organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3,5-di­methyl-4H1-,2,4-triazole–water (2/3)

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 2 September 2008; accepted 3 September 2008; online 6 September 2008)

The asymmetric unit of the title compound, 2C4H8N4·3H2O, contains two crystallographically independent 4-amino-3,5-dimethyl-1,2,4-triazole mol­ecules and three water mol­ecules. The structure exhibits N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Wang et al. (2006[Wang, P., Ma, J. P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2791-o2792.]); Zachara et al. 2004[Zachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57-o59.]). For related literature, see: Beckmann & Brooker (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]); Bentiss et al. (1999[Bentiss, F., Lagrenee, M., Traisnel, M. & Hornez, J. C. (1999). Corros. Sci. 41, 789-803.]); Collin et al. (2003[Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601-2605.]); Curtis (2004[Curtis, A. D. M. (2004). Sci. Synth., 13, 603-605.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H8N4·3H2O

  • Mr = 278.34

  • Triclinic, [P \overline 1]

  • a = 7.194 (4) Å

  • b = 8.680 (4) Å

  • c = 13.592 (7) Å

  • α = 72.332 (8)°

  • β = 84.993 (8)°

  • γ = 68.936 (7)°

  • V = 754.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS., University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.984

  • 5166 measured reflections

  • 2904 independent reflections

  • 2447 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.03

  • 2904 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4D⋯O1W 0.93 (2) 2.00 (2) 2.924 (3) 170.9 (18)
N4—H4E⋯O3Wi 0.88 (2) 2.21 (2) 3.078 (3) 168.3 (18)
N8—H8E⋯O2Wii 0.93 (3) 2.23 (3) 3.104 (3) 156 (2)
O1W—H1WA⋯O2Wiii 0.84 (3) 1.95 (3) 2.793 (3) 173 (3)
O1W—H1WB⋯O3Wiv 0.92 (3) 1.93 (3) 2.810 (2) 160 (3)
O2W—H2WA⋯N2 0.87 (3) 2.02 (3) 2.885 (2) 171 (2)
O2W—H2WB⋯N5 0.90 (3) 1.93 (3) 2.816 (2) 168 (2)
O3W—H3WA⋯N1 0.88 (2) 1.92 (2) 2.787 (2) 168 (2)
O3W—H3WB⋯N6 0.89 (3) 1.93 (3) 2.827 (2) 176 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z-1; (iii) -x, -y+1, -z; (iv) -x, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of 4-amino-1,2,4-triazoles have considerable importance in medicinal chemistry, agricultural and industrial chemistry (Bentiss et al. 1999; Collin et al. 2003; Curtis et al. 2004). They have also been used as multidentate ligands in coordination chemistry (Beckmann et al. 2003). Here, we report a hydrated 4-amino-1,2,4-triazole (mta)2.3H2O (mta = 4-amino-3,5-dimethyl-1,2,4-triazole).

The asymmetric unit of the title compound contains two crystallographically independent mta molecules and three water molecules. The CN—N—C fragments of the tetrazine rings have the CN distances of 1.299 (2), 1.300 (2) and 1.304 (2) Å, and the N—N distances of 1.392 (2) and 1.389 (2) Å. All other C—N distances are between 1.352 (2) and 1.362 (2) Å, which are considered to have part double-bond character. In the crystalline state, the mta and crystal water molecules are linked together by N—H···O, O—H···N and O—H···O hydrogen bonding.

Related literature top

For related structures, see: Wang et al. (2006); Zachara et al. 2004). For related literature, see: Beckmann & Brooker (2003); Bentiss et al. (1999); Collin et al. (2003); Curtis (2004).

Experimental top

To a solution of mta (mta = 4-amino-3,5-dimethyl-1,2,4-triazole) (0.0228 g, 0.2 mmol) in CH3OH (5 ml), an aqueous solution (5 ml) of MnSO4.H2O (0.0169 g, 0.1 mmol) was added. The mixture was stirred for half an hour and filtered. The filtrate was allowed to evaporate slowly at room temperature. After several days, colorless block crystals were obtained in 5% yield (0.0007 g) based on mta.

Refinement top

H atoms bonded to O and N atoms were located in a difference map and freely refined. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.96 Å and with Uiso(H) = 1.5Uiso(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with 30% thermal ellipsoids.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title compound. The H atoms bonded to C atoms are omitted for clarity.
4-Amino-3,5-dimethyl-4H-1,2,4-triazole–water (2/3) top
Crystal data top
2C4H8N4·3H2OZ = 2
Mr = 278.34F(000) = 300
Triclinic, P1Dx = 1.225 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.194 (4) ÅCell parameters from 785 reflections
b = 8.680 (4) Åθ = 2.4–28.0°
c = 13.592 (7) ŵ = 0.10 mm1
α = 72.332 (8)°T = 293 K
β = 84.993 (8)°Block, colourless
γ = 68.936 (7)°0.20 × 0.18 × 0.17 mm
V = 754.5 (6) Å3
Data collection top
Bruker APEX CCD
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scanθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 88
Tmin = 0.981, Tmax = 0.984k = 1010
5166 measured reflectionsl = 1612
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.0952P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2904 reflectionsΔρmax = 0.27 e Å3
213 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.151 (12)
Crystal data top
2C4H8N4·3H2Oγ = 68.936 (7)°
Mr = 278.34V = 754.5 (6) Å3
Triclinic, P1Z = 2
a = 7.194 (4) ÅMo Kα radiation
b = 8.680 (4) ŵ = 0.10 mm1
c = 13.592 (7) ÅT = 293 K
α = 72.332 (8)°0.20 × 0.18 × 0.17 mm
β = 84.993 (8)°
Data collection top
Bruker APEX CCD
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2447 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.014
5166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
2904 reflectionsΔρmin = 0.22 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2307 (2)0.21698 (19)0.03818 (12)0.0464 (4)
C20.2155 (3)0.3435 (2)0.09351 (15)0.0675 (5)
H2A0.21950.44870.04480.101*
H2B0.32490.29730.14220.101*
H2C0.09220.36660.12950.101*
C30.2508 (2)0.02273 (19)0.01050 (12)0.0450 (4)
C40.2584 (3)0.2021 (2)0.02881 (14)0.0574 (4)
H4A0.27430.22870.03570.086*
H4B0.13690.21340.05960.086*
H4C0.36910.28050.07440.086*
C50.2491 (2)0.3310 (2)0.54342 (13)0.0518 (4)
C60.2507 (4)0.2018 (3)0.59340 (17)0.0790 (6)
H6A0.26330.09470.54160.119*
H6B0.36120.18430.63890.119*
H6C0.12860.24210.63240.119*
C70.2362 (2)0.5735 (2)0.52294 (12)0.0500 (4)
C80.2197 (3)0.7564 (2)0.54624 (15)0.0691 (5)
H8A0.22590.78210.48300.104*
H8B0.09510.83040.58170.104*
H8C0.32740.77520.58920.104*
N10.2638 (2)0.08533 (18)0.07827 (10)0.0528 (4)
N20.2508 (2)0.23853 (17)0.06052 (10)0.0533 (4)
N30.22893 (18)0.05496 (15)0.08561 (9)0.0433 (3)
N40.2136 (3)0.02566 (19)0.19138 (10)0.0543 (4)
H4D0.100 (3)0.047 (3)0.2139 (15)0.071 (6)*
H4E0.320 (3)0.030 (3)0.2220 (15)0.071 (6)*
N50.2546 (2)0.46293 (18)0.43183 (10)0.0568 (4)
N60.2637 (2)0.30785 (18)0.44498 (11)0.0579 (4)
N70.2326 (2)0.49581 (17)0.59485 (9)0.0511 (4)
N80.2096 (4)0.5651 (3)0.70320 (12)0.0790 (6)
H8D0.105 (4)0.659 (4)0.710 (2)0.109 (10)*
H8E0.325 (5)0.589 (4)0.726 (2)0.119 (10)*
O1W0.1595 (3)0.1723 (3)0.26863 (18)0.1022 (7)
H1WA0.219 (5)0.280 (4)0.254 (2)0.132 (12)*
H1WB0.248 (5)0.128 (4)0.254 (2)0.131 (11)*
O2W0.3524 (2)0.47375 (18)0.23848 (12)0.0706 (4)
H2WA0.308 (4)0.412 (3)0.186 (2)0.090 (7)*
H2WB0.308 (4)0.466 (3)0.296 (2)0.101 (8)*
O3W0.3962 (2)0.02300 (16)0.26616 (11)0.0610 (4)
H3WA0.341 (3)0.055 (3)0.2121 (18)0.079 (6)*
H3WB0.349 (4)0.114 (3)0.321 (2)0.093 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0471 (8)0.0429 (8)0.0438 (8)0.0139 (6)0.0002 (6)0.0069 (6)
C20.0849 (13)0.0529 (10)0.0645 (11)0.0241 (9)0.0015 (10)0.0161 (9)
C30.0393 (7)0.0485 (8)0.0455 (8)0.0143 (6)0.0017 (6)0.0128 (7)
C40.0574 (10)0.0543 (10)0.0636 (11)0.0213 (8)0.0020 (8)0.0198 (8)
C50.0514 (9)0.0550 (9)0.0478 (9)0.0184 (7)0.0075 (7)0.0152 (7)
C60.0942 (15)0.0765 (13)0.0778 (14)0.0334 (11)0.0145 (11)0.0378 (11)
C70.0513 (9)0.0539 (9)0.0444 (9)0.0212 (7)0.0050 (7)0.0115 (7)
C80.0833 (13)0.0610 (11)0.0660 (12)0.0345 (10)0.0060 (10)0.0129 (9)
N10.0571 (8)0.0584 (8)0.0431 (7)0.0227 (6)0.0055 (6)0.0134 (6)
N20.0589 (8)0.0512 (8)0.0455 (8)0.0221 (6)0.0029 (6)0.0053 (6)
N30.0445 (7)0.0430 (7)0.0374 (7)0.0144 (5)0.0013 (5)0.0060 (5)
N40.0632 (9)0.0543 (8)0.0378 (7)0.0206 (7)0.0038 (7)0.0034 (6)
N50.0697 (9)0.0578 (8)0.0427 (8)0.0249 (7)0.0031 (6)0.0119 (6)
N60.0709 (9)0.0516 (8)0.0467 (8)0.0213 (7)0.0030 (6)0.0086 (6)
N70.0565 (8)0.0584 (8)0.0368 (7)0.0242 (6)0.0045 (6)0.0080 (6)
N80.1082 (16)0.0910 (14)0.0374 (8)0.0448 (13)0.0018 (9)0.0062 (8)
O1W0.0737 (10)0.0831 (12)0.170 (2)0.0312 (9)0.0195 (10)0.0655 (13)
O2W0.1040 (11)0.0668 (9)0.0514 (8)0.0482 (8)0.0005 (7)0.0090 (6)
O3W0.0781 (9)0.0496 (7)0.0488 (7)0.0161 (6)0.0067 (6)0.0143 (6)
Geometric parameters (Å, º) top
C1—N21.300 (2)C7—N71.352 (2)
C1—N31.362 (2)C7—C81.483 (2)
C1—C21.478 (2)C8—H8A0.9600
C2—H2A0.9600C8—H8B0.9600
C2—H2B0.9600C8—H8C0.9600
C2—H2C0.9600N1—N21.391 (2)
C3—N11.304 (2)N3—N41.4091 (18)
C3—N31.355 (2)N4—H4D0.93 (2)
C3—C41.482 (2)N4—H4E0.88 (2)
C4—H4A0.9600N5—N61.389 (2)
C4—H4B0.9600N7—N81.411 (2)
C4—H4C0.9600N8—H8D0.88 (3)
C5—N61.299 (2)N8—H8E0.93 (3)
C5—N71.354 (2)O1W—H1WA0.84 (3)
C5—C61.474 (3)O1W—H1WB0.92 (3)
C6—H6A0.9600O2W—H2WA0.87 (3)
C6—H6B0.9600O2W—H2WB0.90 (3)
C6—H6C0.9600O3W—H3WA0.88 (2)
C7—N51.299 (2)O3W—H3WB0.89 (3)
N2—C1—N3109.30 (14)N5—C7—C8126.38 (16)
N2—C1—C2126.85 (15)N7—C7—C8124.62 (15)
N3—C1—C2123.85 (15)C7—C8—H8A109.5
C1—C2—H2A109.5C7—C8—H8B109.5
C1—C2—H2B109.5H8A—C8—H8B109.5
H2A—C2—H2B109.5C7—C8—H8C109.5
C1—C2—H2C109.5H8A—C8—H8C109.5
H2A—C2—H2C109.5H8B—C8—H8C109.5
H2B—C2—H2C109.5C3—N1—N2107.78 (13)
N1—C3—N3109.02 (14)C1—N2—N1107.36 (12)
N1—C3—C4126.61 (15)C3—N3—C1106.55 (13)
N3—C3—C4124.37 (14)C3—N3—N4124.23 (13)
C3—C4—H4A109.5C1—N3—N4129.20 (13)
C3—C4—H4B109.5N3—N4—H4D106.6 (12)
H4A—C4—H4B109.5N3—N4—H4E105.8 (13)
C3—C4—H4C109.5H4D—N4—H4E109.1 (17)
H4A—C4—H4C109.5C7—N5—N6107.56 (14)
H4B—C4—H4C109.5C5—N6—N5107.64 (13)
N6—C5—N7108.89 (15)C7—N7—C5106.91 (14)
N6—C5—C6126.70 (17)C7—N7—N8129.47 (15)
N7—C5—C6124.41 (16)C5—N7—N8123.59 (15)
C5—C6—H6A109.5N7—N8—H8D102.0 (18)
C5—C6—H6B109.5N7—N8—H8E105.6 (17)
H6A—C6—H6B109.5H8D—N8—H8E112 (3)
C5—C6—H6C109.5H1WA—O1W—H1WB106 (3)
H6A—C6—H6C109.5H2WA—O2W—H2WB107 (2)
H6B—C6—H6C109.5H3WA—O3W—H3WB107 (2)
N5—C7—N7109.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O1W0.93 (2)2.00 (2)2.924 (3)170.9 (18)
N4—H4E···O3Wi0.88 (2)2.21 (2)3.078 (3)168.3 (18)
N8—H8E···O2Wii0.93 (3)2.23 (3)3.104 (3)156 (2)
O1W—H1WA···O2Wiii0.84 (3)1.95 (3)2.793 (3)173 (3)
O1W—H1WB···O3Wiv0.92 (3)1.93 (3)2.810 (2)160 (3)
O2W—H2WA···N20.87 (3)2.02 (3)2.885 (2)171 (2)
O2W—H2WB···N50.90 (3)1.93 (3)2.816 (2)168 (2)
O3W—H3WA···N10.88 (2)1.92 (2)2.787 (2)168 (2)
O3W—H3WB···N60.89 (3)1.93 (3)2.827 (2)176 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1; (iii) x, y+1, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula2C4H8N4·3H2O
Mr278.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.194 (4), 8.680 (4), 13.592 (7)
α, β, γ (°)72.332 (8), 84.993 (8), 68.936 (7)
V3)754.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5166, 2904, 2447
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.03
No. of reflections2904
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O1W0.93 (2)2.00 (2)2.924 (3)170.9 (18)
N4—H4E···O3Wi0.88 (2)2.21 (2)3.078 (3)168.3 (18)
N8—H8E···O2Wii0.93 (3)2.23 (3)3.104 (3)156 (2)
O1W—H1WA···O2Wiii0.84 (3)1.95 (3)2.793 (3)173 (3)
O1W—H1WB···O3Wiv0.92 (3)1.93 (3)2.810 (2)160 (3)
O2W—H2WA···N20.87 (3)2.02 (3)2.885 (2)171 (2)
O2W—H2WB···N50.90 (3)1.93 (3)2.816 (2)168 (2)
O3W—H3WA···N10.88 (2)1.92 (2)2.787 (2)168 (2)
O3W—H3WB···N60.89 (3)1.93 (3)2.827 (2)176 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1; (iii) x, y+1, z; (iv) x, y, z.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBentiss, F., Lagrenee, M., Traisnel, M. & Hornez, J. C. (1999). Corros. Sci. 41, 789–803.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601–2605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCurtis, A. D. M. (2004). Sci. Synth., 13, 603–605.  CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS., University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P., Ma, J. P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57–o59.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds