organic compounds
Acetoguanamine N,N-dimethylformamide solvate
aChemistry Department, "Sapienza" University of Rome, P. le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it
The structure of acetoguanamine (or 2,4-diamino-6-methyl-1,3,5-triazine) has been determined as the N,N-dimethylformamide solvate, C4H7N5·C3H7NO. The molecular components are associated in the to form ribbons stabilized by three N—H⋯N and one N—H⋯O hydrogen bonds which involve NH groups as donors and the N atoms of the heterocyclic ring and the carbonyl O atom of the solvent as acceptors.
Related literature
For related literature, see: Portalone & Colapietro (2007a). For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, see: Portalone et al. (1999); Portalone & Colapietro (2007a,b and references therein). For the computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3? (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808023842/tk2285sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023842/tk2285Isup2.hkl
Acetoguanamine (0.1 mmol, Sigma Aldrich at 98% purity) was dissolved in N,N-dimethylformamide (9 ml) and heated under reflux for 3 h. After cooling the solution to an ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after a few days.
All H atoms were found in a difference map, positioned with idealized geometry, and refined isotropically using a riding model (N–H = 0.82–0.89 Å, C–H = 0.93–0.97 Å). Their Uiso values were kept equal to 1.2Ueq(N), 1.5Ueq(C), 2.0Ueq(C) of the solvent molecule. In the absence of significant
Friedel pairs were merged.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C4H7N5·C3H7NO | F(000) = 1696 |
Mr = 198.24 | Dx = 1.230 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 11018 reflections |
a = 25.548 (2) Å | θ = 3.0–25.6° |
b = 23.0626 (19) Å | µ = 0.09 mm−1 |
c = 7.2689 (9) Å | T = 298 K |
V = 4282.8 (7) Å3 | Tablets, colourless |
Z = 16 | 0.15 × 0.14 × 0.14 mm |
Oxford Diffraction Xcalibur S CCD diffractometer | 1127 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 698 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 16.0696 pixels mm-1 | θmax = 25.9°, θmin = 3.0° |
ω and ϕ scans | h = −31→31 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −27→28 |
Tmin = 0.985, Tmax = 0.990 | l = −8→8 |
27177 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0841P)2] where P = (Fo2 + 2Fc2)/3 |
1127 reflections | (Δ/σ)max < 0.001 |
132 parameters | Δρmax = 0.15 e Å−3 |
1 restraint | Δρmin = −0.14 e Å−3 |
C4H7N5·C3H7NO | V = 4282.8 (7) Å3 |
Mr = 198.24 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 25.548 (2) Å | µ = 0.09 mm−1 |
b = 23.0626 (19) Å | T = 298 K |
c = 7.2689 (9) Å | 0.15 × 0.14 × 0.14 mm |
Oxford Diffraction Xcalibur S CCD diffractometer | 1127 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 698 reflections with I > 2σ(I) |
Tmin = 0.985, Tmax = 0.990 | Rint = 0.064 |
27177 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 1 restraint |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.15 e Å−3 |
1127 reflections | Δρmin = −0.14 e Å−3 |
132 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.63312 (11) | 0.10945 (11) | 0.5765 (4) | 0.0495 (9) | |
C2 | 0.58170 (12) | 0.10315 (14) | 0.6030 (6) | 0.0431 (9) | |
N3 | 0.55453 (10) | 0.05414 (12) | 0.5797 (4) | 0.0447 (8) | |
C4 | 0.58328 (13) | 0.00862 (13) | 0.5267 (5) | 0.0416 (9) | |
N5 | 0.63552 (11) | 0.01049 (12) | 0.4927 (5) | 0.0471 (8) | |
C6 | 0.65836 (13) | 0.06118 (15) | 0.5210 (5) | 0.0463 (9) | |
N6 | 0.55533 (11) | 0.15017 (12) | 0.6581 (5) | 0.0592 (10) | |
H6A | 0.5721 | 0.1836 | 0.6753 | 0.071* | |
H6B | 0.5210 | 0.14808 | 0.6776 | 0.071* | |
N7 | 0.55992 (11) | −0.04163 (11) | 0.5010 (5) | 0.0598 (10) | |
H7A | 0.5282 | −0.04463 | 0.5175 | 0.072* | |
H7B | 0.5771 | −0.0700 | 0.4684 | 0.072* | |
C8 | 0.71557 (14) | 0.06575 (18) | 0.4923 (7) | 0.0710 (13) | |
H8A | 0.7319 | 0.0329 | 0.5395 | 0.106* | |
H8B | 0.7282 | 0.0985 | 0.5522 | 0.106* | |
H8C | 0.7226 | 0.0687 | 0.3671 | 0.106* | |
O1 | 0.44754 (15) | 0.1783 (2) | 0.7397 (7) | 0.1196 (16) | |
N8 | 0.36343 (14) | 0.20435 (17) | 0.7802 (5) | 0.0738 (11) | |
C9 | 0.4016 (3) | 0.1667 (3) | 0.7697 (9) | 0.113 (2) | |
H9 | 0.3931 | 0.1279 | 0.7864 | 0.226* | |
C10 | 0.3107 (3) | 0.1868 (4) | 0.8156 (11) | 0.160 (4) | |
H10A | 0.2905 | 0.1891 | 0.7028 | 0.319* | |
H10B | 0.2954 | 0.2122 | 0.9074 | 0.319* | |
H10C | 0.3105 | 0.1472 | 0.8606 | 0.319* | |
C11 | 0.3722 (4) | 0.2647 (2) | 0.7568 (11) | 0.140 (3) | |
H11A | 0.3839 | 0.2813 | 0.8722 | 0.279* | |
H11B | 0.3399 | 0.2833 | 0.7189 | 0.279* | |
H11C | 0.3988 | 0.2706 | 0.6634 | 0.279* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0426 (16) | 0.0337 (16) | 0.072 (2) | −0.0041 (13) | −0.0033 (15) | −0.0092 (16) |
C2 | 0.0385 (18) | 0.0307 (18) | 0.060 (2) | −0.0004 (15) | −0.0048 (19) | −0.0032 (16) |
N3 | 0.0391 (14) | 0.0311 (14) | 0.0638 (19) | −0.0001 (13) | −0.0004 (15) | −0.0059 (14) |
C4 | 0.0400 (19) | 0.0273 (17) | 0.057 (2) | −0.0005 (14) | 0.0046 (18) | −0.0045 (15) |
N5 | 0.0406 (16) | 0.0310 (15) | 0.070 (2) | −0.0008 (12) | −0.0009 (16) | −0.0103 (15) |
C6 | 0.0399 (17) | 0.0381 (19) | 0.061 (2) | −0.0037 (16) | −0.0027 (18) | −0.0038 (18) |
N6 | 0.0457 (17) | 0.0298 (15) | 0.102 (3) | 0.0009 (13) | −0.0020 (18) | −0.0156 (17) |
N7 | 0.0414 (16) | 0.0319 (15) | 0.106 (3) | −0.0013 (13) | 0.0115 (19) | −0.0126 (18) |
C8 | 0.042 (2) | 0.062 (2) | 0.108 (4) | −0.0064 (19) | 0.006 (3) | −0.019 (3) |
O1 | 0.063 (2) | 0.153 (4) | 0.143 (4) | 0.013 (2) | −0.005 (3) | −0.037 (3) |
N8 | 0.070 (2) | 0.072 (3) | 0.079 (3) | 0.006 (2) | 0.0083 (19) | −0.012 (2) |
C9 | 0.133 (6) | 0.109 (5) | 0.096 (5) | 0.018 (5) | −0.008 (4) | −0.017 (4) |
C10 | 0.101 (5) | 0.266 (10) | 0.112 (5) | −0.053 (6) | 0.036 (4) | −0.050 (6) |
C11 | 0.242 (9) | 0.073 (4) | 0.104 (5) | −0.002 (4) | 0.001 (5) | 0.008 (4) |
N1—C2 | 1.336 (4) | C8—H8B | 0.9300 |
N1—C6 | 1.348 (5) | C8—H8C | 0.9300 |
C2—N3 | 1.337 (4) | O1—C9 | 1.223 (7) |
C2—N6 | 1.338 (4) | N8—C9 | 1.307 (7) |
N3—C4 | 1.338 (4) | N8—C11 | 1.419 (6) |
C4—N7 | 1.317 (4) | N8—C10 | 1.429 (7) |
C4—N5 | 1.358 (4) | C9—H9 | 0.9300 |
N5—C6 | 1.323 (4) | C10—H10A | 0.9700 |
C6—C8 | 1.480 (5) | C10—H10B | 0.9700 |
N6—H6A | 0.8907 | C10—H10C | 0.9700 |
N6—H6B | 0.8907 | C11—H11A | 0.9700 |
N7—H7A | 0.8226 | C11—H11B | 0.9700 |
N7—H7B | 0.8226 | C11—H11C | 0.9700 |
C8—H8A | 0.9300 | ||
C2—N1—C6 | 115.1 (3) | C6—C8—H8C | 109.5 |
N1—C2—N3 | 125.8 (3) | H8A—C8—H8C | 109.5 |
N1—C2—N6 | 116.8 (3) | H8B—C8—H8C | 109.5 |
N3—C2—N6 | 117.5 (3) | C9—N8—C11 | 121.7 (6) |
C2—N3—C4 | 114.5 (3) | C9—N8—C10 | 121.7 (6) |
N7—C4—N3 | 118.9 (3) | C11—N8—C10 | 116.6 (6) |
N7—C4—N5 | 116.6 (3) | O1—C9—N8 | 125.6 (7) |
N3—C4—N5 | 124.5 (3) | O1—C9—H9 | 117.2 |
C6—N5—C4 | 115.7 (3) | N8—C9—H9 | 117.2 |
N5—C6—N1 | 124.4 (3) | N8—C10—H10A | 109.5 |
N5—C6—C8 | 118.5 (3) | N8—C10—H10B | 109.5 |
N1—C6—C8 | 117.1 (3) | H10A—C10—H10B | 109.5 |
C2—N6—H6A | 120.0 | N8—C10—H10C | 109.5 |
C2—N6—H6B | 120.0 | H10A—C10—H10C | 109.5 |
H6A—N6—H6B | 120.0 | H10B—C10—H10C | 109.5 |
C4—N7—H7A | 120.0 | N8—C11—H11A | 109.5 |
C4—N7—H7B | 120.0 | N8—C11—H11B | 109.5 |
H7A—N7—H7B | 120.0 | H11A—C11—H11B | 109.5 |
C6—C8—H8A | 109.5 | N8—C11—H11C | 109.5 |
C6—C8—H8B | 109.5 | H11A—C11—H11C | 109.5 |
H8A—C8—H8B | 109.5 | H11B—C11—H11C | 109.5 |
C6—N1—C2—N3 | 0.2 (6) | N3—C4—N5—C6 | 2.1 (5) |
C6—N1—C2—N6 | 180.0 (4) | C4—N5—C6—N1 | −1.2 (6) |
N1—C2—N3—C4 | 0.6 (6) | C4—N5—C6—C8 | 178.1 (4) |
N6—C2—N3—C4 | −179.2 (3) | C2—N1—C6—N5 | 0.2 (6) |
C2—N3—C4—N7 | 179.7 (4) | C2—N1—C6—C8 | −179.2 (4) |
C2—N3—C4—N5 | −1.8 (5) | C11—N8—C9—O1 | 0.0 (10) |
N7—C4—N5—C6 | −179.4 (4) | C10—N8—C9—O1 | 179.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6B···O1 | 0.89 | 2.05 | 2.890 (5) | 157 |
N6—H6A···N5i | 0.89 | 2.13 | 3.022 (4) | 174 |
N7—H7B···N1ii | 0.82 | 2.18 | 2.989 (4) | 168 |
N7—H7A···N3iii | 0.82 | 2.17 | 2.993 (4) | 176 |
Symmetry codes: (i) −x+5/4, y+1/4, z+1/4; (ii) −x+5/4, y−1/4, z−1/4; (iii) −x+1, −y, z. |
Experimental details
Crystal data | |
Chemical formula | C4H7N5·C3H7NO |
Mr | 198.24 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 298 |
a, b, c (Å) | 25.548 (2), 23.0626 (19), 7.2689 (9) |
V (Å3) | 4282.8 (7) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.15 × 0.14 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur S CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.985, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27177, 1127, 698 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.615 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.127, 0.91 |
No. of reflections | 1127 |
No. of parameters | 132 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.14 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6B···O1 | 0.89 | 2.05 | 2.890 (5) | 157 |
N6—H6A···N5i | 0.89 | 2.13 | 3.022 (4) | 174 |
N7—H7B···N1ii | 0.82 | 2.18 | 2.989 (4) | 168 |
N7—H7A···N3iii | 0.82 | 2.17 | 2.993 (4) | 176 |
Symmetry codes: (i) −x+5/4, y+1/4, z+1/4; (ii) −x+5/4, y−1/4, z−1/4; (iii) −x+1, −y, z. |
Acknowledgements
We thank MIUR (Rome) for 2006 financial support of the project `X-ray diffractometry and spectrometry'.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Portalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. & Ramondo, F. (1999). Acta Chem. Scand. 53, 57–68. Web of Science CrossRef CAS Google Scholar
Portalone, G. & Colapietro, M. (2007a). Acta Cryst. C63, o655–o658. Web of Science CSD CrossRef IUCr Journals Google Scholar
Portalone, G. & Colapietro, M. (2007b). Acta Cryst. C63, o181–o184. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of a more general study of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents (Portalone et al., 1999; Portalone & Colapietro, 2007a, b), this work is a continuation of our studies on crystal adducts of DNA/RNA pyrimidine bases coupled with amino-derivatives of aromatic N-heterocycles via multiple hydrogen bonds to mimic the base-pairing of nucleic acids.
The asymmetric unit of (I) comprises a planar independent molecule of acetoguanamine hydrogen-bonded to N,N-dimethylformamide (DMF) (Fig. 1). A comparison of the molecular geometry of acetoguanamine with that reported for the corresponding molecule in the 1:1 monohydrated molecular adduct formed between acetoguanaminium chloride and acetoguanamine (Portalone & Colapietro, 2007a) shows that the corresponding bond lengths and angles are equal within experimental error. An analysis of the crystal packing of (I) shows (Table 1) that adjacent molecules of acetoguanamine are linked into ribbons (Fig. 2) by three independent intermolecular N—H···N hydrogen bonds between NH moieties and N atoms of the heterocyclic ring to form hydrogen-bonded rings (one centrosymmetric) of descriptor R22(8) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999). These hydrogen bonds that lead to two-dimensional arrays in the ab plane are bridged by DMF molecules via N–H ···O interactions forming C11(3) chains.