organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1657-o1658

4,4′-Di­meth­oxy-2,2′-[1,1′-(propane-1,3-diyldi­nitrilo)di­ethyl­idyne]diphenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 July 2008; accepted 27 July 2008; online 6 August 2008)

In the crystal structure, the title Schiff base compound, C21H26N2O4, has twofold rotation symmetry. The imino group is coplanar with the aromatic ring. An intra­molecular O—H⋯N hydrogen bond forms a six- membered ring, producing an S(6) ring motif. The two benzene rings are almost perpendicular to each other, making a dihedral angle of 85.00 (2)°. The meth­oxy group is approximately coplanar with the benzene ring, with a C—O—C—C torsion angle of 2.34 (12)°. Neighbouring mol­ecules are linked together by weak inter­molecular C—H⋯O hydrogen bonds and a C—H⋯π inter­action, forming a sheet parallel to the ab plane. The mol­ecules also adopt a zigzag arrangement along the c axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on Schiff base ligands and complexes, and their applications, see, for example: Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun, Mirkhani et al. (2008a[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374-o1375.],b[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.]); Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]); Casellato & Vigato (1977[Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.]); Kia, Mirkhani, Kalman & Deak (2007[Kia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1117-1716.]); Kia, Mirkhani, Harkema & van Hummel (2007[Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369-3375.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Reglinski et al. (2004[Reglinski, J., Taylor, M. K. & Kennedy, A. R. (2004). Acta Cryst. C60, o169-o172.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O4

  • Mr = 370.44

  • Monoclinic, C 2/c

  • a = 12.8042 (2) Å

  • b = 5.0508 (1) Å

  • c = 28.6019 (6) Å

  • β = 93.109 (2)°

  • V = 1847.00 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.44 × 0.29 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.974

  • 34801 measured reflections

  • 5229 independent reflections

  • 4304 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.148

  • S = 1.11

  • 5229 reflections

  • 125 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.97 1.62 2.5241 (10) 153
C11—H11A⋯O1i 0.96 2.53 3.4448 (12) 160
C11—H11B⋯O1ii 0.96 2.53 3.4360 (12) 157
C10—H10CCg1iii 0.96 2.68 3.5224 (10) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x, y+1, z. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis, etc (Kia, Mirkhani, Kalman & Deak, 2007; Kia, Mirkhani, Harkema & van Hummel, 2007; Pal et al., 2005; Reglinski et al., 2004; Hou et al., 2001; Ren et al., 2002). This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning the metal-centered electronic factor and enhancing the solubility and stability of either homogeneous or heterogeneous catalysts. Only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia, 2008; Fun, Kia & Kargar, 2008; Fun et al., 2008a,b) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.

The molecule of the title compound, (I), has a crystallographic twofold rotation symmetry (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al.,1987). The asymmetric unit of the compound is composed of one-half of the molecule. An intramolecular O—H···N hydrogen bond forms a six-membered ring, producing an S(6) ring motif (Bernstein et al. 1995). The two benzene rings are almost perpendicular to each other with a dihedral angle of 85.00 (2)°. The methoxy group is coplanar with the benzene ring, with the C10–O2–C4–C3 torsion angle of 2.34 (12)°. In the crystal structure neighbouring molecules are linked together by weak intermolecular C—H···O hydrogen bonds and a C—H···π interaction to form a sheet parallel to the ab plane (Fig. 2). These molecules also adopt a zigzag arrangement along the c axis (Fig. 3).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes, and their applications, see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun, Mirkhani et al. (2008a,b); Calligaris & Randaccio (1987); Casellato & Vigato (1977); Kia, Mirkhani, Kalman & Deak (2007); Kia, Mirkhani, Harkema & van Hummel (2007); Pal et al. (2005); Reglinski et al. (2004); Hou et al. (2001); Ren et al. (2002). Cg1 is centroid of the C1–C6 benzene ring.

Experimental top

The synthetic method has been described earlier (Reglinski et al., 2004). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atom bound to O1 was located from a difference Fourier map and refined as riding, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93 – 0.96 Å) and refined using a riding model. A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code (-x + 1, y, -z + 1/2).
[Figure 2] Fig. 2. The crystal packing, showing stacking of molecules down the b axis. Intramolecular and intermolecular interactions are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing, showing zigzag arrangement of molecules along the c axis.
4,4'-Dimethoxy-2,2'-[1,1'-(propane-1,3-diyldinitrilo)diethylidyne]diphenol top
Crystal data top
C21H26N2O4F(000) = 792
Mr = 370.44Dx = 1.332 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9900 reflections
a = 12.8042 (2) Åθ = 2.9–38.4°
b = 5.0508 (1) ŵ = 0.09 mm1
c = 28.6019 (6) ÅT = 100 K
β = 93.109 (2)°Block, yellow
V = 1847.00 (6) Å30.47 × 0.44 × 0.29 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5229 independent reflections
Radiation source: fine-focus sealed tube4304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 38.8°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2218
Tmin = 0.884, Tmax = 0.974k = 88
34801 measured reflectionsl = 4850
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0571P)2 + 1.5152P]
where P = (Fo2 + 2Fc2)/3
5229 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H26N2O4V = 1847.00 (6) Å3
Mr = 370.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.8042 (2) ŵ = 0.09 mm1
b = 5.0508 (1) ÅT = 100 K
c = 28.6019 (6) Å0.47 × 0.44 × 0.29 mm
β = 93.109 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5229 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4304 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.974Rint = 0.031
34801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.11Δρmax = 0.45 e Å3
5229 reflectionsΔρmin = 0.28 e Å3
125 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59948 (5)0.57780 (14)0.14698 (2)0.01790 (13)
H1O10.55650.47950.16800.027*
O20.32409 (5)1.27531 (14)0.05669 (2)0.01928 (13)
N10.44774 (6)0.41178 (14)0.19154 (2)0.01406 (12)
C10.53083 (6)0.74582 (16)0.12471 (3)0.01383 (13)
C20.56814 (6)0.91899 (18)0.09166 (3)0.01619 (14)
H2A0.63850.91400.08510.019*
C30.50202 (7)1.09968 (17)0.06815 (3)0.01633 (14)
H3A0.52811.21500.04630.020*
C40.39649 (6)1.10628 (16)0.07764 (3)0.01411 (13)
C50.35797 (6)0.93301 (16)0.11033 (3)0.01378 (13)
H5A0.28730.93800.11620.017*
C60.42331 (6)0.75110 (15)0.13460 (3)0.01242 (13)
C70.38248 (6)0.57157 (16)0.17015 (3)0.01281 (13)
C80.41119 (7)0.23770 (17)0.22797 (3)0.01519 (14)
H8A0.35720.12160.21450.018*
H8B0.38070.34360.25200.018*
C90.50000.0715 (2)0.25000.01590 (19)
H90.46510.06650.27460.019*
C100.35993 (8)1.44822 (19)0.02170 (3)0.01964 (16)
H10A0.30251.55280.00900.029*
H10B0.38831.34570.00290.029*
H10C0.41311.56280.03530.029*
C110.26922 (7)0.57899 (19)0.18136 (4)0.01984 (16)
H11A0.23700.41230.17330.030*
H11B0.23430.71800.16380.030*
H11C0.26390.61140.21420.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0124 (2)0.0187 (3)0.0228 (3)0.0024 (2)0.0023 (2)0.0063 (2)
O20.0159 (3)0.0187 (3)0.0233 (3)0.0031 (2)0.0012 (2)0.0076 (2)
N10.0143 (3)0.0140 (3)0.0139 (3)0.0006 (2)0.0013 (2)0.0014 (2)
C10.0119 (3)0.0142 (3)0.0155 (3)0.0007 (2)0.0015 (2)0.0006 (2)
C20.0130 (3)0.0177 (3)0.0181 (3)0.0002 (3)0.0032 (2)0.0024 (3)
C30.0160 (3)0.0162 (3)0.0170 (3)0.0008 (3)0.0028 (3)0.0027 (3)
C40.0137 (3)0.0132 (3)0.0154 (3)0.0011 (2)0.0008 (2)0.0010 (2)
C50.0120 (3)0.0139 (3)0.0155 (3)0.0005 (2)0.0015 (2)0.0005 (2)
C60.0114 (3)0.0124 (3)0.0135 (3)0.0001 (2)0.0018 (2)0.0001 (2)
C70.0122 (3)0.0125 (3)0.0137 (3)0.0008 (2)0.0013 (2)0.0009 (2)
C80.0156 (3)0.0152 (3)0.0147 (3)0.0021 (2)0.0011 (2)0.0011 (3)
C90.0191 (5)0.0125 (4)0.0161 (5)0.0000.0000 (4)0.000
C100.0229 (4)0.0173 (3)0.0186 (4)0.0016 (3)0.0005 (3)0.0046 (3)
C110.0134 (3)0.0215 (4)0.0250 (4)0.0007 (3)0.0045 (3)0.0063 (3)
Geometric parameters (Å, º) top
O1—C11.3556 (10)C5—H5A0.9300
O1—H1O10.9728C6—C71.4787 (11)
O2—C41.3736 (10)C7—C111.5025 (11)
O2—C101.4230 (11)C8—C91.5221 (11)
N1—C71.2917 (11)C8—H8A0.9700
N1—C81.4597 (11)C8—H8B0.9700
C1—C21.3915 (12)C9—C8i1.5221 (11)
C1—C61.4208 (11)C9—H91.1014
C2—C31.3928 (12)C10—H10A0.9600
C2—H2A0.9300C10—H10B0.9600
C3—C41.3929 (12)C10—H10C0.9600
C3—H3A0.9300C11—H11A0.9600
C4—C51.3906 (12)C11—H11B0.9600
C5—C61.4010 (11)C11—H11C0.9600
C1—O1—H1O1103.6C6—C7—C11120.84 (7)
C4—O2—C10116.90 (7)N1—C8—C9111.49 (6)
C7—N1—C8119.36 (7)N1—C8—H8A109.3
O1—C1—C2118.35 (7)C9—C8—H8A109.3
O1—C1—C6121.93 (7)N1—C8—H8B109.3
C2—C1—C6119.71 (7)C9—C8—H8B109.3
C1—C2—C3121.18 (8)H8A—C8—H8B108.0
C1—C2—H2A119.4C8—C9—C8i113.08 (10)
C3—C2—H2A119.4C8—C9—H9107.1
C2—C3—C4119.50 (8)C8i—C9—H9113.8
C2—C3—H3A120.3O2—C10—H10A109.5
C4—C3—H3A120.3O2—C10—H10B109.5
O2—C4—C5115.40 (7)H10A—C10—H10B109.5
O2—C4—C3124.67 (7)O2—C10—H10C109.5
C5—C4—C3119.94 (7)H10A—C10—H10C109.5
C4—C5—C6121.46 (7)H10B—C10—H10C109.5
C4—C5—H5A119.3C7—C11—H11A109.5
C6—C5—H5A119.3C7—C11—H11B109.5
C5—C6—C1118.21 (7)H11A—C11—H11B109.5
C5—C6—C7121.26 (7)C7—C11—H11C109.5
C1—C6—C7120.52 (7)H11A—C11—H11C109.5
N1—C7—C6117.71 (7)H11B—C11—H11C109.5
N1—C7—C11121.44 (7)
O1—C1—C2—C3178.88 (8)C2—C1—C6—C50.02 (12)
C6—C1—C2—C30.44 (13)O1—C1—C6—C70.25 (12)
C1—C2—C3—C40.42 (13)C2—C1—C6—C7179.04 (8)
C10—O2—C4—C5177.58 (8)C8—N1—C7—C6177.96 (7)
C10—O2—C4—C32.34 (13)C8—N1—C7—C111.07 (12)
C2—C3—C4—O2179.99 (8)C5—C6—C7—N1179.06 (8)
C2—C3—C4—C50.07 (13)C1—C6—C7—N10.02 (11)
O2—C4—C5—C6179.53 (7)C5—C6—C7—C110.02 (12)
C3—C4—C5—C60.54 (13)C1—C6—C7—C11179.01 (8)
C4—C5—C6—C10.51 (12)C7—N1—C8—C9178.18 (7)
C4—C5—C6—C7178.54 (7)N1—C8—C9—C8i58.96 (5)
O1—C1—C6—C5179.32 (8)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.971.622.5241 (10)153
C11—H11A···O1ii0.962.533.4448 (12)160
C11—H11B···O1iii0.962.533.4360 (12)157
C10—H10C···Cg1iv0.962.683.5224 (10)147
Symmetry codes: (ii) x1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H26N2O4
Mr370.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)12.8042 (2), 5.0508 (1), 28.6019 (6)
β (°) 93.109 (2)
V3)1847.00 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.44 × 0.29
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.884, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
34801, 5229, 4304
Rint0.031
(sin θ/λ)max1)0.882
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.11
No. of reflections5229
No. of parameters125
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.971.622.5241 (10)153
C11—H11A···O1i0.962.533.4448 (12)160
C11—H11B···O1ii0.962.533.4360 (12)157
C10—H10C···Cg1iii0.962.683.5224 (10)147
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z.
 

Footnotes

Additional correspondance author: e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCasellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369–3375.  Web of Science CSD CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1117–1716.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReglinski, J., Taylor, M. K. & Kennedy, A. R. (2004). Acta Cryst. C60, o169–o172.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1657-o1658
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds