metal-organic compounds
Retracted: catena-Poly[[(2,2′-bipyridine-κ2N,N′)nickel(II)]-μ-oxalato-κ4O1,O2:O1′,O2′]
aInstitute of Immunology, Key Laboratory of Natural Drugs and Immunological Engineering of Henan Province, College of Medicine, Henan University, Kaifeng 475003, People's Republic of China, bFirst Affiliated Hospital, Henan University, Kaifeng 475003, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: mayf_hd@126.com
The title compound, [Ni(C2O4)(C10H8N2)]n, is isostructural with its MnII, FeII, CuII and ZnII analogues. Each NiII atom is chelated by two oxalate ligands and one 2,2′-bipyridine, forming a slightly distorted octahedral geometry. Oxlate acts as a bridge to link neighbouring pairs of NiII cations, forming a one-dimensional wave-like chain. The crystal showed partial inversion twinning.
Related literature
For related literature, see: Hong & Do (1997); Eddaoudi et al. (2001); Liang et al. (2004); Shi et al. (2005). For the isostructural MnII, FeII, CuII and ZnII complexes, see: Li et al. (2006); Deguenon et al. (1990); Fun et al. (1999); Luo et al. (2001); Yu et al. (2006); Lin et al. (2006).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808028389/cf2213sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028389/cf2213Isup2.hkl
A mixture of nickel(II) nitrate hexahydrate (0.1 mmol), oxalic acid (0.2 mmol), 2,2'-bipyridine (0.1 mmol), and water (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 473 K for three days. Green crystals were obtained after cooling to room temperature, with a yield of 6%. Anal. Calc. for C12H8N2NiO4: C 47.54, H 2.64, N 9.24%; Found: C 47.51, H 2.58, N 9.16%.
All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C2O4)(C10H8N2)] | F(000) = 616 |
Mr = 302.91 | Dx = 1.622 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 1779 reflections |
a = 9.6486 (14) Å | θ = 2.6–21.5° |
b = 9.2627 (14) Å | µ = 1.57 mm−1 |
c = 13.883 (2) Å | T = 296 K |
V = 1240.7 (3) Å3 | Block, green |
Z = 4 | 0.12 × 0.10 × 0.06 mm |
Bruker APEXII CCD area-detector diffractometer | 2114 independent reflections |
Radiation source: fine-focus sealed tube | 1810 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→5 |
Tmin = 0.834, Tmax = 0.912 | k = −11→11 |
6146 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.118P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2114 reflections | Δρmax = 0.44 e Å−3 |
173 parameters | Δρmin = −0.44 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 971 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.20 (3) |
[Ni(C2O4)(C10H8N2)] | V = 1240.7 (3) Å3 |
Mr = 302.91 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 9.6486 (14) Å | µ = 1.57 mm−1 |
b = 9.2627 (14) Å | T = 296 K |
c = 13.883 (2) Å | 0.12 × 0.10 × 0.06 mm |
Bruker APEXII CCD area-detector diffractometer | 2114 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1810 reflections with I > 2σ(I) |
Tmin = 0.834, Tmax = 0.912 | Rint = 0.030 |
6146 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.154 | Δρmax = 0.44 e Å−3 |
S = 1.00 | Δρmin = −0.44 e Å−3 |
2114 reflections | Absolute structure: Flack (1983), 971 Friedel pairs |
173 parameters | Absolute structure parameter: 0.20 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.88396 (7) | 1.09402 (7) | 0.25107 (8) | 0.04352 (14) | |
O1 | 1.0093 (4) | 1.2363 (5) | 0.1613 (3) | 0.0503 (11) | |
O2 | 1.0673 (4) | 1.1297 (4) | 0.3368 (3) | 0.0415 (9) | |
O3 | 0.7686 (4) | 1.2511 (5) | 0.3347 (3) | 0.0452 (10) | |
O4 | 0.7033 (4) | 1.1389 (4) | 0.1640 (3) | 0.0416 (9) | |
N1 | 0.8006 (5) | 0.9059 (5) | 0.3352 (4) | 0.0401 (11) | |
N2 | 0.9510 (5) | 0.8925 (5) | 0.1747 (4) | 0.0395 (11) | |
C1 | 1.1555 (6) | 1.2124 (6) | 0.3004 (4) | 0.0380 (12) | |
C2 | 1.1199 (4) | 1.2745 (6) | 0.1993 (4) | 0.0305 (12) | |
C3 | 0.7196 (8) | 0.9174 (8) | 0.4115 (5) | 0.0535 (17) | |
H3 | 0.6964 | 1.0099 | 0.4320 | 0.064* | |
C4 | 0.6668 (8) | 0.8030 (10) | 0.4630 (5) | 0.070 (2) | |
H4 | 0.6106 | 0.8163 | 0.5168 | 0.084* | |
C5 | 0.7033 (9) | 0.6629 (9) | 0.4291 (6) | 0.073 (2) | |
H5 | 0.6728 | 0.5809 | 0.4613 | 0.087* | |
C6 | 0.7820 (8) | 0.6507 (7) | 0.3504 (6) | 0.0633 (19) | |
H6 | 0.8054 | 0.5598 | 0.3269 | 0.076* | |
C7 | 0.8286 (6) | 0.7736 (6) | 0.3038 (4) | 0.0405 (13) | |
C8 | 0.9159 (6) | 0.7661 (7) | 0.2154 (4) | 0.0408 (13) | |
C9 | 0.9646 (9) | 0.6356 (7) | 0.1766 (6) | 0.0627 (19) | |
H9 | 0.9447 | 0.5484 | 0.2067 | 0.075* | |
C10 | 1.0418 (10) | 0.6383 (10) | 0.0936 (7) | 0.081 (3) | |
H10 | 1.0713 | 0.5519 | 0.0663 | 0.097* | |
C11 | 1.0758 (8) | 0.7647 (9) | 0.0510 (5) | 0.066 (2) | |
H11 | 1.1292 | 0.7669 | −0.0048 | 0.080* | |
C12 | 1.0277 (8) | 0.8924 (8) | 0.0937 (5) | 0.0601 (19) | |
H12 | 1.0495 | 0.9802 | 0.0651 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0387 (2) | 0.0456 (2) | 0.0463 (2) | 0.0000 (2) | −0.0004 (3) | 0.0045 (3) |
O1 | 0.042 (2) | 0.065 (3) | 0.044 (3) | −0.012 (2) | −0.0101 (19) | 0.022 (2) |
O2 | 0.0384 (19) | 0.052 (2) | 0.034 (2) | −0.0078 (19) | −0.0056 (16) | 0.0150 (18) |
O3 | 0.039 (2) | 0.061 (2) | 0.036 (2) | 0.0098 (19) | −0.0144 (18) | −0.0128 (19) |
O4 | 0.042 (2) | 0.048 (2) | 0.035 (2) | −0.0017 (18) | −0.0036 (17) | −0.0095 (18) |
N1 | 0.043 (3) | 0.045 (3) | 0.032 (2) | −0.0063 (18) | 0.006 (2) | −0.0005 (19) |
N2 | 0.045 (3) | 0.038 (2) | 0.036 (3) | 0.0049 (19) | 0.008 (2) | 0.002 (2) |
C1 | 0.038 (3) | 0.036 (3) | 0.040 (3) | 0.007 (3) | −0.004 (3) | 0.004 (3) |
C2 | 0.028 (3) | 0.034 (3) | 0.029 (3) | −0.002 (2) | −0.0031 (19) | 0.005 (2) |
C3 | 0.062 (4) | 0.058 (4) | 0.041 (4) | −0.005 (3) | 0.016 (3) | 0.005 (3) |
C4 | 0.068 (4) | 0.098 (6) | 0.043 (4) | −0.024 (5) | 0.015 (4) | 0.011 (4) |
C5 | 0.087 (5) | 0.071 (5) | 0.060 (4) | −0.034 (4) | 0.011 (4) | 0.021 (4) |
C6 | 0.088 (5) | 0.039 (3) | 0.063 (4) | −0.022 (3) | 0.004 (4) | −0.002 (3) |
C7 | 0.040 (3) | 0.045 (3) | 0.037 (3) | −0.008 (3) | 0.000 (3) | 0.005 (2) |
C8 | 0.045 (3) | 0.046 (3) | 0.031 (3) | 0.008 (3) | 0.000 (3) | −0.005 (2) |
C9 | 0.089 (5) | 0.041 (3) | 0.058 (4) | 0.012 (3) | −0.002 (4) | 0.005 (3) |
C10 | 0.096 (7) | 0.073 (5) | 0.073 (5) | 0.040 (5) | 0.009 (5) | −0.017 (5) |
C11 | 0.091 (5) | 0.070 (5) | 0.037 (4) | 0.028 (4) | 0.012 (4) | 0.003 (3) |
C12 | 0.069 (5) | 0.064 (4) | 0.047 (4) | 0.023 (3) | 0.014 (3) | 0.012 (3) |
Ni1—O4 | 2.162 (4) | C3—C4 | 1.376 (10) |
Ni1—O2 | 2.157 (4) | C3—H3 | 0.930 |
Ni1—O1 | 2.180 (4) | C4—C5 | 1.425 (13) |
Ni1—O3 | 2.169 (4) | C4—H4 | 0.930 |
Ni1—N2 | 2.242 (5) | C5—C6 | 1.335 (12) |
Ni1—N1 | 2.246 (5) | C5—H5 | 0.930 |
O1—C2 | 1.242 (6) | C6—C7 | 1.385 (9) |
O2—C1 | 1.251 (7) | C6—H6 | 0.930 |
O3—C1i | 1.238 (6) | C7—C8 | 1.491 (8) |
O4—C2i | 1.237 (6) | C8—C9 | 1.404 (9) |
N1—C3 | 1.322 (8) | C9—C10 | 1.372 (12) |
N1—C7 | 1.328 (7) | C9—H9 | 0.930 |
N2—C8 | 1.343 (8) | C10—C11 | 1.353 (13) |
N2—C12 | 1.346 (9) | C10—H10 | 0.930 |
C1—O3ii | 1.238 (6) | C11—C12 | 1.402 (10) |
C1—C2 | 1.554 (6) | C11—H11 | 0.930 |
C2—O4ii | 1.237 (6) | C12—H12 | 0.930 |
O4—Ni1—O2 | 160.07 (14) | N1—C3—C4 | 125.0 (7) |
O4—Ni1—O1 | 90.65 (14) | N1—C3—H3 | 117.5 |
O2—Ni1—O1 | 76.55 (13) | C4—C3—H3 | 117.5 |
O4—Ni1—O3 | 75.90 (14) | C3—C4—C5 | 115.9 (7) |
O2—Ni1—O3 | 91.31 (15) | C3—C4—H4 | 122.0 |
O1—Ni1—O3 | 100.66 (17) | C5—C4—H4 | 122.0 |
O4—Ni1—N2 | 97.39 (17) | C6—C5—C4 | 119.3 (7) |
O2—Ni1—N2 | 98.72 (18) | C6—C5—H5 | 120.4 |
O1—Ni1—N2 | 94.20 (18) | C4—C5—H5 | 120.4 |
O3—Ni1—N2 | 163.69 (17) | C5—C6—C7 | 119.8 (7) |
O4—Ni1—N1 | 98.71 (17) | C5—C6—H6 | 120.1 |
O2—Ni1—N1 | 97.23 (17) | C7—C6—H6 | 120.1 |
O1—Ni1—N1 | 164.72 (18) | N1—C7—C6 | 122.7 (6) |
O3—Ni1—N1 | 93.35 (18) | N1—C7—C8 | 115.3 (5) |
N2—Ni1—N1 | 72.74 (17) | C6—C7—C8 | 122.0 (6) |
C2—O1—Ni1 | 114.0 (3) | N2—C8—C9 | 120.3 (6) |
C1—O2—Ni1 | 115.4 (4) | N2—C8—C7 | 116.6 (5) |
C1i—O3—Ni1 | 115.4 (3) | C9—C8—C7 | 123.0 (6) |
C2i—O4—Ni1 | 115.3 (3) | C8—C9—C10 | 119.2 (7) |
C3—N1—C7 | 117.2 (5) | C8—C9—H9 | 120.4 |
C3—N1—Ni1 | 124.5 (4) | C10—C9—H9 | 120.4 |
C7—N1—Ni1 | 118.2 (4) | C11—C10—C9 | 121.0 (7) |
C8—N2—C12 | 119.3 (5) | C11—C10—H10 | 119.5 |
C8—N2—Ni1 | 117.0 (4) | C9—C10—H10 | 119.5 |
C12—N2—Ni1 | 123.7 (4) | C10—C11—C12 | 117.7 (7) |
O2—C1—O3ii | 127.7 (5) | C10—C11—H11 | 121.2 |
O2—C1—C2 | 116.2 (5) | C12—C11—H11 | 121.2 |
O3ii—C1—C2 | 116.2 (5) | N2—C12—C11 | 122.4 (7) |
O4ii—C2—O1 | 125.1 (5) | N2—C12—H12 | 118.8 |
O4ii—C2—C1 | 117.0 (4) | C11—C12—H12 | 118.8 |
O1—C2—C1 | 117.8 (4) | ||
O4—Ni1—O1—C2 | 162.4 (4) | O1—Ni1—N2—C12 | −7.8 (6) |
O2—Ni1—O1—C2 | −2.1 (4) | O3—Ni1—N2—C12 | 147.8 (6) |
O3—Ni1—O1—C2 | 86.7 (4) | N1—Ni1—N2—C12 | −179.8 (6) |
N2—Ni1—O1—C2 | −100.1 (4) | Ni1—O2—C1—O3ii | −179.5 (5) |
N1—Ni1—O1—C2 | −69.5 (8) | Ni1—O2—C1—C2 | −0.7 (6) |
O4—Ni1—O2—C1 | −49.9 (7) | Ni1—O1—C2—O4ii | −175.8 (5) |
O1—Ni1—O2—C1 | 1.4 (4) | Ni1—O1—C2—C1 | 2.5 (6) |
O3—Ni1—O2—C1 | −99.2 (4) | O2—C1—C2—O4ii | 177.1 (6) |
N2—Ni1—O2—C1 | 93.7 (4) | O3ii—C1—C2—O4ii | −3.9 (7) |
N1—Ni1—O2—C1 | 167.2 (4) | O2—C1—C2—O1 | −1.3 (7) |
O4—Ni1—O3—C1i | 3.6 (4) | O3ii—C1—C2—O1 | 177.7 (6) |
O2—Ni1—O3—C1i | 168.2 (4) | C7—N1—C3—C4 | 2.7 (11) |
O1—Ni1—O3—C1i | 91.6 (4) | Ni1—N1—C3—C4 | 179.3 (6) |
N2—Ni1—O3—C1i | −63.7 (8) | N1—C3—C4—C5 | −0.5 (11) |
N1—Ni1—O3—C1i | −94.5 (4) | C3—C4—C5—C6 | −1.4 (12) |
O2—Ni1—O4—C2i | −52.8 (7) | C4—C5—C6—C7 | 1.0 (12) |
O1—Ni1—O4—C2i | −102.2 (4) | C3—N1—C7—C6 | −3.1 (9) |
O3—Ni1—O4—C2i | −1.3 (4) | Ni1—N1—C7—C6 | −179.9 (5) |
N2—Ni1—O4—C2i | 163.5 (4) | C3—N1—C7—C8 | 177.8 (6) |
N1—Ni1—O4—C2i | 89.9 (4) | Ni1—N1—C7—C8 | 0.9 (6) |
O4—Ni1—N1—C3 | −80.8 (6) | C5—C6—C7—N1 | 1.3 (11) |
O2—Ni1—N1—C3 | 87.1 (6) | C5—C6—C7—C8 | −179.6 (7) |
O1—Ni1—N1—C3 | 152.0 (6) | C12—N2—C8—C9 | 3.2 (9) |
O3—Ni1—N1—C3 | −4.6 (6) | Ni1—N2—C8—C9 | −174.3 (5) |
N2—Ni1—N1—C3 | −175.9 (6) | C12—N2—C8—C7 | −178.8 (6) |
O4—Ni1—N1—C7 | 95.7 (4) | Ni1—N2—C8—C7 | 3.6 (7) |
O2—Ni1—N1—C7 | −96.3 (4) | N1—C7—C8—N2 | −3.0 (7) |
O1—Ni1—N1—C7 | −31.5 (9) | C6—C7—C8—N2 | 177.8 (6) |
O3—Ni1—N1—C7 | 171.9 (4) | N1—C7—C8—C9 | 174.9 (6) |
N2—Ni1—N1—C7 | 0.6 (4) | C6—C7—C8—C9 | −4.3 (9) |
O4—Ni1—N2—C8 | −99.2 (5) | N2—C8—C9—C10 | −3.7 (11) |
O2—Ni1—N2—C8 | 92.6 (4) | C7—C8—C9—C10 | 178.5 (7) |
O1—Ni1—N2—C8 | 169.6 (4) | C8—C9—C10—C11 | 2.4 (13) |
O3—Ni1—N2—C8 | −34.7 (9) | C9—C10—C11—C12 | −0.9 (13) |
N1—Ni1—N2—C8 | −2.3 (4) | C8—N2—C12—C11 | −1.7 (11) |
O4—Ni1—N2—C12 | 83.4 (6) | Ni1—N2—C12—C11 | 175.7 (6) |
O2—Ni1—N2—C12 | −84.9 (6) | C10—C11—C12—N2 | 0.4 (12) |
Symmetry codes: (i) x−1/2, −y+5/2, z; (ii) x+1/2, −y+5/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C2O4)(C10H8N2)] |
Mr | 302.91 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 9.6486 (14), 9.2627 (14), 13.883 (2) |
V (Å3) | 1240.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.57 |
Crystal size (mm) | 0.12 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.834, 0.912 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6146, 2114, 1810 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.154, 1.00 |
No. of reflections | 2114 |
No. of parameters | 173 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.44 |
Absolute structure | Flack (1983), 971 Friedel pairs |
Absolute structure parameter | 0.20 (3) |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors are grateful for financial support from the Scientific Research Foundation of Outstanding Talented Persons of Henan Province (grant No. 74200510014).
References
Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deguenon, D., Bernardinelli, G., Tuchagues, J. P. & Castan, P. (1990). Inorg. Chem. 29, 3031–3039. CSD CrossRef CAS Web of Science Google Scholar
Eddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., Keeffe, M. O. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368-4369. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Shanmuga Sundara Raj, S., Fang, X., Zheng, L.-M. & Xin, X.-Q. (1999). Acta Cryst. C55, 903–905. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hong, C. S. & Do, Y. (1997). Inorg. Chem. 36, 5684–5685. CSD CrossRef PubMed CAS Web of Science Google Scholar
Li, L. L., Lin, K. J., Ho, C. J., Sun, C. P. & Yang, H. D. (2006). Chem. Commun. pp. 1286–1287. Web of Science CSD CrossRef Google Scholar
Liang, M., Sun, Y. Q., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2004). J. Coord. Chem. 57, 275–280. Web of Science CSD CrossRef CAS Google Scholar
Lin, X.-R., Ye, B.-Z., Liu, J.-S., Wei, C.-X. & Chen, J.-X. (2006). Acta Cryst. E62, m2130–m2132. Web of Science CSD CrossRef IUCr Journals Google Scholar
Luo, J.-H., Hong, M.-C., Liang, Y.-C. & Cao, R. (2001). Acta Cryst. E57, m361–m362. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, J. M., Yin, H. L. & Wu, C. J. (2005). J. Coord. Chem. 58, 915–920. Web of Science CSD CrossRef CAS Google Scholar
Yu, J. H., Hou, Q., Bi, M. H., Lu, Z. L., Zhang, X., Qu, X. J., Lu, J. & Xu, J. Q. (2006). J. Mol. Struct. 800, 69–75. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design of coordination compounds has attracted long-lasting research interest not only because of their appealing structural and topological novelty but also due to their unusual optical, electronic, magnetic and catalytic properties, and their further potential medical value derived from their antiviral properties and the inhibition of angiogenesis. To date, much of the work has been focused on coordination polymers with organic acid ligands (Hong et al. 1997; Eddaoudi et al. 2001; Liang et al. 2004; Shi et al.2005).
Here we report the synthesis and X-ray crystal structure analysis of the title compound, (I), with a bridging oxalate ligand. It is isostructural with its MnII, FeII, CuII, and ZnII analogues (Li et al., 2006; Deguenon et al., 1990; Fun et al., 1999; Luo et al., 2001; Yu et al., 2006; Lin et al., 2006).
As shown in Fig. 1, the Ni(II) atom is chelated by two oxlates and one 2,2'-bipyridine, forming a slightly distorted octahedral geometry. Oxalate acts as a bridge to link neighboring pairs of Ni(II) cations, forming a one-dimensional wave-like chain (Fig. 2). The Ni—N and Ni—O bond lengths are in the ranges 2.239 (5)–2.243 (5) and 2.161 (4)–2.166 (4) Å, respectively.