organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Methyl­phen­yl)-N′-(4-nitro­benzo­yl)thio­urea

aChemical Engineering Institute, Northwest University for Nationalities, Lanzhou, 730030, People's Republic of China
*Correspondence e-mail: xianliangchina@yahoo.com.cn

(Received 2 August 2008; accepted 13 September 2008; online 20 September 2008)

Two mol­ecules of the title compound, C15H13N3O3S, are linked by an inter­molecular N—H⋯S hydrogen bond. There is also an intra­molecular N—H⋯O hydrogen bond, forming a six-membered ring. The steric restriction of the m-methyl and p-nitro groups, as well as the intra­molecular hydrogen bond, are the main factors influencing the mol­ecular conformation.

Related literature

For general background, see: Su et al. (2006[Su, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon, 181, 745-750.]). For related coordination compounds, see: Su et al. (2005[Su, B. Q., Xian, L., Zhang, B. & Song, H. B. (2005). J. Chem. Res.(S.), 2, 101-102.]); Xian et al. (2004[Xian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem. 57, 453-457.]). For related structures, see: Su (2005[Su, B.-Q. (2005). Acta Cryst. E61, o3492-o3494.], 2007[Su, B. Q. (2007). J. Chem. Crystallogr. 37, 87-90.]); Yusof et al. (2007[Yusof, M. S. M., Pazil, A. M., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o1302-o1303.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3S

  • Mr = 315.34

  • Monoclinic, P 21 /c

  • a = 11.381 (10) Å

  • b = 8.549 (8) Å

  • c = 15.653 (12) Å

  • β = 108.012 (16)°

  • V = 1448 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 (2) K

  • 0.30 × 0.29 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.609, Tmax = 1.000 (expected range = 0.572–0.940)

  • 7125 measured reflections

  • 2692 independent reflections

  • 2072 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.141

  • S = 0.89

  • 2692 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2′⋯S1i 0.86 2.81 3.665 (4) 179
N4—H4′⋯O3 0.86 1.94 2.643 (3) 138
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea and its derivatives are good ligands for forming coordination compounds with transition metal ions, especially Cu(I). Our previous research showed that coordination compounds of carbonylthiourea derivatives with Cu(I) often adopt a trigonal planar conformation (Xian et al., 2004). In addition, it was found that the reaction of carbonylthiourea derivatives with Cu(I) can also form a metal cluster compound with a complex structure (Su et al., 2005). Apparently, the coordinating ability of carbonylthiorea derivatives is related to their conformation and hydrogen bonds. Herein the structure of N-p-nitrobenzoyl-N'-(m-methylphenyl)thiourea and its FT—IR, 1H NMR was reported.

As shown in Fig. 1, the title compound adopts a trans-conformation similar to the other structures of thiourea derivatives (Su et al., 2006; Su, 2007), i.e. the conformation in which the thiocarbonyl and carbonyl groups are distributed on opposite sides of the main backbone due to steric restriction. On the other hand, steric restriction and hydrogen bond interactions also result in dimer formation through the "head-tail" junction conformation of the title compound (Fig. 2). The thiocarbonyl group forms an intermolecular hydrogen bond with N—H (-x, -y, -z), and the carbonyl group forms intramolecular hydrogen bond with N—H (x, y, z). Apparently, the carbonyl oxygen atom is "locked" in the hydrogen-bonded six-membered ring structure and thus not readily available for coordination with transition metal ions. There are mainly two molecular planes in the structure, two benzene rings almost are in the same plane with the mean deviation 0.078 (4) Å, another plane is the hydrogen-bonding six-membered ring with the mean deviation 0.055 (4) Å. The angle between two benzene planes is 41.39(0.09)°. The above conformation is similar to that observed in previously reported thiourea structures (Su, 2005; Yusof et al., 2007).

Related literature top

For related literature, see: Su (2005, 2007); Su et al. (2006); Su, et al.(2005); Xian et al. (2004); Yusof et al. (2007).

Experimental top

All chemicals used for the preparation of the title compound were of reagent grade quality. The infrared spectrum was recorded in the range of 4000–400 cm-1 on a Nicolet NEXUS 670 F T—IR spectrometer, using KBr pellets. 1H NMR spectrum was obtained on an INOVA-400 MHz superconducting spectrometer, CDCl3 was used as the solvent and TMS as internal standard, and the chemical shifts are expressed as delta. Elemental analyses were carried out on a PE-2400 elemental analysis instrument. Melting point determination was performed in YRT-3 melting point instrument (Tianjin) and was uncorrected. The yellow single-crystal was obtained after one week by slow evaporation of the acetone solution of the title compound. N-p-nitrobenzoyl-N'-(m-methylphenyl)thiourea. Color: yellow. Melting Point: 151–153 (°C). Elemental analysis (%) found (calcd.): C, 56.3(61.5); H, 4.11(4.7); N, 10.3(13.2); S, 10.2(10.0). IR (KBr, cm-1): 3244 (N—H), 1675 (C=O), 1521(C=C), 1336, 1264(C=S), 1151. 1H NMR(delta, p.p.m.): 2.40 (s, 3H, CH3); 6.91–9.07 (m, 8H, C6H4, C6H4); 12.30 (s, 1H, NH).

Refinement top

The amino hydrogen atoms were found from Fourier difference maps and fixed with N—H bond lengths of 0.86 Å. The H atoms of the aromatic group were geometrically idealized. The methyl H atoms were idealized to tetrahedral geometry and allowed to freely rotate about the C-C vector. All the H atoms were refined isotropically with isotropic vibration parameters related to the atoms to which they are bonded.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bonds is indicated by dashed lines.
[Figure 2] Fig. 2. View of the dimer of the title compound formed by intermolecular hydrogen bonds (shown as dashed lines).
N-(3-Methylphenyl)-N'-(4-nitrobenzoyl)thiourea top
Crystal data top
C15H13N3O3SF(000) = 656
Mr = 315.34Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.381 (10) ÅCell parameters from 2974 reflections
b = 8.549 (8) Åθ = 2.7–29.0°
c = 15.653 (12) ŵ = 0.24 mm1
β = 108.012 (16)°T = 296 K
V = 1448 (3) Å3Block, yellow
Z = 40.30 × 0.29 × 0.26 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2692 independent reflections
Radiation source: fine-focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1313
Tmin = 0.609, Tmax = 1.000k = 510
7125 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.1P)2 + 0.161P]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
2692 reflectionsΔρmax = 0.29 e Å3
201 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (4)
Crystal data top
C15H13N3O3SV = 1448 (3) Å3
Mr = 315.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.381 (10) ŵ = 0.24 mm1
b = 8.549 (8) ÅT = 296 K
c = 15.653 (12) Å0.30 × 0.29 × 0.26 mm
β = 108.012 (16)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2692 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2072 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 1.000Rint = 0.059
7125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.89Δρmax = 0.29 e Å3
2692 reflectionsΔρmin = 0.22 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16111 (5)0.07187 (6)0.10213 (3)0.0457 (2)
C60.05997 (17)0.3452 (2)0.17937 (12)0.0385 (5)
C80.14304 (16)0.2443 (2)0.05209 (11)0.0368 (5)
N20.05371 (14)0.25694 (19)0.03121 (10)0.0395 (4)
H2'0.00370.17920.04690.047*
C90.30022 (17)0.3945 (2)0.16605 (12)0.0379 (5)
C70.03499 (18)0.3776 (3)0.09162 (13)0.0413 (5)
O30.09358 (15)0.4980 (2)0.07658 (10)0.0612 (5)
N40.20710 (15)0.3727 (2)0.08184 (10)0.0416 (4)
H4'0.19080.45220.04640.050*
C100.28304 (18)0.3445 (3)0.24483 (12)0.0427 (5)
H100.21110.29130.24330.051*
N10.30000 (18)0.2241 (2)0.43126 (12)0.0545 (5)
C30.21803 (18)0.2731 (2)0.34317 (12)0.0406 (5)
C10.16868 (17)0.2707 (2)0.18569 (12)0.0391 (5)
H10.18790.24490.13380.047*
C20.24957 (18)0.2339 (2)0.26833 (13)0.0422 (5)
H20.32390.18350.27330.051*
C120.4762 (2)0.4543 (3)0.32628 (15)0.0544 (6)
H120.53740.47370.38040.065*
C110.37229 (19)0.3729 (3)0.32641 (13)0.0465 (5)
C50.03345 (18)0.3910 (3)0.25606 (13)0.0465 (5)
H50.03840.44680.25150.056*
C40.11358 (19)0.3537 (3)0.33902 (13)0.0470 (5)
H40.09670.38300.39120.056*
C140.40313 (18)0.4767 (3)0.16660 (14)0.0479 (5)
H140.41400.51180.11330.058*
C130.49105 (19)0.5068 (3)0.24843 (16)0.0539 (6)
H130.56130.56390.25010.065*
O10.27911 (18)0.2717 (3)0.49730 (10)0.0787 (6)
O20.38159 (19)0.1337 (3)0.43392 (12)0.0918 (7)
C150.3541 (3)0.3154 (4)0.41178 (14)0.0725 (8)
H15A0.33510.20570.40650.109*
H15B0.28720.37150.42280.109*
H15C0.42840.33210.46070.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0441 (4)0.0420 (4)0.0431 (3)0.0008 (2)0.0017 (2)0.0030 (2)
C60.0384 (10)0.0398 (11)0.0356 (10)0.0041 (9)0.0088 (8)0.0034 (9)
C80.0325 (9)0.0458 (12)0.0321 (9)0.0017 (8)0.0100 (8)0.0033 (8)
N20.0390 (9)0.0397 (9)0.0346 (8)0.0011 (7)0.0039 (7)0.0009 (7)
C90.0325 (9)0.0403 (11)0.0369 (10)0.0032 (8)0.0050 (8)0.0037 (9)
C70.0398 (11)0.0424 (11)0.0392 (10)0.0006 (9)0.0083 (8)0.0004 (9)
O30.0644 (10)0.0559 (10)0.0488 (9)0.0186 (9)0.0035 (7)0.0098 (8)
N40.0423 (9)0.0412 (10)0.0357 (8)0.0034 (8)0.0038 (7)0.0016 (8)
C100.0379 (10)0.0470 (12)0.0408 (11)0.0010 (9)0.0086 (8)0.0046 (10)
N10.0497 (11)0.0658 (13)0.0411 (10)0.0018 (10)0.0036 (8)0.0009 (9)
C30.0378 (10)0.0457 (12)0.0339 (10)0.0052 (9)0.0045 (8)0.0005 (9)
C10.0433 (11)0.0407 (11)0.0342 (9)0.0019 (9)0.0134 (8)0.0035 (9)
C20.0349 (10)0.0448 (11)0.0458 (11)0.0011 (9)0.0108 (8)0.0029 (9)
C120.0398 (12)0.0633 (15)0.0474 (12)0.0050 (11)0.0051 (9)0.0084 (11)
C110.0470 (12)0.0497 (12)0.0379 (10)0.0091 (10)0.0058 (9)0.0015 (10)
C50.0362 (10)0.0610 (14)0.0415 (11)0.0053 (10)0.0110 (9)0.0039 (10)
C40.0450 (11)0.0609 (14)0.0365 (10)0.0010 (10)0.0145 (9)0.0052 (10)
C140.0391 (11)0.0546 (13)0.0490 (12)0.0009 (10)0.0120 (9)0.0014 (10)
C130.0313 (10)0.0620 (15)0.0617 (13)0.0068 (10)0.0046 (9)0.0052 (12)
O10.0929 (14)0.0997 (16)0.0343 (8)0.0134 (12)0.0062 (8)0.0072 (9)
O20.0754 (12)0.1309 (19)0.0583 (11)0.0485 (14)0.0046 (9)0.0138 (12)
C150.0825 (18)0.090 (2)0.0401 (12)0.0026 (16)0.0122 (12)0.0013 (13)
Geometric parameters (Å, º) top
S1—C81.652 (3)C3—C41.358 (3)
C6—C11.368 (3)C3—C21.369 (3)
C6—C51.382 (3)C1—C21.372 (3)
C6—C71.488 (3)C1—H10.9300
C8—N41.320 (3)C2—H20.9300
C8—N21.388 (2)C12—C131.358 (4)
N2—C71.371 (3)C12—C111.372 (3)
N2—H2'0.8600C12—H120.9300
C9—C141.364 (3)C11—C151.497 (3)
C9—C101.375 (3)C5—C41.374 (3)
C9—N41.425 (3)C5—H50.9300
C7—O31.210 (3)C4—H40.9300
N4—H4'0.8600C14—C131.384 (3)
C10—C111.385 (3)C14—H140.9300
C10—H100.9300C13—H130.9300
N1—O21.199 (3)C15—H15A0.9600
N1—O11.201 (3)C15—H15B0.9600
N1—C31.467 (3)C15—H15C0.9600
C1—C6—C5120.32 (18)C2—C1—H1119.9
C1—C6—C7122.42 (18)C3—C2—C1118.3 (2)
C5—C6—C7117.25 (19)C3—C2—H2120.9
N4—C8—N2115.52 (18)C1—C2—H2120.9
N4—C8—S1126.90 (15)C13—C12—C11121.0 (2)
N2—C8—S1117.56 (15)C13—C12—H12119.5
C7—N2—C8128.27 (18)C11—C12—H12119.5
C7—N2—H2'115.9C12—C11—C10118.3 (2)
C8—N2—H2'115.9C12—C11—C15121.7 (2)
C14—C9—C10120.97 (18)C10—C11—C15120.1 (2)
C14—C9—N4117.68 (18)C4—C5—C6119.7 (2)
C10—C9—N4121.17 (19)C4—C5—H5120.1
O3—C7—N2123.19 (19)C6—C5—H5120.1
O3—C7—C6122.51 (19)C3—C4—C5118.59 (19)
N2—C7—C6114.24 (18)C3—C4—H4120.7
C8—N4—C9127.32 (17)C5—C4—H4120.7
C8—N4—H4'116.3C9—C14—C13118.4 (2)
C9—N4—H4'116.3C9—C14—H14120.8
C9—C10—C11120.3 (2)C13—C14—H14120.8
C9—C10—H10119.8C12—C13—C14120.9 (2)
C11—C10—H10119.8C12—C13—H13119.5
O2—N1—O1123.1 (2)C14—C13—H13119.5
O2—N1—C3118.5 (2)C11—C15—H15A109.5
O1—N1—C3118.3 (2)C11—C15—H15B109.5
C4—C3—C2122.73 (18)H15A—C15—H15B109.5
C4—C3—N1118.87 (18)C11—C15—H15C109.5
C2—C3—N1118.4 (2)H15A—C15—H15C109.5
C6—C1—C2120.21 (18)H15B—C15—H15C109.5
C6—C1—H1119.9
N4—C8—N2—C79.9 (3)C5—C6—C1—C23.3 (3)
S1—C8—N2—C7168.46 (16)C7—C6—C1—C2175.48 (19)
C8—N2—C7—O34.2 (3)C4—C3—C2—C13.5 (3)
C8—N2—C7—C6173.12 (17)N1—C3—C2—C1175.73 (18)
C1—C6—C7—O3141.1 (2)C6—C1—C2—C30.2 (3)
C5—C6—C7—O340.1 (3)C13—C12—C11—C100.5 (3)
C1—C6—C7—N241.5 (3)C13—C12—C11—C15179.4 (2)
C5—C6—C7—N2137.3 (2)C9—C10—C11—C121.2 (3)
N2—C8—N4—C9177.28 (17)C9—C10—C11—C15178.8 (2)
S1—C8—N4—C94.5 (3)C1—C6—C5—C43.6 (3)
C14—C9—N4—C8138.7 (2)C7—C6—C5—C4175.16 (19)
C10—C9—N4—C846.1 (3)C2—C3—C4—C53.1 (3)
C14—C9—C10—C112.0 (3)N1—C3—C4—C5176.1 (2)
N4—C9—C10—C11177.11 (18)C6—C5—C4—C30.5 (3)
O2—N1—C3—C4169.0 (2)C10—C9—C14—C131.0 (3)
O1—N1—C3—C48.1 (3)N4—C9—C14—C13176.2 (2)
O2—N1—C3—C210.3 (3)C11—C12—C13—C141.5 (4)
O1—N1—C3—C2172.6 (2)C9—C14—C13—C120.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.813.665 (4)179
N4—H4···O30.861.942.643 (3)138
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O3S
Mr315.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.381 (10), 8.549 (8), 15.653 (12)
β (°) 108.012 (16)
V3)1448 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.29 × 0.26
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.609, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7125, 2692, 2072
Rint0.059
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 0.89
No. of reflections2692
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2'···S1i0.8602.8053.665 (4)178.72
N4—H4'···O30.8601.9412.643 (3)137.91
Symmetry code: (i) x, y, z.
 

Acknowledgements

Financial support of this work by the Foundation of Northwest University for Nationalities is acknowledged.

References

First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B.-Q. (2005). Acta Cryst. E61, o3492–o3494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, B. Q. (2007). J. Chem. Crystallogr. 37, 87–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon, 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, B. Q., Xian, L., Zhang, B. & Song, H. B. (2005). J. Chem. Res.(S.), 2, 101–102.  CrossRef Google Scholar
First citationXian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem. 57, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationYusof, M. S. M., Pazil, A. M., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o1302–o1303.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds