metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1284-m1285

Di­aqua­(2,2′-bi­pyridine-5,5′-di­carboxyl­ato-κ2N,N′)(ethyl­enedi­amine-κ2N,N′)copper(II) 2.5-hydrate

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 21 August 2008; accepted 10 September 2008; online 20 September 2008)

In the mol­ecule of the title compound, [Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O, the CuII atom is six-coordinated in a distorted octa­hedral configuration by two N atoms from a 2,2′-bipyridine-5,5′-dicarboxyl­ate anion, two N atoms from ethyl­enediamine and two O atoms from two water mol­ecules. There are also two and a half water mol­ecules in the asymmetric unit. The planar five-membered ring is nearly coplanar with the adjacent pyridine rings, while the other five-membered ring adopts a twisted conformation, probably due to hydrogen bonding. In the crystal structure, intra- and inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For complexes involving 2,2′-bipyridine-5,5′-dicarboxyl­ate anions, see: Min et al. (2002[Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143-146.]); Geary et al. (2003[Geary, E. A. M., Hirata, N., Clifford, J., Durrant, J. R., Parsons, S., Dawson, A., Yellowlees, L. J. & Robertson, N. (2003). Dalton Trans. pp. 3757-3762.]); Hafizovic et al. (2006[Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414-m416.]); Schoknechta & Kempe (2004[Schoknechta, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem. 630, 1377-1379.]); Matthews et al. (2004[Matthews, C. J., Elsegood, M. R. J., Bernardinelli, G., Clegg, W. & Williams, A. F. (2004). Dalton Trans. pp. 492-497.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O

  • Mr = 446.92

  • Monoclinic, C 2/c

  • a = 31.730 (6) Å

  • b = 7.2481 (14) Å

  • c = 18.421 (4) Å

  • β = 120.05 (3)°

  • V = 3667.1 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 298 (2) K

  • 0.50 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 0.923

  • 13747 measured reflections

  • 4887 independent reflections

  • 4221 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.10

  • 4887 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.71 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

O5—Cu1 2.563 (3)
O6—Cu1 2.499 (3)
N1—Cu1 2.018 (2)
N2—Cu1 2.0225 (19)
N3—Cu1 2.003 (2)
N4—Cu1 2.015 (2)
O5—Cu1—O6 174.49 (10)
O5—Cu1—N1 86.22 (11)
O5—Cu1—N2 88.78 (10)
O5—Cu1—N3 90.26 (10)
O5—Cu1—N4 89.86 (11)
O6—Cu1—N1 89.50 (10)
O6—Cu1—N2 93.97 (10)
O6—Cu1—N3 86.84 (10)
O6—Cu1—N4 94.56 (11)
N3—Cu1—N4 85.24 (9)
N3—Cu1—N1 97.29 (9)
N4—Cu1—N1 175.34 (9)
N3—Cu1—N2 177.97 (9)
N4—Cu1—N2 96.54 (8)
N1—Cu1—N2 80.87 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.84 (3) 2.11 (3) 2.881 (3) 153 (4)
N3—H3B⋯O3ii 0.86 (4) 2.21 (4) 3.031 (3) 159 (4)
N4—H4B⋯O8 0.87 (3) 2.20 (3) 3.054 (3) 171 (4)
N4—H4C⋯O9iii 0.89 (4) 2.23 (4) 3.069 (4) 158 (4)
O5—H5B⋯O7iv 0.86 (6) 1.97 (6) 2.807 (4) 164 (5)
O5—H5C⋯O9ii 0.72 (7) 2.08 (6) 2.779 (5) 165 (5)
O6—H6A⋯O1i 0.74 (5) 1.99 (5) 2.726 (4) 171 (4)
O6—H6B⋯O3iii 0.95 (7) 2.51 (7) 3.267 (4) 136 (5)
O7—H7A⋯O2 0.82 (6) 2.00 (6) 2.776 (5) 158 (5)
O7—H7B⋯O4v 0.78 (7) 2.11 (7) 2.827 (4) 153 (7)
O8—H8B⋯O7iv 0.76 (6) 2.22 (6) 2.969 (5) 178 (8)
O9—H9B⋯O4vi 0.86 (6) 1.96 (5) 2.744 (4) 152 (5)
O9—H9C⋯O3 0.97 (6) 1.74 (6) 2.706 (3) 169 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vi) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2,2'-Bipyridine-5,5'-dicarboxylic acid (BPDCH2) is a good bridging ligand, and numerous complexes with BPDCH2 anions have been prepared, such as that of cobalt (Min et al., 2002), platinum (Geary et al., 2003; Hafizovic et al., 2006), neodyminum (Schoknechta & Kempe, 2004), ruthenium and rhodium (Matthews et al., 2004) complexes. For further investigation of 2,2'-bipyridine-5,5'-dicarboxylic acid, we synthesized the title compound and report herein its crystal structure.

In the title compound, (Fig. 1), the CuII atom is six-coordinated in a distorted octahedral configuration by two N atoms from 2,2'-bipyridine-5,5'-dicarboxylate anion, two N atoms from ethylenediamine and two O atoms from two water molecules (Table 1). There are also two and a half water molecules in the asymmetric unit. Rings A (N1/C1/C2/C4–C6), B (N2/C7–C10/C12) and C (Cu1/N1/N2/C6/C7) are, of course, planar, and the dihedral angles between them are A/B = 1.43 (3)°, A/C = 2.09 (3)° and B/C = 2.45 (3)°. So, they are nearly coplanar, while ring D (Cu1/N3/N4/C13/C14) adopts twisted conformation, probably due to the hydrogen bondings.

In the crystal structure, intra- and intermolecular N—H···O and O—H···O hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For complexes involving 2,2'-bipyridine-5,5'-dicarboxylate anions, see: Min et al. (2002); Geary et al. (2003); Hafizovic et al. (2006); Schoknechta & Kempe (2004); Matthews et al. (2004).

Experimental top

For the preparation of the title compound, ethylenediamine (0.15 g, 2.50 mmol) was added to a suspension of 2,2'-bipyridine-5,5'-dicarboxylic acid (0.21 g, 0.83 mmol) in water (10 ml) and the resulting colorless solution was added to CuCl2.2H2O (0.14 g, 0.83 mmol) in water (10 ml). The resulting blue solution was stirred at 323 K for 15 min, and then was left to evaporate slowly at room temperature. After one week, blue plate crystals of the title compound were isolated (yield; 0.26 g, 70.01%, m.p. 488 K).

Refinement top

H3A, H3B, H4B, H4C (for NH2) and H5B, H5C, H6A, H6B, H7A, H7B, H8B, H9B, H9C (for H2O) atoms were located in difference syntheses and refined isotropically [N—H = 0.85 (4)–0.89 (4) Å and Uiso(H) = 0.035 (8)–0.043 (9) Å2; O—H = 0.72 (5)–0.97 (6) Å and Uiso(H) = 0.041 (10)–0.11 (2) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Diaqua(2,2'-bipyridine-5,5'-dicarboxylato-k2N,N')(ethylenediamine-k2N,N')copper(II) 2.5-hydrate top
Crystal data top
[Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2OF(000) = 1856
Mr = 446.92Dx = 1.619 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1976 reflections
a = 31.730 (6) Åθ = 2.2–29.3°
b = 7.2481 (14) ŵ = 1.25 mm1
c = 18.421 (4) ÅT = 298 K
β = 120.05 (3)°Plate, blue
V = 3667.1 (17) Å30.50 × 0.18 × 0.07 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4887 independent reflections
Radiation source: fine-focus sealed tube4221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 29.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 4343
Tmin = 0.770, Tmax = 0.923k = 99
13747 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0582P)2 + 5.7488P]
where P = (Fo2 + 2Fc2)/3
4887 reflections(Δ/σ)max = 0.015
301 parametersΔρmax = 1.71 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2OV = 3667.1 (17) Å3
Mr = 446.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.730 (6) ŵ = 1.25 mm1
b = 7.2481 (14) ÅT = 298 K
c = 18.421 (4) Å0.50 × 0.18 × 0.07 mm
β = 120.05 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4221 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.923Rint = 0.043
13747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.71 e Å3
4887 reflectionsΔρmin = 0.64 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.129145 (10)0.87872 (5)0.482858 (17)0.02876 (10)
O10.28103 (9)1.1389 (6)0.78353 (15)0.0769 (10)
O20.33829 (8)1.2562 (4)0.76199 (13)0.0501 (5)
O30.09405 (8)0.6749 (3)0.10781 (12)0.0447 (5)
O40.05397 (7)0.5529 (3)0.16672 (12)0.0410 (4)
O50.10527 (11)1.2087 (4)0.42720 (19)0.0570 (6)
H5B0.0955 (18)1.190 (7)0.375 (4)0.078 (15)*
H5C0.0838 (19)1.250 (8)0.424 (3)0.081 (18)*
O60.15861 (10)0.5703 (4)0.55005 (19)0.0513 (6)
H6A0.1748 (14)0.577 (5)0.596 (3)0.041 (10)*
H6B0.133 (2)0.484 (9)0.535 (4)0.101 (19)*
O70.41911 (13)1.2811 (5)0.74176 (19)0.0621 (7)
H7A0.3946 (18)1.303 (7)0.744 (3)0.062 (13)*
H7B0.434 (2)1.192 (10)0.764 (4)0.11 (2)*
O80.00000.9968 (6)0.25000.0568 (9)
H8B0.0210 (17)1.050 (7)0.252 (4)0.066 (15)*
O90.03530 (9)0.5945 (4)0.05647 (15)0.0511 (6)
H9B0.0049 (17)0.569 (6)0.080 (3)0.063 (12)*
H9C0.056 (2)0.608 (7)0.004 (4)0.097 (17)*
N10.19871 (7)0.9679 (3)0.53881 (12)0.0270 (4)
N20.14333 (7)0.8272 (3)0.38928 (12)0.0252 (4)
