organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetoguanamine N,N-di­methyl­formamide solvate

aChemistry Department, "Sapienza" University of Rome, P. le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 18 July 2008; accepted 28 July 2008; online 6 August 2008)

The structure of acetoguanamine (or 2,4-diamino-6-methyl-1,3,5-triazine) has been determined as the N,N-dimethyl­formamide solvate, C4H7N5·C3H7NO. The mol­ecular components are associated in the crystal structure to form ribbons stabilized by three N—H⋯N and one N—H⋯O hydrogen bonds which involve NH groups as donors and the N atoms of the heterocyclic ring and the carbonyl O atom of the solvent as acceptors.

Related literature

For related literature, see: Portalone & Colapietro (2007a[Portalone, G. & Colapietro, M. (2007a). Acta Cryst. C63, o655-o658.]). For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supra­molecular reagents, see: Portalone et al. (1999[Portalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. & Ramondo, F. (1999). Acta Chem. Scand. 53, 57-68.]); Portalone & Colapietro (2007a[Portalone, G. & Colapietro, M. (2007a). Acta Cryst. C63, o655-o658.],b[Portalone, G. & Colapietro, M. (2007b). Acta Cryst. C63, o181-o184.] and references therein). For the computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C4H7N5·C3H7NO

  • Mr = 198.24

  • Orthorhombic, F d d 2

  • a = 25.548 (2) Å

  • b = 23.0626 (19) Å

  • c = 7.2689 (9) Å

  • V = 4282.8 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.15 × 0.14 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.985, Tmax = 0.990

  • 27177 measured reflections

  • 1127 independent reflections

  • 698 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 0.91

  • 1127 reflections

  • 132 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6B⋯O1 0.89 2.05 2.890 (5) 157
N6—H6A⋯N5i 0.89 2.13 3.022 (4) 174
N7—H7B⋯N1ii 0.82 2.18 2.989 (4) 168
N7—H7A⋯N3iii 0.82 2.17 2.993 (4) 176
Symmetry codes: (i) [-x+{\script{5\over 4}}, y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (ii) [-x+{\script{5\over 4}}, y-{\script{1\over 4}}, z-{\script{1\over 4}}]; (iii) -x+1, -y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3? (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of a more general study of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents (Portalone et al., 1999; Portalone & Colapietro, 2007a, b), this work is a continuation of our studies on crystal adducts of DNA/RNA pyrimidine bases coupled with amino-derivatives of aromatic N-heterocycles via multiple hydrogen bonds to mimic the base-pairing of nucleic acids.

The asymmetric unit of (I) comprises a planar independent molecule of acetoguanamine hydrogen-bonded to N,N-dimethylformamide (DMF) (Fig. 1). A comparison of the molecular geometry of acetoguanamine with that reported for the corresponding molecule in the 1:1 monohydrated molecular adduct formed between acetoguanaminium chloride and acetoguanamine (Portalone & Colapietro, 2007a) shows that the corresponding bond lengths and angles are equal within experimental error. An analysis of the crystal packing of (I) shows (Table 1) that adjacent molecules of acetoguanamine are linked into ribbons (Fig. 2) by three independent intermolecular N—H···N hydrogen bonds between NH moieties and N atoms of the heterocyclic ring to form hydrogen-bonded rings (one centrosymmetric) of descriptor R22(8) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999). These hydrogen bonds that lead to two-dimensional arrays in the ab plane are bridged by DMF molecules via N–H ···O interactions forming C11(3) chains.

Related literature top

For related literature, see: Portalone & Colapietro (2007a). For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, see: Portalone et al. (1999); Portalone & Colapietro (2007a,b and references therein). For thcomputation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Experimental top

Acetoguanamine (0.1 mmol, Sigma Aldrich at 98% purity) was dissolved in N,N-dimethylformamide (9 ml) and heated under reflux for 3 h. After cooling the solution to an ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after a few days.

Refinement top

All H atoms were found in a difference map, positioned with idealized geometry, and refined isotropically using a riding model (N–H = 0.82–0.89 Å, C–H = 0.93–0.97 Å). Their Uiso values were kept equal to 1.2Ueq(N), 1.5Ueq(C), 2.0Ueq(C) of the solvent molecule. In the absence of significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for (I) viewed approximately down the c-axis. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, only H atoms involved in hydrogen bonding are shown. Hydrogen bonding is indicated by dashed lines.
2,4-diamino-6-methyl-1,3,5-triazine N,N-dimethylformamide solvate top
Crystal data top
C4H7N5·C3H7NOF(000) = 1696
Mr = 198.24Dx = 1.230 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 11018 reflections
a = 25.548 (2) Åθ = 3.0–25.6°
b = 23.0626 (19) ŵ = 0.09 mm1
c = 7.2689 (9) ÅT = 298 K
V = 4282.8 (7) Å3Tablets, colourless
Z = 160.15 × 0.14 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
1127 independent reflections
Radiation source: Enhance (Mo) X-ray source698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 16.0696 pixels mm-1θmax = 25.9°, θmin = 3.0°
ω and ϕ scansh = 3131
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2728
Tmin = 0.985, Tmax = 0.990l = 88
27177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0841P)2]
where P = (Fo2 + 2Fc2)/3
1127 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C4H7N5·C3H7NOV = 4282.8 (7) Å3
Mr = 198.24Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 25.548 (2) ŵ = 0.09 mm1
b = 23.0626 (19) ÅT = 298 K
c = 7.2689 (9) Å0.15 × 0.14 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
1127 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
698 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.064
27177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.127H-atom parameters constrained
S = 0.91Δρmax = 0.15 e Å3
1127 reflectionsΔρmin = 0.14 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.63312 (11)0.10945 (11)0.5765 (4)0.0495 (9)
C20.58170 (12)0.10315 (14)0.6030 (6)0.0431 (9)
N30.55453 (10)0.05414 (12)0.5797 (4)0.0447 (8)
C40.58328 (13)0.00862 (13)0.5267 (5)0.0416 (9)
N50.63552 (11)0.01049 (12)0.4927 (5)0.0471 (8)
C60.65836 (13)0.06118 (15)0.5210 (5)0.0463 (9)
N60.55533 (11)0.15017 (12)0.6581 (5)0.0592 (10)
H6A0.57210.18360.67530.071*
H6B0.52100.148080.67760.071*
N70.55992 (11)0.04163 (11)0.5010 (5)0.0598 (10)
H7A0.52820.044630.51750.072*
H7B0.57710.07000.46840.072*
C80.71557 (14)0.06575 (18)0.4923 (7)0.0710 (13)
H8A0.73190.03290.53950.106*
H8B0.72820.09850.55220.106*
H8C0.72260.06870.36710.106*
O10.44754 (15)0.1783 (2)0.7397 (7)0.1196 (16)
N80.36343 (14)0.20435 (17)0.7802 (5)0.0738 (11)
C90.4016 (3)0.1667 (3)0.7697 (9)0.113 (2)
H90.39310.12790.78640.226*
C100.3107 (3)0.1868 (4)0.8156 (11)0.160 (4)
H10A0.29050.18910.70280.319*
H10B0.29540.21220.90740.319*
H10C0.31050.14720.86060.319*
C110.3722 (4)0.2647 (2)0.7568 (11)0.140 (3)
H11A0.38390.28130.87220.279*
H11B0.33990.28330.71890.279*
H11C0.39880.27060.66340.279*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0426 (16)0.0337 (16)0.072 (2)0.0041 (13)0.0033 (15)0.0092 (16)
C20.0385 (18)0.0307 (18)0.060 (2)0.0004 (15)0.0048 (19)0.0032 (16)
N30.0391 (14)0.0311 (14)0.0638 (19)0.0001 (13)0.0004 (15)0.0059 (14)
C40.0400 (19)0.0273 (17)0.057 (2)0.0005 (14)0.0046 (18)0.0045 (15)
N50.0406 (16)0.0310 (15)0.070 (2)0.0008 (12)0.0009 (16)0.0103 (15)
C60.0399 (17)0.0381 (19)0.061 (2)0.0037 (16)0.0027 (18)0.0038 (18)
N60.0457 (17)0.0298 (15)0.102 (3)0.0009 (13)0.0020 (18)0.0156 (17)
N70.0414 (16)0.0319 (15)0.106 (3)0.0013 (13)0.0115 (19)0.0126 (18)
C80.042 (2)0.062 (2)0.108 (4)0.0064 (19)0.006 (3)0.019 (3)
O10.063 (2)0.153 (4)0.143 (4)0.013 (2)0.005 (3)0.037 (3)
N80.070 (2)0.072 (3)0.079 (3)0.006 (2)0.0083 (19)0.012 (2)
C90.133 (6)0.109 (5)0.096 (5)0.018 (5)0.008 (4)0.017 (4)
C100.101 (5)0.266 (10)0.112 (5)0.053 (6)0.036 (4)0.050 (6)
C110.242 (9)0.073 (4)0.104 (5)0.002 (4)0.001 (5)0.008 (4)
Geometric parameters (Å, º) top
N1—C21.336 (4)C8—H8B0.9300
N1—C61.348 (5)C8—H8C0.9300
C2—N31.337 (4)O1—C91.223 (7)
C2—N61.338 (4)N8—C91.307 (7)
N3—C41.338 (4)N8—C111.419 (6)
C4—N71.317 (4)N8—C101.429 (7)
C4—N51.358 (4)C9—H90.9300
N5—C61.323 (4)C10—H10A0.9700
C6—C81.480 (5)C10—H10B0.9700
N6—H6A0.8907C10—H10C0.9700
N6—H6B0.8907C11—H11A0.9700
N7—H7A0.8226C11—H11B0.9700
N7—H7B0.8226C11—H11C0.9700
C8—H8A0.9300
C2—N1—C6115.1 (3)C6—C8—H8C109.5
N1—C2—N3125.8 (3)H8A—C8—H8C109.5
N1—C2—N6116.8 (3)H8B—C8—H8C109.5
N3—C2—N6117.5 (3)C9—N8—C11121.7 (6)
C2—N3—C4114.5 (3)C9—N8—C10121.7 (6)
N7—C4—N3118.9 (3)C11—N8—C10116.6 (6)
N7—C4—N5116.6 (3)O1—C9—N8125.6 (7)
N3—C4—N5124.5 (3)O1—C9—H9117.2
C6—N5—C4115.7 (3)N8—C9—H9117.2
N5—C6—N1124.4 (3)N8—C10—H10A109.5
N5—C6—C8118.5 (3)N8—C10—H10B109.5
N1—C6—C8117.1 (3)H10A—C10—H10B109.5
C2—N6—H6A120.0N8—C10—H10C109.5
C2—N6—H6B120.0H10A—C10—H10C109.5
H6A—N6—H6B120.0H10B—C10—H10C109.5
C4—N7—H7A120.0N8—C11—H11A109.5
C4—N7—H7B120.0N8—C11—H11B109.5
H7A—N7—H7B120.0H11A—C11—H11B109.5
C6—C8—H8A109.5N8—C11—H11C109.5
C6—C8—H8B109.5H11A—C11—H11C109.5
H8A—C8—H8B109.5H11B—C11—H11C109.5
C6—N1—C2—N30.2 (6)N3—C4—N5—C62.1 (5)
C6—N1—C2—N6180.0 (4)C4—N5—C6—N11.2 (6)
N1—C2—N3—C40.6 (6)C4—N5—C6—C8178.1 (4)
N6—C2—N3—C4179.2 (3)C2—N1—C6—N50.2 (6)
C2—N3—C4—N7179.7 (4)C2—N1—C6—C8179.2 (4)
C2—N3—C4—N51.8 (5)C11—N8—C9—O10.0 (10)
N7—C4—N5—C6179.4 (4)C10—N8—C9—O1179.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···O10.892.052.890 (5)157
N6—H6A···N5i0.892.133.022 (4)174
N7—H7B···N1ii0.822.182.989 (4)168
N7—H7A···N3iii0.822.172.993 (4)176
Symmetry codes: (i) x+5/4, y+1/4, z+1/4; (ii) x+5/4, y1/4, z1/4; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC4H7N5·C3H7NO
Mr198.24
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)298
a, b, c (Å)25.548 (2), 23.0626 (19), 7.2689 (9)
V3)4282.8 (7)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.14 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
27177, 1127, 698
Rint0.064
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 0.91
No. of reflections1127
No. of parameters132
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···O10.892.052.890 (5)157
N6—H6A···N5i0.892.133.022 (4)174
N7—H7B···N1ii0.822.182.989 (4)168
N7—H7A···N3iii0.822.172.993 (4)176
Symmetry codes: (i) x+5/4, y+1/4, z+1/4; (ii) x+5/4, y1/4, z1/4; (iii) x+1, y, z.
 

Acknowledgements

We thank MIUR (Rome) for 2006 financial support of the project `X-ray diffractometry and spectrometry'.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPortalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. & Ramondo, F. (1999). Acta Chem. Scand. 53, 57–68.  Web of Science CrossRef CAS Google Scholar
First citationPortalone, G. & Colapietro, M. (2007a). Acta Cryst. C63, o655–o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007b). Acta Cryst. C63, o181–o184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds