metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1288-m1289

Bis{2-eth­­oxy-6-[2-(ethyl­ammonio)ethyl­imino­meth­yl]phenolato}thio­cyanato­zinc(II) nitrate

aCollege of Chemistry and Biological Engineering, Yichun University, Yichun Jiangxi 336000, People's Republic of China
*Correspondence e-mail: huirui_guo@163.com

(Received 4 September 2008; accepted 16 September 2008; online 20 September 2008)

The title complex, [Zn(NCS)(C13H20N2O2)2]NO3, consists of a complex mononuclear ZnII cation and a nitrate counter-anion. The ZnII ion is five-coordinate in a trigonal-bipyramidal geometry. The thio­cyanate N atom and two O atoms from two Schiff bases define the equatorial plane, and the two imine N atoms from the same two Schiff bases occupy the axial positions, with an N—Zn—N angle of 175.98 (7)°. The amine N atoms of the Schiff base ligands are protonated and are not involved in the coordination to the metal. The dihedral angle between the two substituted benzene rings is 87.7 (2)°. The nitrate counter-ions are linked to the cations through N—H⋯O hydrogen bonds.

Related literature

For background on Schiff base complexes, see: Samanta et al. (2007[Samanta, B., Chakraborty, J., Shit, S., Batten, S. R., Jensen, P., Masuda, J. D. & Mitra, S. (2007). Inorg. Chim. Acta, 360, 2471-2484.]); Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C.-N., Lu, T.-H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Correia et al. (2006[Correia, I., Dornyei, A., Avecilla, F., Kiss, T. & Pessoa, J. C. (2006). Eur. J. Inorg. Chem. pp. 656-662.]); Cai et al. (2006[Cai, J.-H., Huang, Y.-H. & Jiang, Y.-M. (2006). Acta Cryst. E62, m2432-m2434.]); Zhang et al. (2007[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m396-m398.]). For ZnII complexes with biological properties, see: Berg & Shi (1996[Berg, J. M. & Shi, Y. (1996). Science, 271, 1081-1985.]); Tarafder et al. (2002[Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.]); Osowole et al. (2008[Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046-1055.]); Chohan & Kausar (1993[Chohan, Z. H. & Kausar, S. (1993). Chem. Pharm. Bull. 41, 951-953.]). For related structures, see: Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m912-m913.]); Odoko et al. (2006[Odoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710-m711.]); Tatar et al. (2002[Tatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83-m85.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)(C13H20N2O2)2]NO3

  • Mr = 658.08

  • Monoclinic, P 21 /n

  • a = 12.619 (3) Å

  • b = 15.596 (3) Å

  • c = 16.373 (4) Å

  • β = 105.942 (3)°

  • V = 3098.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 298 (2) K

  • 0.32 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.759, Tmax = 0.784

  • 25309 measured reflections

  • 6704 independent reflections

  • 4943 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.03

  • 6704 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O5 0.90 1.96 2.843 (3) 166
N2—H2A⋯O3 0.90 1.98 2.772 (2) 146
N2—H2A⋯O4 0.90 2.37 3.022 (3) 129
N4—H4A⋯O7i 0.90 2.22 3.050 (3) 153
N4—H4A⋯O5i 0.90 2.50 3.080 (3) 122
N4—H4B⋯O1 0.90 1.71 2.606 (2) 171
N4—H4B⋯O2 0.90 2.55 3.051 (3) 116
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and structural investigation of Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications (Samanta et al., 2007; Ghosh et al., 2006; Correia et al., 2006; Cai et al., 2006; Zhang et al., 2007). ZnII complexes play an important role in biological systems (Berg & Shi, 1996; Tarafder et al., 2002; Osowole et al., 2008; Chohan & Kausar, 1993). In this paper, the crystal structure of a new ZnII complex, (I), with the Schiff base 2-ethoxy-6-[(2-ethylammonioethylimino)methyl]phenol and thiocyanate as ligands is reported.

The asymmetric unit of (I) (Fig. 1) consists of a mononuclear ZnII complex cation and a nitrate counteranion. The ZnII ion is five-coordinate in a trigonal-bipyramidal geometry, with one thiocyanate N atom and two O atoms from two Schiff bases defining the base-plane, and with two imine N atoms from two Schiff bases occupying the axial positions. The coordination bond lengths and angles (Table 1) are comparable with those found in related structures (Eltayeb et al., 2008; Odoko et al., 2006; Tatar et al., 2002). The dihedral angle between the two substituted benzene rings is 87.7 (2)°. The nitrate counterions are linked to the complex cations through intermolecular N—H···O hydrogen bonds (Table 2, Fig. 2).

Related literature top

For background on Schiff base complexes, see: Samanta et al. (2007); Ghosh et al. (2006); Correia et al. (2006); Cai et al. (2006); Zhang et al. (2007). For ZnII complexes with biological properties, see: Berg & Shi (1996); Tarafder et al. (2002); Osowole et al. (2008); Chohan & Kausar (1993). For related structures, see: Eltayeb et al. (2008); Odoko et al. (2006); Tatar et al. (2002).

Experimental top

The Schiff base was synthesized by condensing N-ethylethane-1,2-diamine with 3-ethoxysalicylaldehyde. The compound (0.236 g, 1.0 mmol), ammonium thiocyanate (0.076 g, 1.0 mmol), and Zn(NO3)2.6H2O (0.297 g, 1.0 mmol) were heated in ethanol (30 ml) for two hours. The resulting yellow precipitate was washed with cold ethanol and dried in air. Yellow single crystals of the complex suitable for X-ray diffraction were obtained by recrystallization in methanol at room temperature over a week.

Refinement top

All H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å, N—H 0.90 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C) and 1.2Ueq(N). A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atomic numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A part of the packing structure of the title complex.
Bis{2-ethoxy-6-[2-(ethylammonio)ethyliminomethyl]phenolato}thiocyanatozinc(II) nitrate top
Crystal data top
[Zn(NCS)(C13H20N2O2)2]NO3F(000) = 1384
Mr = 658.08Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5860 reflections
a = 12.619 (3) Åθ = 2.4–25.0°
b = 15.596 (3) ŵ = 0.91 mm1
c = 16.373 (4) ÅT = 298 K
β = 105.942 (3)°Block, yellow
V = 3098.5 (12) Å30.32 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6704 independent reflections
Radiation source: fine-focus sealed tube4943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.759, Tmax = 0.784k = 1919
25309 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.4058P]
where P = (Fo2 + 2Fc2)/3
6704 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn(NCS)(C13H20N2O2)2]NO3V = 3098.5 (12) Å3
Mr = 658.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.619 (3) ŵ = 0.91 mm1
b = 15.596 (3) ÅT = 298 K
c = 16.373 (4) Å0.32 × 0.30 × 0.28 mm
β = 105.942 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6704 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4943 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.784Rint = 0.039
25309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
6704 reflectionsΔρmin = 0.24 e Å3
383 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.16270 (2)0.137705 (16)0.239060 (17)0.03736 (10)
S10.23354 (8)0.13520 (6)0.53956 (5)0.0790 (3)
O10.06063 (12)0.04409 (9)0.19068 (10)0.0431 (4)
O20.10767 (13)0.02591 (11)0.08270 (10)0.0489 (4)
O30.24094 (12)0.19615 (10)0.16454 (10)0.0422 (4)
O40.36595 (13)0.23273 (11)0.06500 (10)0.0512 (4)
O50.63860 (17)0.06593 (14)0.23141 (16)0.0828 (7)
O60.5331 (2)0.04262 (17)0.2091 (2)0.1186 (10)
O70.70321 (18)0.05719 (14)0.21816 (15)0.0844 (7)
N10.29156 (15)0.04450 (12)0.26479 (12)0.0397 (4)
N20.46270 (15)0.17344 (12)0.24593 (12)0.0427 (5)
H2A0.40090.17120.20250.051*
H2B0.50960.13360.23650.051*
N30.03405 (15)0.23032 (12)0.20425 (13)0.0434 (5)
N40.11498 (16)0.07668 (13)0.23973 (13)0.0502 (5)
H4A0.17210.04230.21520.060*
H4B0.05790.06080.22020.060*
N50.18116 (19)0.15588 (14)0.36497 (15)0.0561 (6)
N60.62424 (19)0.01249 (16)0.22004 (15)0.0592 (6)
C10.18606 (19)0.06203 (13)0.16659 (14)0.0382 (5)
C20.08048 (18)0.02498 (13)0.15115 (14)0.0357 (5)
C30.00785 (19)0.06361 (14)0.09016 (14)0.0401 (5)
C40.0100 (2)0.13289 (15)0.04369 (16)0.0507 (6)
H40.04820.15580.00150.061*
C50.1139 (2)0.16862 (16)0.05934 (18)0.0561 (7)
H50.12520.21580.02800.067*
C60.2000 (2)0.13502 (15)0.12040 (17)0.0501 (6)
H60.26890.16080.13160.060*
C70.28236 (19)0.02800 (14)0.22705 (15)0.0411 (5)
H70.34470.06260.24010.049*
C80.3959 (2)0.06192 (16)0.32864 (16)0.0492 (6)
H8A0.45170.02300.31980.059*
H8B0.38690.05070.38460.059*
C90.4351 (2)0.15274 (16)0.32568 (15)0.0470 (6)
H9A0.37800.19160.33230.056*
H9B0.49970.16190.37310.056*
C100.5139 (2)0.26019 (17)0.24785 (18)0.0597 (7)
H10A0.46570.30260.26220.072*
H10B0.52050.27370.19160.072*
C110.6256 (2)0.26614 (19)0.31053 (19)0.0639 (8)
H11A0.61780.26630.36720.096*
H11B0.66120.31810.30090.096*
H11C0.66940.21780.30350.096*
C120.2001 (2)0.05535 (18)0.01591 (16)0.0537 (7)
H12A0.21820.11400.02660.064*
H12B0.18280.05350.03820.064*
C130.2952 (2)0.0027 (2)0.01422 (19)0.0710 (8)
H13A0.31640.00410.06580.107*
H13B0.35620.01170.03340.107*
H13C0.27390.06110.00910.107*
C140.11326 (18)0.30877 (14)0.10555 (14)0.0389 (5)
C150.20996 (17)0.26120 (13)0.11291 (13)0.0355 (5)
C160.27758 (19)0.28547 (15)0.06010 (14)0.0410 (5)
C170.2535 (2)0.35687 (16)0.00929 (16)0.0551 (7)
H170.30050.37320.02280.066*
C180.1593 (2)0.40514 (18)0.00539 (17)0.0599 (7)
H180.14420.45420.02820.072*
C190.0899 (2)0.38012 (16)0.05081 (16)0.0514 (6)
H190.02520.41080.04580.062*
C200.03422 (19)0.29130 (15)0.15277 (15)0.0433 (6)
H200.02420.32970.14440.052*
C210.0571 (2)0.23231 (17)0.2451 (2)0.0602 (7)
H21A0.09050.28880.23720.072*
H21B0.02670.22340.30570.072*
C220.1456 (2)0.16612 (18)0.2113 (2)0.0644 (8)
H22A0.21060.18210.22860.077*
H22B0.16540.16760.14980.077*
C230.0843 (3)0.06135 (19)0.33260 (18)0.0655 (8)
H23A0.14910.06760.35310.079*
H23B0.03070.10390.36100.079*
C240.0368 (3)0.0266 (2)0.3540 (2)0.0901 (11)
H24A0.08970.06880.32590.135*
H24B0.01900.03520.41430.135*
H24C0.02880.03220.33550.135*
C250.4284 (2)0.2466 (2)0.00521 (18)0.0654 (8)
H25A0.46440.30210.01510.078*
H25B0.38000.24580.05220.078*
C260.5126 (3)0.1772 (2)0.0158 (2)0.0878 (11)
H26A0.55750.17630.07350.132*
H26B0.55820.18780.02140.132*
H26C0.47620.12290.00200.132*
C270.2027 (2)0.14706 (16)0.43733 (18)0.0491 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03578 (15)0.03238 (15)0.04647 (17)0.00390 (11)0.01557 (12)0.00297 (11)
S10.0852 (6)0.1015 (7)0.0522 (4)0.0016 (5)0.0221 (4)0.0014 (4)
O10.0345 (8)0.0380 (9)0.0611 (10)0.0048 (7)0.0202 (8)0.0166 (7)
O20.0383 (9)0.0521 (10)0.0565 (10)0.0086 (8)0.0135 (8)0.0118 (8)
O30.0348 (8)0.0423 (9)0.0514 (9)0.0036 (7)0.0148 (7)0.0109 (7)
O40.0447 (10)0.0605 (11)0.0526 (10)0.0014 (8)0.0205 (8)0.0112 (8)
O50.0583 (12)0.0506 (13)0.144 (2)0.0014 (10)0.0361 (13)0.0036 (12)
O60.0652 (15)0.1000 (19)0.208 (3)0.0290 (14)0.0664 (18)0.0322 (19)
O70.0703 (14)0.0690 (14)0.125 (2)0.0200 (12)0.0454 (14)0.0028 (13)
N10.0351 (10)0.0365 (11)0.0471 (11)0.0016 (8)0.0110 (9)0.0076 (9)
N20.0353 (10)0.0424 (11)0.0471 (11)0.0054 (9)0.0057 (9)0.0008 (9)
N30.0396 (11)0.0345 (11)0.0600 (13)0.0019 (8)0.0206 (9)0.0086 (9)
N40.0392 (11)0.0513 (13)0.0690 (14)0.0087 (9)0.0301 (10)0.0145 (11)
N50.0614 (15)0.0613 (15)0.0481 (13)0.0093 (11)0.0195 (11)0.0086 (11)
N60.0469 (13)0.0566 (15)0.0828 (17)0.0006 (11)0.0327 (12)0.0022 (12)
C10.0440 (13)0.0289 (11)0.0467 (13)0.0014 (10)0.0209 (11)0.0035 (10)
C20.0427 (12)0.0284 (11)0.0430 (12)0.0046 (9)0.0237 (10)0.0008 (9)
C30.0451 (13)0.0361 (12)0.0439 (13)0.0058 (10)0.0202 (11)0.0015 (10)
C40.0641 (17)0.0418 (14)0.0480 (14)0.0111 (12)0.0183 (13)0.0100 (11)
C50.076 (2)0.0350 (13)0.0653 (17)0.0021 (13)0.0325 (15)0.0103 (12)
C60.0604 (16)0.0337 (13)0.0645 (17)0.0086 (12)0.0312 (14)0.0036 (12)
C70.0399 (13)0.0341 (13)0.0534 (14)0.0058 (10)0.0199 (11)0.0139 (11)
C80.0429 (14)0.0505 (15)0.0510 (15)0.0021 (11)0.0072 (12)0.0097 (12)
C90.0403 (13)0.0503 (15)0.0463 (14)0.0073 (11)0.0050 (11)0.0006 (11)
C100.0610 (17)0.0486 (16)0.0663 (18)0.0148 (13)0.0121 (14)0.0054 (13)
C110.0486 (16)0.0622 (18)0.081 (2)0.0182 (13)0.0183 (15)0.0178 (15)
C120.0517 (15)0.0602 (17)0.0445 (14)0.0156 (13)0.0056 (12)0.0024 (12)
C130.0466 (16)0.096 (2)0.069 (2)0.0077 (16)0.0136 (14)0.0072 (17)
C140.0402 (13)0.0331 (12)0.0389 (12)0.0022 (10)0.0033 (10)0.0076 (9)
C150.0357 (12)0.0312 (12)0.0353 (12)0.0056 (9)0.0026 (9)0.0024 (9)
C160.0407 (13)0.0423 (13)0.0369 (12)0.0063 (10)0.0053 (10)0.0010 (10)
C170.0661 (18)0.0554 (16)0.0433 (14)0.0082 (14)0.0139 (13)0.0093 (12)
C180.0716 (19)0.0499 (16)0.0526 (16)0.0057 (14)0.0074 (14)0.0137 (13)
C190.0548 (16)0.0429 (14)0.0494 (15)0.0095 (12)0.0021 (13)0.0005 (11)
C200.0362 (12)0.0352 (13)0.0550 (14)0.0027 (10)0.0066 (11)0.0122 (11)
C210.0563 (16)0.0442 (15)0.093 (2)0.0027 (12)0.0424 (16)0.0065 (14)
C220.0434 (15)0.0602 (18)0.100 (2)0.0053 (13)0.0371 (16)0.0020 (16)
C230.0709 (19)0.0653 (19)0.071 (2)0.0144 (15)0.0375 (16)0.0140 (15)
C240.099 (3)0.082 (2)0.097 (3)0.001 (2)0.041 (2)0.019 (2)
C250.0595 (18)0.083 (2)0.0630 (18)0.0080 (16)0.0326 (15)0.0040 (15)
C260.080 (2)0.084 (2)0.121 (3)0.002 (2)0.064 (2)0.004 (2)
C270.0440 (14)0.0466 (15)0.0622 (17)0.0063 (11)0.0240 (13)0.0089 (12)
Geometric parameters (Å, º) top
Zn1—O11.9641 (15)C9—H9A0.9700
Zn1—O31.9890 (15)C9—H9B0.9700
Zn1—N52.030 (2)C10—C111.502 (4)
Zn1—N32.1305 (19)C10—H10A0.9700
Zn1—N12.1351 (19)C10—H10B0.9700
S1—C271.622 (3)C11—H11A0.9600
O1—C21.316 (2)C11—H11B0.9600
O2—C31.365 (3)C11—H11C0.9600
O2—C121.438 (3)C12—C131.497 (4)
O3—C151.310 (2)C12—H12A0.9700
O4—C161.370 (3)C12—H12B0.9700
O4—C251.432 (3)C13—H13A0.9600
O5—N61.243 (3)C13—H13B0.9600
O6—N61.209 (3)C13—H13C0.9600
O7—N61.223 (3)C14—C151.405 (3)
N1—C71.278 (3)C14—C191.408 (3)
N1—C81.464 (3)C14—C201.446 (3)
N2—C91.477 (3)C15—C161.423 (3)
N2—C101.496 (3)C16—C171.373 (3)
N2—H2A0.9000C17—C181.393 (4)
N2—H2B0.9000C17—H170.9300
N3—C201.271 (3)C18—C191.353 (4)
N3—C211.481 (3)C18—H180.9300
N4—C231.482 (3)C19—H190.9300
N4—C221.488 (3)C20—H200.9300
N4—H4A0.9000C21—C221.510 (4)
N4—H4B0.9000C21—H21A0.9700
N5—C271.149 (3)C21—H21B0.9700
C1—C61.404 (3)C22—H22A0.9700
C1—C21.410 (3)C22—H22B0.9700
C1—C71.441 (3)C23—C241.500 (4)
C2—C31.411 (3)C23—H23A0.9700
C3—C41.375 (3)C23—H23B0.9700
C4—C51.383 (4)C24—H24A0.9600
C4—H40.9300C24—H24B0.9600
C5—C61.363 (4)C24—H24C0.9600
C5—H50.9300C25—C261.493 (4)
C6—H60.9300C25—H25A0.9700
C7—H70.9300C25—H25B0.9700
C8—C91.505 (3)C26—H26A0.9600
C8—H8A0.9700C26—H26B0.9600
C8—H8B0.9700C26—H26C0.9600
O1—Zn1—O3118.31 (7)C10—C11—H11B109.5
O1—Zn1—N5113.14 (8)H11A—C11—H11B109.5
O3—Zn1—N5128.40 (8)C10—C11—H11C109.5
O1—Zn1—N391.66 (7)H11A—C11—H11C109.5
O3—Zn1—N389.74 (7)H11B—C11—H11C109.5
N5—Zn1—N392.49 (9)O2—C12—C13107.4 (2)
O1—Zn1—N187.31 (7)O2—C12—H12A110.2
O3—Zn1—N187.34 (7)C13—C12—H12A110.2
N5—Zn1—N191.49 (8)O2—C12—H12B110.2
N3—Zn1—N1175.98 (7)C13—C12—H12B110.2
C2—O1—Zn1127.92 (13)H12A—C12—H12B108.5
C3—O2—C12117.82 (19)C12—C13—H13A109.5
C15—O3—Zn1129.83 (14)C12—C13—H13B109.5
C16—O4—C25117.45 (19)H13A—C13—H13B109.5
C7—N1—C8117.0 (2)C12—C13—H13C109.5
C7—N1—Zn1122.93 (16)H13A—C13—H13C109.5
C8—N1—Zn1120.08 (15)H13B—C13—H13C109.5
C9—N2—C10112.61 (19)C15—C14—C19119.8 (2)
C9—N2—H2A109.1C15—C14—C20124.4 (2)
C10—N2—H2A109.1C19—C14—C20115.7 (2)
C9—N2—H2B109.1O3—C15—C14124.2 (2)
C10—N2—H2B109.1O3—C15—C16118.4 (2)
H2A—N2—H2B107.8C14—C15—C16117.3 (2)
C20—N3—C21115.3 (2)O4—C16—C17124.3 (2)
C20—N3—Zn1123.00 (16)O4—C16—C15114.78 (19)
C21—N3—Zn1121.50 (17)C17—C16—C15120.9 (2)
C23—N4—C22116.4 (2)C16—C17—C18120.7 (3)
C23—N4—H4A108.2C16—C17—H17119.7
C22—N4—H4A108.2C18—C17—H17119.7
C23—N4—H4B108.2C19—C18—C17119.5 (2)
C22—N4—H4B108.2C19—C18—H18120.3
H4A—N4—H4B107.4C17—C18—H18120.3
C27—N5—Zn1163.6 (2)C18—C19—C14121.6 (2)
O6—N6—O7121.5 (3)C18—C19—H19119.2
O6—N6—O5119.9 (2)C14—C19—H19119.2
O7—N6—O5118.6 (2)N3—C20—C14128.5 (2)
C6—C1—C2119.2 (2)N3—C20—H20115.7
C6—C1—C7117.5 (2)C14—C20—H20115.7
C2—C1—C7123.3 (2)N3—C21—C22114.1 (2)
O1—C2—C1123.1 (2)N3—C21—H21A108.7
O1—C2—C3118.5 (2)C22—C21—H21A108.7
C1—C2—C3118.4 (2)N3—C21—H21B108.7
O2—C3—C4125.2 (2)C22—C21—H21B108.7
O2—C3—C2114.18 (19)H21A—C21—H21B107.6
C4—C3—C2120.6 (2)N4—C22—C21115.1 (2)
C3—C4—C5120.3 (2)N4—C22—H22A108.5
C3—C4—H4119.8C21—C22—H22A108.5
C5—C4—H4119.8N4—C22—H22B108.5
C6—C5—C4120.3 (2)C21—C22—H22B108.5
C6—C5—H5119.8H22A—C22—H22B107.5
C4—C5—H5119.8N4—C23—C24111.2 (2)
C5—C6—C1121.0 (2)N4—C23—H23A109.4
C5—C6—H6119.5C24—C23—H23A109.4
C1—C6—H6119.5N4—C23—H23B109.4
N1—C7—C1127.2 (2)C24—C23—H23B109.4
N1—C7—H7116.4H23A—C23—H23B108.0
C1—C7—H7116.4C23—C24—H24A109.5
N1—C8—C9112.99 (19)C23—C24—H24B109.5
N1—C8—H8A109.0H24A—C24—H24B109.5
C9—C8—H8A109.0C23—C24—H24C109.5
N1—C8—H8B109.0H24A—C24—H24C109.5
C9—C8—H8B109.0H24B—C24—H24C109.5
H8A—C8—H8B107.8O4—C25—C26108.6 (2)
N2—C9—C8113.2 (2)O4—C25—H25A110.0
N2—C9—H9A108.9C26—C25—H25A110.0
C8—C9—H9A108.9O4—C25—H25B110.0
N2—C9—H9B108.9C26—C25—H25B110.0
C8—C9—H9B108.9H25A—C25—H25B108.4
H9A—C9—H9B107.8C25—C26—H26A109.5
N2—C10—C11112.9 (2)C25—C26—H26B109.5
N2—C10—H10A109.0H26A—C26—H26B109.5
C11—C10—H10A109.0C25—C26—H26C109.5
N2—C10—H10B109.0H26A—C26—H26C109.5
C11—C10—H10B109.0H26B—C26—H26C109.5
H10A—C10—H10B107.8N5—C27—S1179.6 (3)
C10—C11—H11A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O50.901.962.843 (3)166
N2—H2A···O30.901.982.772 (2)146
N2—H2A···O40.902.373.022 (3)129
N4—H4A···O7i0.902.223.050 (3)153
N4—H4A···O5i0.902.503.080 (3)122
N4—H4B···O10.901.712.606 (2)171
N4—H4B···O20.902.553.051 (3)116
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(NCS)(C13H20N2O2)2]NO3
Mr658.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.619 (3), 15.596 (3), 16.373 (4)
β (°) 105.942 (3)
V3)3098.5 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.759, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
25309, 6704, 4943
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.03
No. of reflections6704
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O50.901.962.843 (3)166
N2—H2A···O30.901.982.772 (2)146
N2—H2A···O40.902.373.022 (3)129
N4—H4A···O7i0.902.223.050 (3)153
N4—H4A···O5i0.902.503.080 (3)122
N4—H4B···O10.901.712.606 (2)171
N4—H4B···O20.902.553.051 (3)116
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We acknowledge Yichun University for support of this research.

References

First citationBerg, J. M. & Shi, Y. (1996). Science, 271, 1081–1985.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J.-H., Huang, Y.-H. & Jiang, Y.-M. (2006). Acta Cryst. E62, m2432–m2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H. & Kausar, S. (1993). Chem. Pharm. Bull. 41, 951–953.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCorreia, I., Dornyei, A., Avecilla, F., Kiss, T. & Pessoa, J. C. (2006). Eur. J. Inorg. Chem. pp. 656–662.  Web of Science CSD CrossRef Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m912–m913.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C.-N., Lu, T.-H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationOdoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710–m711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOsowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046–1055.  Web of Science CrossRef CAS Google Scholar
First citationSamanta, B., Chakraborty, J., Shit, S., Batten, S. R., Jensen, P., Masuda, J. D. & Mitra, S. (2007). Inorg. Chim. Acta, 360, 2471–2484.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationTatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83–m85.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m396–m398.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1288-m1289
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds