metal-organic compounds
Bis(μ-biphenyl-2,2′-dicarboxylato)bis[(2,2′-bipyridine)copper(II)]
aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn
The title compound, [Cu2(C14H8O4)2(C10H8N2)2], is a centrosymmetric binuclear copper(II) complex, with a Cu⋯Cu separation of 6.136 (16) Å. The Cu atom displays a cis-CuN2O2 square-planar geometry, although two long (> 2.43 Å) Cu⋯O contacts complete a distorted cis-CuN2O4 octahedron. Extensive C—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Related literature
For related literature, see: Bu et al. (2004); He et al. (2007); Huang et al. (2004); Long et al. (2001); Ma et al. (2003); Rao et al. (2004); Yaghi et al. (2003); Yang et al. (2002); Zhang et al. (2004); Zhu et al. (2001); He & Zhu (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1994); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680802583X/om2255sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680802583X/om2255Isup2.hkl
A solution of Cu(NO3)2.6H2O(0.0705 g) in 5 ml of water was added dropwise under continuous stirring to an aqueous solution (5 ml) of diphenyl-2,2'-dicarboxylic acid (0.0734 g) and 2,2'-bipyridine (0.0312 g). The resulting mixture was then transferred into a 25 ml Teflon-lined stainless steel vessel, which was sealed and heated to 423 K for 72 h, then cooled to room temperature. The block blue single crystals were obtained.
The phenyl H atoms were positioned geometrically and allowed to ride during subsequent
with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).Data collection: SMART (Siemens, 1994); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. View of the 3D hydrogen-bonded network in the packing of the title compound.The packing is viewed along the b axis; C—H···O interactions are shown as dashed lines. |
[Cu2(C14H8O4)2(C10H8N2)2] | F(000) = 940 |
Mr = 1839.75 | Dx = 1.561 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 19150 reflections |
a = 11.234 (2) Å | θ = 3.1–27.4° |
b = 13.336 (3) Å | µ = 1.15 mm−1 |
c = 15.431 (6) Å | T = 293 K |
β = 122.16 (2)° | Block, blue |
V = 1957.1 (9) Å3 | 0.40 × 0.26 × 0.23 mm |
Z = 2 |
Siemens SMART CCD area-detector diffractometer | 4472 independent reflections |
Radiation source: fine-focus sealed tube | 3708 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→14 |
Tmin = 0.708, Tmax = 0.771 | k = −17→17 |
18687 measured reflections | l = −18→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.08P)2] where P = (Fo2 + 2Fc2)/3 |
4472 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
[Cu2(C14H8O4)2(C10H8N2)2] | V = 1957.1 (9) Å3 |
Mr = 1839.75 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.234 (2) Å | µ = 1.15 mm−1 |
b = 13.336 (3) Å | T = 293 K |
c = 15.431 (6) Å | 0.40 × 0.26 × 0.23 mm |
β = 122.16 (2)° |
Siemens SMART CCD area-detector diffractometer | 4472 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3708 reflections with I > 2σ(I) |
Tmin = 0.708, Tmax = 0.771 | Rint = 0.046 |
18687 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.29 e Å−3 |
4472 reflections | Δρmin = −0.60 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.63909 (3) | −0.160660 (19) | −0.059678 (18) | 0.02914 (12) | |
O1 | 0.70349 (16) | −0.04363 (11) | 0.03157 (11) | 0.0354 (4) | |
O2 | 0.8638 (2) | −0.16096 (12) | 0.10287 (15) | 0.0530 (5) | |
O3 | 0.62962 (19) | 0.15631 (14) | 0.16045 (14) | 0.0480 (5) | |
O4 | 0.47467 (16) | 0.21452 (12) | 0.00754 (11) | 0.0374 (4) | |
N1 | 0.68794 (18) | −0.10223 (14) | −0.15551 (13) | 0.0320 (4) | |
N2 | 0.63566 (18) | −0.28542 (14) | −0.13069 (14) | 0.0331 (4) | |
C1 | 0.7186 (2) | −0.00573 (19) | −0.15928 (18) | 0.0406 (5) | |
H1A | 0.7227 | 0.0390 | −0.1115 | 0.049* | |
C2 | 0.7441 (3) | 0.0289 (2) | −0.2320 (2) | 0.0504 (7) | |
H2A | 0.7664 | 0.0959 | −0.2327 | 0.060* | |
C3 | 0.7361 (3) | −0.0368 (2) | −0.3032 (2) | 0.0531 (7) | |
H3A | 0.7514 | −0.0145 | −0.3536 | 0.064* | |
C4 | 0.7051 (3) | −0.1367 (2) | −0.29961 (19) | 0.0462 (6) | |
H4A | 0.7002 | −0.1823 | −0.3470 | 0.055* | |
C5 | 0.6486 (3) | −0.3529 (2) | −0.2682 (2) | 0.0487 (7) | |
H5A | 0.6566 | −0.3429 | −0.3246 | 0.058* | |
C6 | 0.6319 (3) | −0.4472 (2) | −0.2420 (3) | 0.0585 (8) | |
H6A | 0.6296 | −0.5022 | −0.2800 | 0.070* | |
C7 | 0.6184 (3) | −0.4608 (2) | −0.1591 (2) | 0.0540 (7) | |
H7A | 0.6097 | −0.5248 | −0.1392 | 0.065* | |
C8 | 0.6181 (3) | −0.37789 (19) | −0.1068 (2) | 0.0444 (6) | |
H8A | 0.6053 | −0.3865 | −0.0525 | 0.053* | |
C9 | 0.6815 (2) | −0.16746 (17) | −0.22479 (17) | 0.0332 (5) | |
C10 | 0.6534 (2) | −0.27237 (17) | −0.20994 (17) | 0.0337 (5) | |
C11 | 0.8922 (2) | 0.08967 (16) | 0.20040 (15) | 0.0278 (4) | |
C12 | 0.8946 (2) | −0.01519 (16) | 0.20175 (15) | 0.0281 (4) | |
C13 | 0.9639 (2) | −0.06631 (17) | 0.29523 (16) | 0.0346 (5) | |
H13A | 0.9681 | −0.1360 | 0.2959 | 0.042* | |
C14 | 1.0260 (2) | −0.0142 (2) | 0.38647 (16) | 0.0405 (5) | |
H14A | 1.0703 | −0.0486 | 0.4484 | 0.049* | |
C15 | 1.0221 (2) | 0.0895 (2) | 0.38529 (17) | 0.0419 (6) | |
H15A | 1.0636 | 0.1249 | 0.4466 | 0.050* | |
C16 | 0.9568 (2) | 0.14064 (17) | 0.29350 (18) | 0.0365 (5) | |
H16A | 0.9559 | 0.2104 | 0.2937 | 0.044* | |
C17 | 0.8383 (2) | 0.14901 (14) | 0.10351 (17) | 0.0282 (4) | |
C18 | 0.7102 (2) | 0.19898 (15) | 0.04996 (16) | 0.0292 (4) | |
C19 | 0.6773 (2) | 0.25507 (18) | −0.03716 (18) | 0.0369 (5) | |
H19A | 0.5920 | 0.2890 | −0.0727 | 0.044* | |
C20 | 0.7682 (3) | 0.26123 (18) | −0.07140 (19) | 0.0412 (5) | |
H20A | 0.7446 | 0.2991 | −0.1290 | 0.049* | |
C21 | 0.8951 (2) | 0.21017 (18) | −0.01881 (19) | 0.0400 (5) | |
H21A | 0.9573 | 0.2131 | −0.0412 | 0.048* | |
C22 | 0.9287 (3) | 0.15476 (17) | 0.06719 (19) | 0.0366 (5) | |
H22A | 1.0137 | 0.1204 | 0.1018 | 0.044* | |
C23 | 0.8187 (2) | −0.07766 (15) | 0.10614 (16) | 0.0300 (4) | |
C24 | 0.5999 (2) | 0.18908 (16) | 0.07706 (17) | 0.0309 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03431 (18) | 0.02951 (18) | 0.02666 (17) | −0.00125 (10) | 0.01828 (13) | −0.00287 (9) |
O1 | 0.0386 (8) | 0.0330 (8) | 0.0287 (8) | 0.0015 (7) | 0.0138 (7) | −0.0053 (6) |
O2 | 0.0586 (12) | 0.0359 (10) | 0.0433 (10) | 0.0155 (8) | 0.0128 (9) | −0.0077 (7) |
O3 | 0.0446 (10) | 0.0630 (12) | 0.0467 (11) | 0.0160 (8) | 0.0313 (9) | 0.0260 (8) |
O4 | 0.0328 (8) | 0.0494 (10) | 0.0328 (8) | 0.0021 (7) | 0.0193 (7) | 0.0047 (7) |
N1 | 0.0321 (9) | 0.0371 (10) | 0.0286 (9) | −0.0026 (8) | 0.0174 (8) | −0.0026 (8) |
N2 | 0.0323 (9) | 0.0339 (10) | 0.0325 (9) | 0.0008 (8) | 0.0168 (8) | −0.0031 (8) |
C1 | 0.0441 (13) | 0.0396 (13) | 0.0410 (13) | −0.0049 (11) | 0.0247 (11) | 0.0004 (10) |
C2 | 0.0523 (15) | 0.0506 (16) | 0.0521 (16) | −0.0115 (13) | 0.0304 (13) | 0.0044 (12) |
C3 | 0.0485 (15) | 0.075 (2) | 0.0423 (14) | −0.0104 (14) | 0.0288 (12) | 0.0046 (13) |
C4 | 0.0412 (13) | 0.0684 (17) | 0.0339 (12) | −0.0086 (12) | 0.0233 (11) | −0.0095 (12) |
C5 | 0.0477 (15) | 0.0549 (17) | 0.0515 (16) | −0.0021 (12) | 0.0317 (13) | −0.0170 (12) |
C6 | 0.0578 (17) | 0.0476 (16) | 0.074 (2) | −0.0064 (13) | 0.0380 (16) | −0.0293 (15) |
C7 | 0.0522 (16) | 0.0322 (13) | 0.076 (2) | −0.0053 (12) | 0.0327 (15) | −0.0113 (12) |
C8 | 0.0475 (14) | 0.0354 (13) | 0.0500 (15) | −0.0028 (11) | 0.0259 (12) | −0.0028 (11) |
C9 | 0.0253 (10) | 0.0467 (13) | 0.0273 (11) | −0.0003 (9) | 0.0138 (9) | −0.0040 (9) |
C10 | 0.0268 (10) | 0.0414 (13) | 0.0313 (11) | −0.0001 (9) | 0.0144 (9) | −0.0076 (9) |
C11 | 0.0261 (9) | 0.0282 (10) | 0.0298 (10) | 0.0002 (8) | 0.0154 (8) | −0.0003 (8) |
C12 | 0.0282 (10) | 0.0304 (11) | 0.0269 (10) | 0.0008 (8) | 0.0154 (8) | 0.0001 (8) |
C13 | 0.0383 (12) | 0.0330 (11) | 0.0337 (11) | 0.0039 (9) | 0.0199 (10) | 0.0056 (9) |
C14 | 0.0416 (13) | 0.0515 (14) | 0.0261 (11) | 0.0053 (11) | 0.0166 (10) | 0.0062 (10) |
C15 | 0.0418 (12) | 0.0521 (15) | 0.0258 (11) | 0.0020 (11) | 0.0139 (10) | −0.0096 (10) |
C16 | 0.0386 (12) | 0.0322 (11) | 0.0365 (12) | 0.0003 (9) | 0.0184 (10) | −0.0055 (9) |
C17 | 0.0328 (11) | 0.0243 (10) | 0.0302 (11) | −0.0037 (8) | 0.0186 (9) | −0.0015 (8) |
C18 | 0.0345 (11) | 0.0242 (10) | 0.0320 (11) | −0.0024 (9) | 0.0198 (9) | 0.0004 (8) |
C19 | 0.0403 (12) | 0.0332 (12) | 0.0382 (12) | 0.0040 (10) | 0.0215 (10) | 0.0099 (10) |
C20 | 0.0530 (14) | 0.0362 (12) | 0.0422 (13) | −0.0049 (11) | 0.0305 (11) | 0.0083 (10) |
C21 | 0.0462 (13) | 0.0398 (13) | 0.0487 (14) | −0.0066 (11) | 0.0352 (12) | 0.0014 (11) |
C22 | 0.0339 (12) | 0.0389 (13) | 0.0394 (13) | −0.0010 (9) | 0.0211 (10) | 0.0007 (9) |
C23 | 0.0357 (11) | 0.0280 (11) | 0.0294 (10) | −0.0010 (9) | 0.0194 (9) | −0.0010 (8) |
C24 | 0.0346 (11) | 0.0257 (10) | 0.0360 (11) | 0.0013 (9) | 0.0211 (9) | 0.0030 (9) |
Cu1—O1 | 1.9640 (15) | C6—H6A | 0.9300 |
Cu1—O4i | 1.9725 (16) | C7—C8 | 1.370 (4) |
Cu1—N2 | 1.9814 (19) | C7—H7A | 0.9300 |
Cu1—N1 | 1.9897 (19) | C8—H8A | 0.9300 |
Cu1—O2 | 2.434 (2) | C9—C10 | 1.479 (3) |
Cu1—C23 | 2.519 (2) | C11—C16 | 1.394 (3) |
Cu1—O3i | 2.557 (2) | C11—C12 | 1.399 (3) |
Cu1—C24i | 2.580 (2) | C11—C17 | 1.505 (3) |
O1—C23 | 1.273 (2) | C12—C13 | 1.399 (3) |
O2—C23 | 1.233 (3) | C12—C23 | 1.503 (3) |
O3—C24 | 1.225 (3) | C13—C14 | 1.381 (3) |
O3—Cu1i | 2.5567 (19) | C13—H13A | 0.9300 |
O4—C24 | 1.280 (3) | C14—C15 | 1.383 (4) |
O4—Cu1i | 1.9725 (16) | C14—H14A | 0.9300 |
N1—C1 | 1.342 (3) | C15—C16 | 1.380 (3) |
N1—C9 | 1.350 (3) | C15—H15A | 0.9300 |
N2—C8 | 1.331 (3) | C16—H16A | 0.9300 |
N2—C10 | 1.351 (3) | C17—C18 | 1.390 (3) |
C1—C2 | 1.377 (3) | C17—C22 | 1.399 (3) |
C1—H1A | 0.9300 | C18—C19 | 1.405 (3) |
C2—C3 | 1.372 (4) | C18—C24 | 1.509 (3) |
C2—H2A | 0.9300 | C19—C20 | 1.379 (3) |
C3—C4 | 1.385 (4) | C19—H19A | 0.9300 |
C3—H3A | 0.9300 | C20—C21 | 1.387 (3) |
C4—C9 | 1.377 (3) | C20—H20A | 0.9300 |
C4—H4A | 0.9300 | C21—C22 | 1.384 (3) |
C5—C6 | 1.365 (4) | C21—H21A | 0.9300 |
C5—C10 | 1.383 (3) | C22—H22A | 0.9300 |
C5—H5A | 0.9300 | C24—Cu1i | 2.580 (2) |
C6—C7 | 1.378 (5) | ||
O1—Cu1—O4i | 93.92 (7) | C6—C7—H7A | 120.8 |
O1—Cu1—N2 | 162.77 (7) | N2—C8—C7 | 122.5 (3) |
O4i—Cu1—N2 | 95.38 (8) | N2—C8—H8A | 118.8 |
O1—Cu1—N1 | 94.56 (7) | C7—C8—H8A | 118.8 |
O4i—Cu1—N1 | 160.15 (7) | N1—C9—C4 | 121.3 (2) |
N2—Cu1—N1 | 81.35 (8) | N1—C9—C10 | 114.4 (2) |
O1—Cu1—O2 | 58.55 (6) | C4—C9—C10 | 124.3 (2) |
O4i—Cu1—O2 | 96.94 (8) | N2—C10—C5 | 121.0 (2) |
N2—Cu1—O2 | 105.83 (7) | N2—C10—C9 | 114.12 (19) |
N1—Cu1—O2 | 102.80 (8) | C5—C10—C9 | 124.9 (2) |
O1—Cu1—C23 | 29.83 (6) | C16—C11—C12 | 118.49 (19) |
O4i—Cu1—C23 | 95.07 (7) | C16—C11—C17 | 118.75 (19) |
N2—Cu1—C23 | 134.42 (7) | C12—C11—C17 | 122.34 (18) |
N1—Cu1—C23 | 101.19 (7) | C11—C12—C13 | 119.90 (19) |
O2—Cu1—C23 | 28.76 (6) | C11—C12—C23 | 122.91 (18) |
O1—Cu1—O3i | 106.45 (7) | C13—C12—C23 | 117.11 (19) |
O4i—Cu1—O3i | 56.28 (6) | C14—C13—C12 | 120.5 (2) |
N2—Cu1—O3i | 90.78 (7) | C14—C13—H13A | 119.7 |
N1—Cu1—O3i | 104.04 (7) | C12—C13—H13A | 119.7 |
O2—Cu1—O3i | 150.22 (7) | C13—C14—C15 | 119.7 (2) |
C23—Cu1—O3i | 130.98 (7) | C13—C14—H14A | 120.2 |
O1—Cu1—C24i | 99.04 (7) | C15—C14—H14A | 120.2 |
O4i—Cu1—C24i | 28.92 (6) | C16—C15—C14 | 120.2 (2) |
N2—Cu1—C24i | 96.11 (7) | C16—C15—H15A | 119.9 |
N1—Cu1—C24i | 131.58 (7) | C14—C15—H15A | 119.9 |
O2—Cu1—C24i | 123.91 (8) | C15—C16—C11 | 121.2 (2) |
C23—Cu1—C24i | 113.37 (7) | C15—C16—H16A | 119.4 |
O3i—Cu1—C24i | 27.59 (6) | C11—C16—H16A | 119.4 |
C23—O1—Cu1 | 100.02 (13) | C18—C17—C22 | 118.57 (19) |
C23—O2—Cu1 | 79.48 (13) | C18—C17—C11 | 125.76 (19) |
C24—O3—Cu1i | 77.28 (13) | C22—C17—C11 | 115.66 (19) |
C24—O4—Cu1i | 102.92 (13) | C17—C18—C19 | 119.05 (19) |
C1—N1—C9 | 119.4 (2) | C17—C18—C24 | 122.42 (19) |
C1—N1—Cu1 | 125.93 (16) | C19—C18—C24 | 118.37 (19) |
C9—N1—Cu1 | 114.61 (15) | C20—C19—C18 | 121.8 (2) |
C8—N2—C10 | 119.0 (2) | C20—C19—H19A | 119.1 |
C8—N2—Cu1 | 125.93 (17) | C18—C19—H19A | 119.1 |
C10—N2—Cu1 | 115.06 (15) | C19—C20—C21 | 119.1 (2) |
N1—C1—C2 | 121.8 (2) | C19—C20—H20A | 120.4 |
N1—C1—H1A | 119.1 | C21—C20—H20A | 120.4 |
C2—C1—H1A | 119.1 | C22—C21—C20 | 119.6 (2) |
C3—C2—C1 | 119.0 (3) | C22—C21—H21A | 120.2 |
C3—C2—H2A | 120.5 | C20—C21—H21A | 120.2 |
C1—C2—H2A | 120.5 | C21—C22—C17 | 121.9 (2) |
C2—C3—C4 | 119.5 (2) | C21—C22—H22A | 119.1 |
C2—C3—H3A | 120.2 | C17—C22—H22A | 119.1 |
C4—C3—H3A | 120.2 | O2—C23—O1 | 121.8 (2) |
C9—C4—C3 | 119.0 (2) | O2—C23—C12 | 120.6 (2) |
C9—C4—H4A | 120.5 | O1—C23—C12 | 117.53 (18) |
C3—C4—H4A | 120.5 | O2—C23—Cu1 | 71.76 (13) |
C6—C5—C10 | 119.1 (3) | O1—C23—Cu1 | 50.14 (10) |
C6—C5—H5A | 120.4 | C12—C23—Cu1 | 165.85 (15) |
C10—C5—H5A | 120.4 | O3—C24—O4 | 122.5 (2) |
C5—C6—C7 | 119.8 (2) | O3—C24—C18 | 121.2 (2) |
C5—C6—H6A | 120.1 | O4—C24—C18 | 116.28 (18) |
C7—C6—H6A | 120.1 | O3—C24—Cu1i | 75.13 (13) |
C8—C7—C6 | 118.5 (3) | O4—C24—Cu1i | 48.16 (10) |
C8—C7—H7A | 120.8 | C18—C24—Cu1i | 161.10 (15) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1 | 0.93 | 2.58 | 3.081 (3) | 114 |
C4—H4A···O4ii | 0.93 | 2.59 | 3.378 (3) | 143 |
C5—H5A···O4ii | 0.93 | 2.51 | 3.304 (4) | 144 |
C6—H6A···O3iii | 0.93 | 2.25 | 3.162 (3) | 166 |
C16—H16A···O2iv | 0.93 | 2.48 | 3.192 (3) | 133 |
C19—H19A···O4 | 0.93 | 2.45 | 2.761 (3) | 100 |
Symmetry codes: (ii) −x+1, y−1/2, −z−1/2; (iii) x, −y−1/2, z−1/2; (iv) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C14H8O4)2(C10H8N2)2] |
Mr | 1839.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.234 (2), 13.336 (3), 15.431 (6) |
β (°) | 122.16 (2) |
V (Å3) | 1957.1 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.15 |
Crystal size (mm) | 0.40 × 0.26 × 0.23 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.708, 0.771 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18687, 4472, 3708 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.118, 1.04 |
No. of reflections | 4472 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.60 |
Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 1.9640 (15) | Cu1—O2 | 2.434 (2) |
Cu1—O4i | 1.9725 (16) | Cu1—C23 | 2.519 (2) |
Cu1—N2 | 1.9814 (19) | Cu1—O3i | 2.557 (2) |
Cu1—N1 | 1.9897 (19) | ||
O1—Cu1—O4i | 93.92 (7) | O1—Cu1—N1 | 94.56 (7) |
O1—Cu1—N2 | 162.77 (7) | O4i—Cu1—N1 | 160.15 (7) |
O4i—Cu1—N2 | 95.38 (8) | N2—Cu1—N1 | 81.35 (8) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1 | 0.93 | 2.58 | 3.081 (3) | 114.4 |
C4—H4A···O4ii | 0.93 | 2.59 | 3.378 (3) | 142.8 |
C5—H5A···O4ii | 0.93 | 2.51 | 3.304 (4) | 143.5 |
C6—H6A···O3iii | 0.93 | 2.25 | 3.162 (3) | 166.0 |
C16—H16A···O2iv | 0.93 | 2.48 | 3.192 (3) | 133.4 |
C19—H19A···O4 | 0.93 | 2.45 | 2.761 (3) | 99.7 |
Symmetry codes: (ii) −x+1, y−1/2, −z−1/2; (iii) x, −y−1/2, z−1/2; (iv) −x+2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by a Project of Fujian Science and Technology Committee (grant No. 2006F5067), the Natural Science Foundation of Fujian Province (grant Nos. 2008J0172 and 2008J0237) and a Student Innovation Project of Zhangzhou Normal University (grant No. 08xscxxsyxm25).
References
Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195. Web of Science CSD CrossRef CAS Google Scholar
He, H.-Y., Zhou, Y.-L. & Gao, J. (2007). Acta Cryst. E63, m2007. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, o174–o176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100–1101. Web of Science CSD CrossRef Google Scholar
Long, L. S., Chen, X. M., Tong, M. L., Sun, Z. G., Ren, Y. P., Huang, R. B. & Zheng, L. S. (2001). J. Chem. Soc. Dalton Trans. pp. 2888–2890. Web of Science CSD CrossRef Google Scholar
Ma, B. Q., Sun, H. L. & Gao, S. (2003). Chem. Commun. pp. 2164–2165. Web of Science CSD CrossRef Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. Web of Science CrossRef PubMed CAS Google Scholar
Yang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater. 14, 3229–3230. Web of Science CSD CrossRef CAS Google Scholar
Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206–209. Web of Science CSD CrossRef CAS Google Scholar
Zhu, H. L., Tong, Y. X. & Chen, X. M. (2001). Transition Met. Chem. 26, 528–531. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Design and assembly of metal-involved supramolecular architectures are currently of great interest in the field of supramolecular chemistry and crystal engineering because they can provide novel topology and functional materials (Yaghi et al.,2003; Rao et al.,2004). During the past decades, extensive efforts have been focused on the design and assembly of such kinds of supramolecular architectures (Huang et al.,2004; Zhang et al., 2004). By precisely selecting the modular building unit, chemists now have successfully synthesized a great variety of one-dimensional, two-dimensional, and three-dimensional supramolecular architectures (Bu et al., 2004; Ma et al., 2003; Yang et al., 2002; Long et al., 2001). Binuclear copper(II) complexes have been intensely investigated owing to their potential application as magnetic materials and catalysts (Zhu et al., 2001).In this work, we employed H2dpa (dpa = diphenyl-2,2'-dicarboxylato dianion) and 2,2'-bipyridine(bipy) ligands for producing a binuclear complex, [Cu2(C14H8O4)2(C10H8N2)2].
The compound contains a centrosymmetric binuclear complex. The copper(II) atom in the title compound adopts a distorted square geometry (Table 1, Fig. 1). The bipy ligand shows its classical bidentate coordination mode, with a similar Cu—N bond length to that the related complex [Cu2(C14H8O4)2(C10H8N2)2].4H2O (He et al., 2007). The dpa ligand adopts a µ-bridged coordination and the dihedral angle between its aromatic rings is 78.27°. As well as the short Cu—O bonds, two long Cu—O (Cu(1)—O(2): 2.434 (44) Å; Cu(1)—O(3):2.557 (31) Å) contacts that might be regarded as secondary bonds (He & Zhu, 2003) complete a distorted octahedron. The Cu···Cui (i = 1 - x, -y, -z) distance bridged by the dpa ligands is 6.136 (16) Å. Extensive C—H···O hydrogen bonds link molecules into a three-dimensional network.(Table 2, Fig.2).