) | 0.0147 (3) | −0.0021 (2) | 0.0011 (2) | 0.0011 (3) |
C9 | 0.0191 (5) | 0.0125 (4) | 0.0161 (5) | 0.000 | 0.0000 (4) | 0.000 |
C10 | 0.0229 (4) | 0.0173 (3) | 0.0186 (4) | 0.0016 (3) | 0.0005 (3) | 0.0046 (3) |
C11 | 0.0134 (3) | 0.0215 (4) | 0.0250 (4) | 0.0007 (3) | 0.0045 (3) | 0.0063 (3) |
O1—C1 | 1.3556 (10) | C5—H5A | 0.9300 |
O1—H1O1 | 0.9728 | C6—C7 | 1.4787 (11) |
O2—C4 | 1.3736 (10) | C7—C11 | 1.5025 (11) |
O2—C10 | 1.4230 (11) | C8—C9 | 1.5221 (11) |
N1—C7 | 1.2917 (11) | C8—H8A | 0.9700 |
N1—C8 | 1.4597 (11) | C8—H8B | 0.9700 |
C1—C2 | 1.3915 (12) | C9—C8i | 1.5221 (11) |
C1—C6 | 1.4208 (11) | C9—H9 | 1.1014 |
C2—C3 | 1.3928 (12) | C10—H10A | 0.9600 |
C2—H2A | 0.9300 | C10—H10B | 0.9600 |
C3—C4 | 1.3929 (12) | C10—H10C | 0.9600 |
C3—H3A | 0.9300 | C11—H11A | 0.9600 |
C4—C5 | 1.3906 (12) | C11—H11B | 0.9600 |
C5—C6 | 1.4010 (11) | C11—H11C | 0.9600 |
C1—O1—H1O1 | 103.6 | C6—C7—C11 | 120.84 (7) |
C4—O2—C10 | 116.90 (7) | N1—C8—C9 | 111.49 (6) |
C7—N1—C8 | 119.36 (7) | N1—C8—H8A | 109.3 |
O1—C1—C2 | 118.35 (7) | C9—C8—H8A | 109.3 |
O1—C1—C6 | 121.93 (7) | N1—C8—H8B | 109.3 |
C2—C1—C6 | 119.71 (7) | C9—C8—H8B | 109.3 |
C1—C2—C3 | 121.18 (8) | H8A—C8—H8B | 108.0 |
C1—C2—H2A | 119.4 | C8—C9—C8i | 113.08 (10) |
C3—C2—H2A | 119.4 | C8—C9—H9 | 107.1 |
C2—C3—C4 | 119.50 (8) | C8i—C9—H9 | 113.8 |
C2—C3—H3A | 120.3 | O2—C10—H10A | 109.5 |
C4—C3—H3A | 120.3 | O2—C10—H10B | 109.5 |
O2—C4—C5 | 115.40 (7) | H10A—C10—H10B | 109.5 |
O2—C4—C3 | 124.67 (7) | O2—C10—H10C | 109.5 |
C5—C4—C3 | 119.94 (7) | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 121.46 (7) | H10B—C10—H10C | 109.5 |
C4—C5—H5A | 119.3 | C7—C11—H11A | 109.5 |
C6—C5—H5A | 119.3 | C7—C11—H11B | 109.5 |
C5—C6—C1 | 118.21 (7) | H11A—C11—H11B | 109.5 |
C5—C6—C7 | 121.26 (7) | C7—C11—H11C | 109.5 |
C1—C6—C7 | 120.52 (7) | H11A—C11—H11C | 109.5 |
N1—C7—C6 | 117.71 (7) | H11B—C11—H11C | 109.5 |
N1—C7—C11 | 121.44 (7) | ||
O1—C1—C2—C3 | −178.88 (8) | C2—C1—C6—C5 | 0.02 (12) |
C6—C1—C2—C3 | 0.44 (13) | O1—C1—C6—C7 | 0.25 (12) |
C1—C2—C3—C4 | −0.42 (13) | C2—C1—C6—C7 | −179.04 (8) |
C10—O2—C4—C5 | −177.58 (8) | C8—N1—C7—C6 | 177.96 (7) |
C10—O2—C4—C3 | 2.34 (13) | C8—N1—C7—C11 | −1.07 (12) |
C2—C3—C4—O2 | −179.99 (8) | C5—C6—C7—N1 | −179.06 (8) |
C2—C3—C4—C5 | −0.07 (13) | C1—C6—C7—N1 | −0.02 (11) |
O2—C4—C5—C6 | −179.53 (7) | C5—C6—C7—C11 | −0.02 (12) |
C3—C4—C5—C6 | 0.54 (13) | C1—C6—C7—C11 | 179.01 (8) |
C4—C5—C6—C1 | −0.51 (12) | C7—N1—C8—C9 | −178.18 (7) |
C4—C5—C6—C7 | 178.54 (7) | N1—C8—C9—C8i | 58.96 (5) |
O1—C1—C6—C5 | 179.32 (8) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N1 | 0.97 | 1.62 | 2.5241 (10) | 153 |
C11—H11A···O1ii | 0.96 | 2.53 | 3.4448 (12) | 160 |
C11—H11B···O1iii | 0.96 | 2.53 | 3.4360 (12) | 157 |
C10—H10C···Cg1iv | 0.96 | 2.68 | 3.5224 (10) | 147 |
Symmetry codes: (ii) x−1/2, y−1/2, z; (iii) x−1/2, y+1/2, z; (iv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H26N2O4 |
Mr | 370.44 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 12.8042 (2), 5.0508 (1), 28.6019 (6) |
β (°) | 93.109 (2) |
V (Å3) | 1847.00 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.47 × 0.44 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.884, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34801, 5229, 4304 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.882 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.148, 1.11 |
No. of reflections | 5229 |
No. of parameters | 125 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.28 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and PARST95 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N1 | 0.97 | 1.62 | 2.5241 (10) | 153 |
C11—H11A···O1i | 0.96 | 2.53 | 3.4448 (12) | 160 |
C11—H11B···O1ii | 0.96 | 2.53 | 3.4360 (12) | 157 |
C10—H10C···Cg1iii | 0.96 | 2.68 | 3.5224 (10) | 147 |
Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x−1/2, y+1/2, z; (iii) x, y+1, z. |
Footnotes
‡Additional correspondance author: e-mail: zsrkk@yahoo.com.
Acknowledgements
HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon. Google Scholar
Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50. CrossRef CAS Web of Science Google Scholar
Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375. Web of Science CrossRef IUCr Journals Google Scholar
Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048. Web of Science CrossRef CAS Google Scholar
Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369–3375. Web of Science CSD CrossRef CAS Google Scholar
Kia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1117–1716. Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889. Web of Science CSD CrossRef PubMed CAS Google Scholar
Reglinski, J., Taylor, M. K. & Kennedy, A. R. (2004). Acta Cryst. C60, o169–o172. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis, etc (Kia, Mirkhani, Kalman & Deak, 2007; Kia, Mirkhani, Harkema & van Hummel, 2007; Pal et al., 2005; Reglinski et al., 2004; Hou et al., 2001; Ren et al., 2002). This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning the metal-centered electronic factor and enhancing the solubility and stability of either homogeneous or heterogeneous catalysts. Only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia, 2008; Fun, Kia & Kargar, 2008; Fun et al., 2008a,b) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.
The molecule of the title compound, (I), has a crystallographic twofold rotation symmetry (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al.,1987). The asymmetric unit of the compound is composed of one-half of the molecule. An intramolecular O—H···N hydrogen bond forms a six-membered ring, producing an S(6) ring motif (Bernstein et al. 1995). The two benzene rings are almost perpendicular to each other with a dihedral angle of 85.00 (2)°. The methoxy group is coplanar with the benzene ring, with the C10–O2–C4–C3 torsion angle of 2.34 (12)°. In the crystal structure neighbouring molecules are linked together by weak intermolecular C—H···O hydrogen bonds and a C—H···π interaction to form a sheet parallel to the ab plane (Fig. 2). These molecules also adopt a zigzag arrangement along the c axis (Fig. 3).