N30.11694 (8)0.9366 (3)0.57706 (13)0.0274 (4)
H3A0.1385 (13)0.896 (5)0.624 (2)0.043 (9)*
H3B0.1155 (12)1.055 (5)0.581 (2)0.035 (8)*
N40.05847 (7)0.8043 (3)0.41939 (14)0.0300 (4)
H4B0.0422 (13)0.848 (5)0.369 (2)0.037 (8)*
H4C0.0557 (12)0.682 (5)0.418 (2)0.037 (8)*
C10.22492 (9)1.0341 (4)0.61691 (15)0.0331 (5)
H10.21111.03360.65110.040*
C20.27180 (8)1.1035 (3)0.64927 (15)0.0298 (5)
C30.29927 (10)1.1729 (4)0.73932 (16)0.0384 (6)
C40.29229 (8)1.0998 (3)0.59865 (15)0.0290 (5)
H4A0.32351.14570.61830.035*
C50.26621 (8)1.0276 (3)0.51827 (14)0.0271 (4)
H5A0.28001.02200.48410.033*
C60.21916 (8)0.9637 (3)0.48967 (13)0.0226 (4)
C70.18787 (8)0.8846 (3)0.40512 (13)0.0223 (4)
C80.20220 (8)0.8669 (3)0.34572 (14)0.0279 (4)
H8A0.23280.90740.35730.033*
C90.17036 (9)0.7882 (3)0.26864 (14)0.0284 (5)
H9A0.17950.77590.22810.034*
C100.12496 (8)0.7278 (3)0.25224 (14)0.0257 (4)
C110.08798 (9)0.6439 (3)0.16880 (14)0.0293 (5)
C120.11346 (8)0.7489 (4)0.31536 (14)0.0287 (5)
H120.08340.70630.30560.034*
C130.06969 (9)0.8537 (4)0.55719 (16)0.0340 (5)
H13A0.05710.91360.58950.041*
H13B0.07380.72340.57110.041*
C140.03498 (9)0.8794 (4)0.46480 (16)0.0332 (5)
H14A0.00470.81480.44820.040*
H14B0.02781.00930.45200.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02016 (14)0.04566 (19)0.01986 (14)0.00232 (11)0.00958 (11)0.00645 (12)
O10.0448 (13)0.154 (3)0.0339 (11)0.0239 (16)0.0215 (10)0.0362 (16)
O20.0412 (11)0.0628 (14)0.0320 (10)0.0159 (10)0.0077 (9)0.0168 (10)
O30.0551 (12)0.0527 (12)0.0221 (8)0.0170 (10)0.0163 (8)0.0079 (8)
O40.0333 (9)0.0507 (11)0.0298 (9)0.0135 (8)0.0090 (8)0.0066 (8)
O50.0548 (15)0.0671 (17)0.0513 (15)0.0147 (13)0.0281 (13)0.0149 (13)
O60.0509 (14)0.0504 (13)0.0545 (15)0.0021 (11)0.0278 (13)0.0043 (12)
O70.0718 (19)0.0669 (18)0.0573 (16)0.0017 (15)0.0396 (15)0.0151 (14)
O80.054 (2)0.057 (2)0.0453 (19)0.0000.0144 (18)0.000
O90.0465 (12)0.0693 (16)0.0318 (10)0.0222 (11)0.0153 (9)0.0088 (10)
N10.0205 (8)0.0369 (10)0.0204 (8)0.0018 (7)0.0079 (7)0.0056 (8)
N20.0213 (8)0.0325 (10)0.0206 (8)0.0014 (7)0.0096 (7)0.0041 (7)
N30.0262 (9)0.0355 (11)0.0206 (9)0.0039 (8)0.0118 (8)0.0020 (8)
N40.0237 (9)0.0398 (12)0.0253 (9)0.0018 (8)0.0115 (8)0.0014 (9)
C10.0244 (10)0.0483 (14)0.0233 (10)0.0004 (10)0.0095 (9)0.0095 (10)
C20.0249 (10)0.0344 (12)0.0219 (10)0.0017 (9)0.0056 (8)0.0048 (9)
C30.0298 (12)0.0499 (15)0.0248 (11)0.0014 (11)0.0058 (9)0.0130 (11)
C40.0240 (10)0.0298 (11)0.0262 (10)0.0037 (8)0.0073 (8)0.0034 (9)
C50.0253 (10)0.0309 (11)0.0228 (10)0.0025 (8)0.0103 (8)0.0013 (9)
C60.0226 (9)0.0227 (10)0.0197 (9)0.0010 (8)0.0085 (8)0.0014 (8)
C70.0218 (9)0.0238 (9)0.0194 (9)0.0003 (8)0.0088 (8)0.0002 (8)
C80.0268 (10)0.0336 (11)0.0241 (10)0.0054 (9)0.0133 (9)0.0024 (9)
C90.0325 (11)0.0333 (12)0.0211 (10)0.0023 (9)0.0147 (9)0.0014 (9)
C100.0285 (10)0.0266 (10)0.0184 (9)0.0006 (8)0.0090 (8)0.0009 (8)
C110.0330 (11)0.0280 (11)0.0199 (9)0.0015 (9)0.0079 (9)0.0029 (8)
C120.0236 (10)0.0375 (12)0.0230 (10)0.0036 (9)0.0102 (8)0.0057 (9)
C130.0332 (12)0.0447 (14)0.0304 (12)0.0028 (10)0.0207 (10)0.0034 (10)
C140.0238 (10)0.0434 (13)0.0333 (12)0.0025 (10)0.0150 (9)0.0015 (11)
Geometric parameters (Å, º) top
O5—Cu12.563 (3)C4—C51.387 (3)
O5—H5B0.86 (6)C4—H4A0.9300
O5—H5C0.72 (5)C5—C61.390 (3)
O6—Cu12.499 (3)C5—H5A0.9300
O6—H6A0.74 (4)C6—N11.353 (3)
O6—H6B0.96 (6)C6—C71.481 (3)
O7—H7A0.81 (5)C7—N21.357 (3)
O7—H7B0.78 (7)C7—C81.385 (3)
O8—H8B0.76 (6)C8—C91.388 (3)
O9—H9B0.86 (5)C8—H8A0.9300
O9—H9C0.97 (6)C9—C101.386 (3)
N1—Cu12.018 (2)C9—H9A0.9300
N2—Cu12.0225 (19)C10—C121.390 (3)
N3—Cu12.003 (2)C10—C111.518 (3)
N3—H3A0.85 (4)C11—O41.249 (3)
N3—H3B0.86 (4)C11—O31.252 (3)
N4—Cu12.015 (2)C12—N21.335 (3)
N4—H4B0.87 (4)C12—H120.9300
N4—H4C0.89 (4)C13—N31.481 (3)
C1—N11.339 (3)C13—C141.506 (4)
C1—C21.390 (3)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C41.378 (3)C14—N41.475 (3)
C2—C31.522 (3)C14—H14A0.9700
C3—O11.237 (4)C14—H14B0.9700
C3—O21.247 (4)
O5—Cu1—O6174.49 (10)C4—C2—C1118.0 (2)
O5—Cu1—N186.22 (11)C4—C2—C3122.5 (2)
O5—Cu1—N288.78 (10)C1—C2—C3119.5 (2)
O5—Cu1—N390.26 (10)O1—C3—O2126.1 (3)
O5—Cu1—N489.86 (11)O1—C3—C2116.8 (3)
O6—Cu1—N189.50 (10)O2—C3—C2117.1 (3)
O6—Cu1—N293.97 (10)C2—C4—C5119.9 (2)
O6—Cu1—N386.84 (10)C2—C4—H4A120.1
O6—Cu1—N494.56 (11)C5—C4—H4A120.1
N3—Cu1—N485.24 (9)C4—C5—C6118.9 (2)
N3—Cu1—N197.29 (9)C4—C5—H5A120.5
N4—Cu1—N1175.34 (9)C6—C5—H5A120.5
N3—Cu1—N2177.97 (9)N1—C6—C5121.5 (2)
N4—Cu1—N296.54 (8)N1—C6—C7114.76 (18)
N1—Cu1—N280.87 (8)C5—C6—C7123.7 (2)
H5B—O5—H5C101 (5)N2—C7—C8121.3 (2)
H6A—O6—H6B112 (5)N2—C7—C6115.00 (18)
H7A—O7—H7B118 (6)C8—C7—C6123.65 (19)
H9B—O9—H9C123 (4)C7—C8—C9119.2 (2)
Cu1—O5—H5B100 (3)C7—C8—H8A120.4
Cu1—O5—H5C120 (5)C9—C8—H8A120.4
H5B—O5—H5C100 (6)C10—C9—C8119.8 (2)
Cu1—O6—H6B113 (4)C10—C9—H9A120.1
H6A—O6—H6B112 (5)C8—C9—H9A120.1
Cu1—O6—H6A112 (3)C9—C10—C12117.5 (2)
C1—N1—C6118.6 (2)C9—C10—C11122.6 (2)
C1—N1—Cu1126.54 (17)C12—C10—C11119.8 (2)
C6—N1—Cu1114.80 (14)O4—C11—O3125.9 (2)
C12—N2—C7118.72 (19)O4—C11—C10117.5 (2)
C12—N2—Cu1126.92 (16)O3—C11—C10116.7 (2)
C7—N2—Cu1114.34 (15)N2—C12—C10123.4 (2)
C13—N3—Cu1108.16 (16)N2—C12—H12118.3
C13—N3—H3A108 (2)C10—C12—H12118.3
Cu1—N3—H3A114 (2)N3—C13—C14107.8 (2)
C13—N3—H3B110 (2)N3—C13—H13A110.1
Cu1—N3—H3B108 (2)C14—C13—H13A110.1
H3A—N3—H3B109 (3)N3—C13—H13B110.1
C14—N4—Cu1107.68 (16)C14—C13—H13B110.1
C14—N4—H4B106 (2)H13A—C13—H13B108.5
Cu1—N4—H4B114 (2)N4—C14—C13107.7 (2)
C14—N4—H4C108 (2)N4—C14—H14A110.2
Cu1—N4—H4C110 (2)C13—C14—H14A110.2
H4B—N4—H4C110 (3)N4—C14—H14B110.2
N1—C1—C2123.1 (2)C13—C14—H14B110.2
N1—C1—H1118.5H14A—C14—H14B108.5
C2—C1—H1118.5
C1—N1—Cu1—N32.7 (2)N2—C7—C8—C90.3 (4)
C6—N1—Cu1—N3175.05 (17)C6—C7—C8—C9179.0 (2)
C1—N1—Cu1—N2178.1 (2)C7—C8—C9—C100.2 (4)
C6—N1—Cu1—N24.10 (17)C8—C9—C10—C120.3 (4)
C12—N2—Cu1—N46.3 (2)C8—C9—C10—C11178.8 (2)
C7—N2—Cu1—N4171.90 (17)C9—C10—C11—O4162.4 (2)
C12—N2—Cu1—N1177.6 (2)C12—C10—C11—O418.6 (3)
C7—N2—Cu1—N14.19 (16)C9—C10—C11—O318.6 (4)
C13—N3—Cu1—N413.46 (17)C12—C10—C11—O3160.4 (2)
C13—N3—Cu1—N1170.47 (17)C9—C10—C12—N21.5 (4)
C14—N4—Cu1—N315.41 (18)C11—C10—C12—N2177.6 (2)
C14—N4—Cu1—N2163.62 (17)N3—C13—C14—N453.5 (3)
N1—C1—C2—C41.4 (4)C2—C1—N1—C61.8 (4)
N1—C1—C2—C3178.9 (3)C2—C1—N1—Cu1175.9 (2)
C4—C2—C3—O1167.1 (3)C5—C6—N1—C10.5 (4)
C1—C2—C3—O110.4 (4)C7—C6—N1—C1178.7 (2)
C4—C2—C3—O211.9 (4)C5—C6—N1—Cu1177.44 (18)
C1—C2—C3—O2170.6 (3)C7—C6—N1—Cu13.3 (3)
C1—C2—C4—C50.3 (4)C10—C12—N2—C72.0 (4)
C3—C2—C4—C5177.2 (2)C10—C12—N2—Cu1176.16 (18)
C2—C4—C5—C61.4 (4)C8—C7—N2—C121.4 (3)
C4—C5—C6—N11.1 (4)C6—C7—N2—C12178.0 (2)
C4—C5—C6—C7179.8 (2)C8—C7—N2—Cu1177.01 (18)
N1—C6—C7—N20.2 (3)C6—C7—N2—Cu13.6 (2)
C5—C6—C7—N2179.0 (2)C14—C13—N3—Cu139.3 (2)
N1—C6—C7—C8179.6 (2)C13—C14—N4—Cu140.8 (3)
C5—C6—C7—C80.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.84 (3)2.11 (3)2.881 (3)153 (4)
N3—H3B···O3ii0.86 (4)2.21 (4)3.031 (3)159 (4)
N4—H4B···O80.87 (3)2.20 (3)3.054 (3)171 (4)
N4—H4C···O9iii0.89 (4)2.23 (4)3.069 (4)158 (4)
O5—H5B···O7iv0.86 (6)1.97 (6)2.807 (4)164 (5)
O5—H5C···O9ii0.72 (7)2.08 (6)2.779 (5)165 (5)
O6—H6A···O1i0.74 (5)1.99 (5)2.726 (4)171 (4)
O6—H6B···O3iii0.95 (7)2.51 (7)3.267 (4)136 (5)
O7—H7A···O20.82 (6)2.00 (6)2.776 (5)158 (5)
O7—H7B···O4v0.78 (7)2.11 (7)2.827 (4)153 (7)
O8—H8B···O7iv0.76 (6)2.22 (6)2.969 (5)178 (8)
O9—H9B···O4vi0.86 (6)1.96 (5)2.744 (4)152 (5)
O9—H9C···O30.97 (6)1.74 (6)2.706 (3)169 (4)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+2, z+1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+5/2, z+1; (v) x+1/2, y+3/2, z+1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O
Mr446.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)31.730 (6), 7.2481 (14), 18.421 (4)
β (°) 120.05 (3)
V3)3667.1 (17)
Z8
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.50 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.770, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
13747, 4887, 4221
Rint0.043
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.10
No. of reflections4887
No. of parameters301
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.71, 0.64

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O5—Cu12.563 (3)N2—Cu12.0225 (19)
O6—Cu12.499 (3)N3—Cu12.003 (2)
N1—Cu12.018 (2)N4—Cu12.015 (2)
O5—Cu1—O6174.49 (10)O6—Cu1—N494.56 (11)
O5—Cu1—N186.22 (11)N3—Cu1—N485.24 (9)
O5—Cu1—N288.78 (10)N3—Cu1—N197.29 (9)
O5—Cu1—N390.26 (10)N4—Cu1—N1175.34 (9)
O5—Cu1—N489.86 (11)N3—Cu1—N2177.97 (9)
O6—Cu1—N189.50 (10)N4—Cu1—N296.54 (8)
O6—Cu1—N293.97 (10)N1—Cu1—N280.87 (8)
O6—Cu1—N386.84 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.84 (3)2.11 (3)2.881 (3)153 (4)
N3—H3B···O3ii0.86 (4)2.21 (4)3.031 (3)159 (4)
N4—H4B···O80.87 (3)2.20 (3)3.054 (3)171 (4)
N4—H4C···O9iii0.89 (4)2.23 (4)3.069 (4)158 (4)
O5—H5B···O7iv0.86 (6)1.97 (6)2.807 (4)164 (5)
O5—H5C···O9ii0.72 (7)2.08 (6)2.779 (5)165 (5)
O6—H6A···O1i0.74 (5)1.99 (5)2.726 (4)171 (4)
O6—H6B···O3iii0.95 (7)2.51 (7)3.267 (4)136 (5)
O7—H7A···O20.82 (6)2.00 (6)2.776 (5)158 (5)
O7—H7B···O4v0.78 (7)2.11 (7)2.827 (4)153 (7)
O8—H8B···O7iv0.76 (6)2.22 (6)2.969 (5)178 (8)
O9—H9B···O4vi0.86 (6)1.96 (5)2.744 (4)152 (5)
O9—H9C···O30.97 (6)1.74 (6)2.706 (3)169 (4)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+2, z+1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+5/2, z+1; (v) x+1/2, y+3/2, z+1; (vi) x, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGeary, E. A. M., Hirata, N., Clifford, J., Durrant, J. R., Parsons, S., Dawson, A., Yellowlees, L. J. & Robertson, N. (2003). Dalton Trans. pp. 3757–3762.  Web of Science CSD CrossRef Google Scholar
First citationHafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatthews, C. J., Elsegood, M. R. J., Bernardinelli, G., Clegg, W. & Williams, A. F. (2004). Dalton Trans. pp. 492–497.  Web of Science CSD CrossRef Google Scholar
First citationMin, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchoknechta, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem. 630, 1377–1379.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1284-m1285
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds