metal-organic compounds
Diaqua(2,2′-bipyridine-5,5′-dicarboxylato-κ2N,N′)(ethylenediamine-κ2N,N′)copper(II) 2.5-hydrate
aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com
In the molecule of the title compound, [Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O, the CuII atom is six-coordinated in a distorted octahedral configuration by two N atoms from a 2,2′-bipyridine-5,5′-dicarboxylate anion, two N atoms from ethylenediamine and two O atoms from two water molecules. There are also two and a half water molecules in the The planar five-membered ring is nearly coplanar with the adjacent pyridine rings, while the other five-membered ring adopts a twisted conformation, probably due to hydrogen bonding. In the intra- and intermolecular N—H⋯O and O—H⋯O hydrogen bonds link the molecules.
Related literature
For complexes involving 2,2′-bipyridine-5,5′-dicarboxylate anions, see: Min et al. (2002); Geary et al. (2003); Hafizovic et al. (2006); Schoknechta & Kempe (2004); Matthews et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808029061/hk2516sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029061/hk2516Isup2.hkl
For the preparation of the title compound, ethylenediamine (0.15 g, 2.50 mmol) was added to a suspension of 2,2'-bipyridine-5,5'-dicarboxylic acid (0.21 g, 0.83 mmol) in water (10 ml) and the resulting colorless solution was added to CuCl2.2H2O (0.14 g, 0.83 mmol) in water (10 ml). The resulting blue solution was stirred at 323 K for 15 min, and then was left to evaporate slowly at room temperature. After one week, blue plate crystals of the title compound were isolated (yield; 0.26 g, 70.01%, m.p. 488 K).
H3A, H3B, H4B, H4C (for NH2) and H5B, H5C, H6A, H6B, H7A, H7B, H8B, H9B, H9C (for H2O) atoms were located in difference syntheses and refined isotropically [N—H = 0.85 (4)–0.89 (4) Å and Uiso(H) = 0.035 (8)–0.043 (9) Å2; O—H = 0.72 (5)–0.97 (6) Å and Uiso(H) = 0.041 (10)–0.11 (2) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. | |
Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. |
[Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O | F(000) = 1856 |
Mr = 446.92 | Dx = 1.619 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1976 reflections |
a = 31.730 (6) Å | θ = 2.2–29.3° |
b = 7.2481 (14) Å | µ = 1.25 mm−1 |
c = 18.421 (4) Å | T = 298 K |
β = 120.05 (3)° | Plate, blue |
V = 3667.1 (17) Å3 | 0.50 × 0.18 × 0.07 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 4887 independent reflections |
Radiation source: fine-focus sealed tube | 4221 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ϕ and ω scans | θmax = 29.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −43→43 |
Tmin = 0.770, Tmax = 0.923 | k = −9→9 |
13747 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0582P)2 + 5.7488P] where P = (Fo2 + 2Fc2)/3 |
4887 reflections | (Δ/σ)max = 0.015 |
301 parameters | Δρmax = 1.71 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
[Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O | V = 3667.1 (17) Å3 |
Mr = 446.92 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 31.730 (6) Å | µ = 1.25 mm−1 |
b = 7.2481 (14) Å | T = 298 K |
c = 18.421 (4) Å | 0.50 × 0.18 × 0.07 mm |
β = 120.05 (3)° |
Bruker SMART CCD area-detector diffractometer | 4887 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 4221 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 0.923 | Rint = 0.043 |
13747 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 1.71 e Å−3 |
4887 reflections | Δρmin = −0.64 e Å−3 |
301 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.129145 (10) | 0.87872 (5) | 0.482858 (17) | 0.02876 (10) | |
O1 | 0.28103 (9) | 1.1389 (6) | 0.78353 (15) | 0.0769 (10) | |
O2 | 0.33829 (8) | 1.2562 (4) | 0.76199 (13) | 0.0501 (5) | |
O3 | 0.09405 (8) | 0.6749 (3) | 0.10781 (12) | 0.0447 (5) | |
O4 | 0.05397 (7) | 0.5529 (3) | 0.16672 (12) | 0.0410 (4) | |
O5 | 0.10527 (11) | 1.2087 (4) | 0.42720 (19) | 0.0570 (6) | |
H5B | 0.0955 (18) | 1.190 (7) | 0.375 (4) | 0.078 (15)* | |
H5C | 0.0838 (19) | 1.250 (8) | 0.424 (3) | 0.081 (18)* | |
O6 | 0.15861 (10) | 0.5703 (4) | 0.55005 (19) | 0.0513 (6) | |
H6A | 0.1748 (14) | 0.577 (5) | 0.596 (3) | 0.041 (10)* | |
H6B | 0.133 (2) | 0.484 (9) | 0.535 (4) | 0.101 (19)* | |
O7 | 0.41911 (13) | 1.2811 (5) | 0.74176 (19) | 0.0621 (7) | |
H7A | 0.3946 (18) | 1.303 (7) | 0.744 (3) | 0.062 (13)* | |
H7B | 0.434 (2) | 1.192 (10) | 0.764 (4) | 0.11 (2)* | |
O8 | 0.0000 | 0.9968 (6) | 0.2500 | 0.0568 (9) | |
H8B | 0.0210 (17) | 1.050 (7) | 0.252 (4) | 0.066 (15)* | |
O9 | 0.03530 (9) | 0.5945 (4) | −0.05647 (15) | 0.0511 (6) | |
H9B | 0.0049 (17) | 0.569 (6) | −0.080 (3) | 0.063 (12)* | |
H9C | 0.056 (2) | 0.608 (7) | 0.004 (4) | 0.097 (17)* | |
N1 | 0.19871 (7) | 0.9679 (3) | 0.53881 (12) | 0.0270 (4) | |
N2 | 0.14333 (7) | 0.8272 (3) | 0.38928 (12) | 0.0252 (4) | |
N3 | 0.11694 (8) | 0.9366 (3) | 0.57706 (13) | 0.0274 (4) | |
H3A | 0.1385 (13) | 0.896 (5) | 0.624 (2) | 0.043 (9)* | |
H3B | 0.1155 (12) | 1.055 (5) | 0.581 (2) | 0.035 (8)* | |
N4 | 0.05847 (7) | 0.8043 (3) | 0.41939 (14) | 0.0300 (4) | |
H4B | 0.0422 (13) | 0.848 (5) | 0.369 (2) | 0.037 (8)* | |
H4C | 0.0557 (12) | 0.682 (5) | 0.418 (2) | 0.037 (8)* | |
C1 | 0.22492 (9) | 1.0341 (4) | 0.61691 (15) | 0.0331 (5) | |
H1 | 0.2111 | 1.0336 | 0.6511 | 0.040* | |
C2 | 0.27180 (8) | 1.1035 (3) | 0.64927 (15) | 0.0298 (5) | |
C3 | 0.29927 (10) | 1.1729 (4) | 0.73932 (16) | 0.0384 (6) | |
C4 | 0.29229 (8) | 1.0998 (3) | 0.59865 (15) | 0.0290 (5) | |
H4A | 0.3235 | 1.1457 | 0.6183 | 0.035* | |
C5 | 0.26621 (8) | 1.0276 (3) | 0.51827 (14) | 0.0271 (4) | |
H5A | 0.2800 | 1.0220 | 0.4841 | 0.033* | |
C6 | 0.21916 (8) | 0.9637 (3) | 0.48967 (13) | 0.0226 (4) | |
C7 | 0.18787 (8) | 0.8846 (3) | 0.40512 (13) | 0.0223 (4) | |
C8 | 0.20220 (8) | 0.8669 (3) | 0.34572 (14) | 0.0279 (4) | |
H8A | 0.2328 | 0.9074 | 0.3573 | 0.033* | |
C9 | 0.17036 (9) | 0.7882 (3) | 0.26864 (14) | 0.0284 (5) | |
H9A | 0.1795 | 0.7759 | 0.2281 | 0.034* | |
C10 | 0.12496 (8) | 0.7278 (3) | 0.25224 (14) | 0.0257 (4) | |
C11 | 0.08798 (9) | 0.6439 (3) | 0.16880 (14) | 0.0293 (5) | |
C12 | 0.11346 (8) | 0.7489 (4) | 0.31536 (14) | 0.0287 (5) | |
H12 | 0.0834 | 0.7063 | 0.3056 | 0.034* | |
C13 | 0.06969 (9) | 0.8537 (4) | 0.55719 (16) | 0.0340 (5) | |
H13A | 0.0571 | 0.9136 | 0.5895 | 0.041* | |
H13B | 0.0738 | 0.7234 | 0.5711 | 0.041* | |
C14 | 0.03498 (9) | 0.8794 (4) | 0.46480 (16) | 0.0332 (5) | |
H14A | 0.0047 | 0.8148 | 0.4482 | 0.040* | |
H14B | 0.0278 | 1.0093 | 0.4520 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02016 (14) | 0.04566 (19) | 0.01986 (14) | −0.00232 (11) | 0.00958 (11) | −0.00645 (12) |
O1 | 0.0448 (13) | 0.154 (3) | 0.0339 (11) | −0.0239 (16) | 0.0215 (10) | −0.0362 (16) |
O2 | 0.0412 (11) | 0.0628 (14) | 0.0320 (10) | −0.0159 (10) | 0.0077 (9) | −0.0168 (10) |
O3 | 0.0551 (12) | 0.0527 (12) | 0.0221 (8) | −0.0170 (10) | 0.0163 (8) | −0.0079 (8) |
O4 | 0.0333 (9) | 0.0507 (11) | 0.0298 (9) | −0.0135 (8) | 0.0090 (8) | −0.0066 (8) |
O5 | 0.0548 (15) | 0.0671 (17) | 0.0513 (15) | 0.0147 (13) | 0.0281 (13) | 0.0149 (13) |
O6 | 0.0509 (14) | 0.0504 (13) | 0.0545 (15) | 0.0021 (11) | 0.0278 (13) | 0.0043 (12) |
O7 | 0.0718 (19) | 0.0669 (18) | 0.0573 (16) | 0.0017 (15) | 0.0396 (15) | 0.0151 (14) |
O8 | 0.054 (2) | 0.057 (2) | 0.0453 (19) | 0.000 | 0.0144 (18) | 0.000 |
O9 | 0.0465 (12) | 0.0693 (16) | 0.0318 (10) | −0.0222 (11) | 0.0153 (9) | −0.0088 (10) |
N1 | 0.0205 (8) | 0.0369 (10) | 0.0204 (8) | −0.0018 (7) | 0.0079 (7) | −0.0056 (8) |
N2 | 0.0213 (8) | 0.0325 (10) | 0.0206 (8) | −0.0014 (7) | 0.0096 (7) | −0.0041 (7) |
N3 | 0.0262 (9) | 0.0355 (11) | 0.0206 (9) | 0.0039 (8) | 0.0118 (8) | 0.0020 (8) |
N4 | 0.0237 (9) | 0.0398 (12) | 0.0253 (9) | −0.0018 (8) | 0.0115 (8) | −0.0014 (9) |
C1 | 0.0244 (10) | 0.0483 (14) | 0.0233 (10) | −0.0004 (10) | 0.0095 (9) | −0.0095 (10) |
C2 | 0.0249 (10) | 0.0344 (12) | 0.0219 (10) | 0.0017 (9) | 0.0056 (8) | −0.0048 (9) |
C3 | 0.0298 (12) | 0.0499 (15) | 0.0248 (11) | 0.0014 (11) | 0.0058 (9) | −0.0130 (11) |
C4 | 0.0240 (10) | 0.0298 (11) | 0.0262 (10) | −0.0037 (8) | 0.0073 (8) | −0.0034 (9) |
C5 | 0.0253 (10) | 0.0309 (11) | 0.0228 (10) | −0.0025 (8) | 0.0103 (8) | −0.0013 (9) |
C6 | 0.0226 (9) | 0.0227 (10) | 0.0197 (9) | 0.0010 (8) | 0.0085 (8) | −0.0014 (8) |
C7 | 0.0218 (9) | 0.0238 (9) | 0.0194 (9) | 0.0003 (8) | 0.0088 (8) | 0.0002 (8) |
C8 | 0.0268 (10) | 0.0336 (11) | 0.0241 (10) | −0.0054 (9) | 0.0133 (9) | −0.0024 (9) |
C9 | 0.0325 (11) | 0.0333 (12) | 0.0211 (10) | −0.0023 (9) | 0.0147 (9) | −0.0014 (9) |
C10 | 0.0285 (10) | 0.0266 (10) | 0.0184 (9) | 0.0006 (8) | 0.0090 (8) | −0.0009 (8) |
C11 | 0.0330 (11) | 0.0280 (11) | 0.0199 (9) | −0.0015 (9) | 0.0079 (9) | −0.0029 (8) |
C12 | 0.0236 (10) | 0.0375 (12) | 0.0230 (10) | −0.0036 (9) | 0.0102 (8) | −0.0057 (9) |
C13 | 0.0332 (12) | 0.0447 (14) | 0.0304 (12) | 0.0028 (10) | 0.0207 (10) | 0.0034 (10) |
C14 | 0.0238 (10) | 0.0434 (13) | 0.0333 (12) | 0.0025 (10) | 0.0150 (9) | 0.0015 (11) |
O5—Cu1 | 2.563 (3) | C4—C5 | 1.387 (3) |
O5—H5B | 0.86 (6) | C4—H4A | 0.9300 |
O5—H5C | 0.72 (5) | C5—C6 | 1.390 (3) |
O6—Cu1 | 2.499 (3) | C5—H5A | 0.9300 |
O6—H6A | 0.74 (4) | C6—N1 | 1.353 (3) |
O6—H6B | 0.96 (6) | C6—C7 | 1.481 (3) |
O7—H7A | 0.81 (5) | C7—N2 | 1.357 (3) |
O7—H7B | 0.78 (7) | C7—C8 | 1.385 (3) |
O8—H8B | 0.76 (6) | C8—C9 | 1.388 (3) |
O9—H9B | 0.86 (5) | C8—H8A | 0.9300 |
O9—H9C | 0.97 (6) | C9—C10 | 1.386 (3) |
N1—Cu1 | 2.018 (2) | C9—H9A | 0.9300 |
N2—Cu1 | 2.0225 (19) | C10—C12 | 1.390 (3) |
N3—Cu1 | 2.003 (2) | C10—C11 | 1.518 (3) |
N3—H3A | 0.85 (4) | C11—O4 | 1.249 (3) |
N3—H3B | 0.86 (4) | C11—O3 | 1.252 (3) |
N4—Cu1 | 2.015 (2) | C12—N2 | 1.335 (3) |
N4—H4B | 0.87 (4) | C12—H12 | 0.9300 |
N4—H4C | 0.89 (4) | C13—N3 | 1.481 (3) |
C1—N1 | 1.339 (3) | C13—C14 | 1.506 (4) |
C1—C2 | 1.390 (3) | C13—H13A | 0.9700 |
C1—H1 | 0.9300 | C13—H13B | 0.9700 |
C2—C4 | 1.378 (3) | C14—N4 | 1.475 (3) |
C2—C3 | 1.522 (3) | C14—H14A | 0.9700 |
C3—O1 | 1.237 (4) | C14—H14B | 0.9700 |
C3—O2 | 1.247 (4) | ||
O5—Cu1—O6 | 174.49 (10) | C4—C2—C1 | 118.0 (2) |
O5—Cu1—N1 | 86.22 (11) | C4—C2—C3 | 122.5 (2) |
O5—Cu1—N2 | 88.78 (10) | C1—C2—C3 | 119.5 (2) |
O5—Cu1—N3 | 90.26 (10) | O1—C3—O2 | 126.1 (3) |
O5—Cu1—N4 | 89.86 (11) | O1—C3—C2 | 116.8 (3) |
O6—Cu1—N1 | 89.50 (10) | O2—C3—C2 | 117.1 (3) |
O6—Cu1—N2 | 93.97 (10) | C2—C4—C5 | 119.9 (2) |
O6—Cu1—N3 | 86.84 (10) | C2—C4—H4A | 120.1 |
O6—Cu1—N4 | 94.56 (11) | C5—C4—H4A | 120.1 |
N3—Cu1—N4 | 85.24 (9) | C4—C5—C6 | 118.9 (2) |
N3—Cu1—N1 | 97.29 (9) | C4—C5—H5A | 120.5 |
N4—Cu1—N1 | 175.34 (9) | C6—C5—H5A | 120.5 |
N3—Cu1—N2 | 177.97 (9) | N1—C6—C5 | 121.5 (2) |
N4—Cu1—N2 | 96.54 (8) | N1—C6—C7 | 114.76 (18) |
N1—Cu1—N2 | 80.87 (8) | C5—C6—C7 | 123.7 (2) |
H5B—O5—H5C | 101 (5) | N2—C7—C8 | 121.3 (2) |
H6A—O6—H6B | 112 (5) | N2—C7—C6 | 115.00 (18) |
H7A—O7—H7B | 118 (6) | C8—C7—C6 | 123.65 (19) |
H9B—O9—H9C | 123 (4) | C7—C8—C9 | 119.2 (2) |
Cu1—O5—H5B | 100 (3) | C7—C8—H8A | 120.4 |
Cu1—O5—H5C | 120 (5) | C9—C8—H8A | 120.4 |
H5B—O5—H5C | 100 (6) | C10—C9—C8 | 119.8 (2) |
Cu1—O6—H6B | 113 (4) | C10—C9—H9A | 120.1 |
H6A—O6—H6B | 112 (5) | C8—C9—H9A | 120.1 |
Cu1—O6—H6A | 112 (3) | C9—C10—C12 | 117.5 (2) |
C1—N1—C6 | 118.6 (2) | C9—C10—C11 | 122.6 (2) |
C1—N1—Cu1 | 126.54 (17) | C12—C10—C11 | 119.8 (2) |
C6—N1—Cu1 | 114.80 (14) | O4—C11—O3 | 125.9 (2) |
C12—N2—C7 | 118.72 (19) | O4—C11—C10 | 117.5 (2) |
C12—N2—Cu1 | 126.92 (16) | O3—C11—C10 | 116.7 (2) |
C7—N2—Cu1 | 114.34 (15) | N2—C12—C10 | 123.4 (2) |
C13—N3—Cu1 | 108.16 (16) | N2—C12—H12 | 118.3 |
C13—N3—H3A | 108 (2) | C10—C12—H12 | 118.3 |
Cu1—N3—H3A | 114 (2) | N3—C13—C14 | 107.8 (2) |
C13—N3—H3B | 110 (2) | N3—C13—H13A | 110.1 |
Cu1—N3—H3B | 108 (2) | C14—C13—H13A | 110.1 |
H3A—N3—H3B | 109 (3) | N3—C13—H13B | 110.1 |
C14—N4—Cu1 | 107.68 (16) | C14—C13—H13B | 110.1 |
C14—N4—H4B | 106 (2) | H13A—C13—H13B | 108.5 |
Cu1—N4—H4B | 114 (2) | N4—C14—C13 | 107.7 (2) |
C14—N4—H4C | 108 (2) | N4—C14—H14A | 110.2 |
Cu1—N4—H4C | 110 (2) | C13—C14—H14A | 110.2 |
H4B—N4—H4C | 110 (3) | N4—C14—H14B | 110.2 |
N1—C1—C2 | 123.1 (2) | C13—C14—H14B | 110.2 |
N1—C1—H1 | 118.5 | H14A—C14—H14B | 108.5 |
C2—C1—H1 | 118.5 | ||
C1—N1—Cu1—N3 | 2.7 (2) | N2—C7—C8—C9 | −0.3 (4) |
C6—N1—Cu1—N3 | −175.05 (17) | C6—C7—C8—C9 | 179.0 (2) |
C1—N1—Cu1—N2 | −178.1 (2) | C7—C8—C9—C10 | −0.2 (4) |
C6—N1—Cu1—N2 | 4.10 (17) | C8—C9—C10—C12 | −0.3 (4) |
C12—N2—Cu1—N4 | −6.3 (2) | C8—C9—C10—C11 | 178.8 (2) |
C7—N2—Cu1—N4 | 171.90 (17) | C9—C10—C11—O4 | 162.4 (2) |
C12—N2—Cu1—N1 | 177.6 (2) | C12—C10—C11—O4 | −18.6 (3) |
C7—N2—Cu1—N1 | −4.19 (16) | C9—C10—C11—O3 | −18.6 (4) |
C13—N3—Cu1—N4 | 13.46 (17) | C12—C10—C11—O3 | 160.4 (2) |
C13—N3—Cu1—N1 | −170.47 (17) | C9—C10—C12—N2 | 1.5 (4) |
C14—N4—Cu1—N3 | 15.41 (18) | C11—C10—C12—N2 | −177.6 (2) |
C14—N4—Cu1—N2 | −163.62 (17) | N3—C13—C14—N4 | 53.5 (3) |
N1—C1—C2—C4 | −1.4 (4) | C2—C1—N1—C6 | 1.8 (4) |
N1—C1—C2—C3 | −178.9 (3) | C2—C1—N1—Cu1 | −175.9 (2) |
C4—C2—C3—O1 | −167.1 (3) | C5—C6—N1—C1 | −0.5 (4) |
C1—C2—C3—O1 | 10.4 (4) | C7—C6—N1—C1 | 178.7 (2) |
C4—C2—C3—O2 | 11.9 (4) | C5—C6—N1—Cu1 | 177.44 (18) |
C1—C2—C3—O2 | −170.6 (3) | C7—C6—N1—Cu1 | −3.3 (3) |
C1—C2—C4—C5 | −0.3 (4) | C10—C12—N2—C7 | −2.0 (4) |
C3—C2—C4—C5 | 177.2 (2) | C10—C12—N2—Cu1 | 176.16 (18) |
C2—C4—C5—C6 | 1.4 (4) | C8—C7—N2—C12 | 1.4 (3) |
C4—C5—C6—N1 | −1.1 (4) | C6—C7—N2—C12 | −178.0 (2) |
C4—C5—C6—C7 | 179.8 (2) | C8—C7—N2—Cu1 | −177.01 (18) |
N1—C6—C7—N2 | −0.2 (3) | C6—C7—N2—Cu1 | 3.6 (2) |
C5—C6—C7—N2 | 179.0 (2) | C14—C13—N3—Cu1 | −39.3 (2) |
N1—C6—C7—C8 | −179.6 (2) | C13—C14—N4—Cu1 | −40.8 (3) |
C5—C6—C7—C8 | −0.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O2i | 0.84 (3) | 2.11 (3) | 2.881 (3) | 153 (4) |
N3—H3B···O3ii | 0.86 (4) | 2.21 (4) | 3.031 (3) | 159 (4) |
N4—H4B···O8 | 0.87 (3) | 2.20 (3) | 3.054 (3) | 171 (4) |
N4—H4C···O9iii | 0.89 (4) | 2.23 (4) | 3.069 (4) | 158 (4) |
O5—H5B···O7iv | 0.86 (6) | 1.97 (6) | 2.807 (4) | 164 (5) |
O5—H5C···O9ii | 0.72 (7) | 2.08 (6) | 2.779 (5) | 165 (5) |
O6—H6A···O1i | 0.74 (5) | 1.99 (5) | 2.726 (4) | 171 (4) |
O6—H6B···O3iii | 0.95 (7) | 2.51 (7) | 3.267 (4) | 136 (5) |
O7—H7A···O2 | 0.82 (6) | 2.00 (6) | 2.776 (5) | 158 (5) |
O7—H7B···O4v | 0.78 (7) | 2.11 (7) | 2.827 (4) | 153 (7) |
O8—H8B···O7iv | 0.76 (6) | 2.22 (6) | 2.969 (5) | 178 (8) |
O9—H9B···O4vi | 0.86 (6) | 1.96 (5) | 2.744 (4) | 152 (5) |
O9—H9C···O3 | 0.97 (6) | 1.74 (6) | 2.706 (3) | 169 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x, −y+2, z+1/2; (iii) x, −y+1, z+1/2; (iv) −x+1/2, −y+5/2, −z+1; (v) −x+1/2, −y+3/2, −z+1; (vi) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O |
Mr | 446.92 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 31.730 (6), 7.2481 (14), 18.421 (4) |
β (°) | 120.05 (3) |
V (Å3) | 3667.1 (17) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.25 |
Crystal size (mm) | 0.50 × 0.18 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.770, 0.923 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13747, 4887, 4221 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.689 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.120, 1.10 |
No. of reflections | 4887 |
No. of parameters | 301 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.71, −0.64 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
O5—Cu1 | 2.563 (3) | N2—Cu1 | 2.0225 (19) |
O6—Cu1 | 2.499 (3) | N3—Cu1 | 2.003 (2) |
N1—Cu1 | 2.018 (2) | N4—Cu1 | 2.015 (2) |
O5—Cu1—O6 | 174.49 (10) | O6—Cu1—N4 | 94.56 (11) |
O5—Cu1—N1 | 86.22 (11) | N3—Cu1—N4 | 85.24 (9) |
O5—Cu1—N2 | 88.78 (10) | N3—Cu1—N1 | 97.29 (9) |
O5—Cu1—N3 | 90.26 (10) | N4—Cu1—N1 | 175.34 (9) |
O5—Cu1—N4 | 89.86 (11) | N3—Cu1—N2 | 177.97 (9) |
O6—Cu1—N1 | 89.50 (10) | N4—Cu1—N2 | 96.54 (8) |
O6—Cu1—N2 | 93.97 (10) | N1—Cu1—N2 | 80.87 (8) |
O6—Cu1—N3 | 86.84 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O2i | 0.84 (3) | 2.11 (3) | 2.881 (3) | 153 (4) |
N3—H3B···O3ii | 0.86 (4) | 2.21 (4) | 3.031 (3) | 159 (4) |
N4—H4B···O8 | 0.87 (3) | 2.20 (3) | 3.054 (3) | 171 (4) |
N4—H4C···O9iii | 0.89 (4) | 2.23 (4) | 3.069 (4) | 158 (4) |
O5—H5B···O7iv | 0.86 (6) | 1.97 (6) | 2.807 (4) | 164 (5) |
O5—H5C···O9ii | 0.72 (7) | 2.08 (6) | 2.779 (5) | 165 (5) |
O6—H6A···O1i | 0.74 (5) | 1.99 (5) | 2.726 (4) | 171 (4) |
O6—H6B···O3iii | 0.95 (7) | 2.51 (7) | 3.267 (4) | 136 (5) |
O7—H7A···O2 | 0.82 (6) | 2.00 (6) | 2.776 (5) | 158 (5) |
O7—H7B···O4v | 0.78 (7) | 2.11 (7) | 2.827 (4) | 153 (7) |
O8—H8B···O7iv | 0.76 (6) | 2.22 (6) | 2.969 (5) | 178 (8) |
O9—H9B···O4vi | 0.86 (6) | 1.96 (5) | 2.744 (4) | 152 (5) |
O9—H9C···O3 | 0.97 (6) | 1.74 (6) | 2.706 (3) | 169 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x, −y+2, z+1/2; (iii) x, −y+1, z+1/2; (iv) −x+1/2, −y+5/2, −z+1; (v) −x+1/2, −y+3/2, −z+1; (vi) −x, −y+1, −z. |
Acknowledgements
We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Geary, E. A. M., Hirata, N., Clifford, J., Durrant, J. R., Parsons, S., Dawson, A., Yellowlees, L. J. & Robertson, N. (2003). Dalton Trans. pp. 3757–3762. Web of Science CSD CrossRef Google Scholar
Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matthews, C. J., Elsegood, M. R. J., Bernardinelli, G., Clegg, W. & Williams, A. F. (2004). Dalton Trans. pp. 492–497. Web of Science CSD CrossRef Google Scholar
Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143–146. Web of Science CSD CrossRef CAS Google Scholar
Schoknechta, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem. 630, 1377–1379. Google Scholar
Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,2'-Bipyridine-5,5'-dicarboxylic acid (BPDCH2) is a good bridging ligand, and numerous complexes with BPDCH2 anions have been prepared, such as that of cobalt (Min et al., 2002), platinum (Geary et al., 2003; Hafizovic et al., 2006), neodyminum (Schoknechta & Kempe, 2004), ruthenium and rhodium (Matthews et al., 2004) complexes. For further investigation of 2,2'-bipyridine-5,5'-dicarboxylic acid, we synthesized the title compound and report herein its crystal structure.
In the title compound, (Fig. 1), the CuII atom is six-coordinated in a distorted octahedral configuration by two N atoms from 2,2'-bipyridine-5,5'-dicarboxylate anion, two N atoms from ethylenediamine and two O atoms from two water molecules (Table 1). There are also two and a half water molecules in the asymmetric unit. Rings A (N1/C1/C2/C4–C6), B (N2/C7–C10/C12) and C (Cu1/N1/N2/C6/C7) are, of course, planar, and the dihedral angles between them are A/B = 1.43 (3)°, A/C = 2.09 (3)° and B/C = 2.45 (3)°. So, they are nearly coplanar, while ring D (Cu1/N3/N4/C13/C14) adopts twisted conformation, probably due to the hydrogen bondings.
In the crystal structure, intra- and intermolecular N—H···O and O—H···O hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.