metal-organic compounds
Bis(2,4,6-trimethylpyridinium) hexachloridoplatinate(IV)
aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Kazeroon Branch, Kazeroon, Fars, Iran, cDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and dDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com
The 8H12N)2[PtCl6], contains one independent protonated 2,4,6-trimethylpyridinium cation and one half of a centrosymmetric [PtCl6]2− anion. The Pt ion has an almost ideal octahedral coordination. In the intramolecular N—H⋯Cl and intermolecular C—H⋯Cl hydrogen bonds result in the formation of a supramolecular structure.
of the title compound, (CRelated literature
For general background, see: Rafizadeh et al. (2006); Yousefi, Amani & Khavasi (2007); Abedi et al. (2008); Hojjat Kashani et al. (2008). For related literature, see: Biradha & Zaworotko (1998); Hallfeldt & Urland (2002); Foces-Foces et al. (1999); Zordan & Brammer (2004); Hasan et al. (2001); Juan et al. (1998); Li & Liu (2003); Hu et al. (2003); Terzis & Mentzafos (1983); Zordan et al. (2005); Yousefi, Ahmadi et al. (2007); Yousefi et al. (2007a,b); Amani et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053680802881X/hk2526sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680802881X/hk2526Isup2.hkl
For the preparation of the title compound, (I), a solution of 2,4,6-trimethylpyridine (0.18 g, 1.48 mmol) in methanol (15 ml) was added to a solution of H2PtCl6.6H2O, (0.38 g, 0.74 mmol) in acetonitrile (25 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, orange prismatic crystals of (I) were isolated (yield; 0.35 g; 72.5%).
H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).
Data collection: SMART (Bruker, 1998); cell
SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) x, y + 1, z]. | |
Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. |
(C8H12N)2[PtCl6] | Z = 1 |
Mr = 652.15 | F(000) = 314 |
Triclinic, P1 | Dx = 1.927 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6302 (8) Å | Cell parameters from 1715 reflections |
b = 9.1328 (9) Å | θ = 3.0–29.1° |
c = 9.4599 (10) Å | µ = 6.96 mm−1 |
α = 99.201 (8)° | T = 298 K |
β = 109.683 (8)° | Prism, orange |
γ = 108.471 (8)° | 0.32 × 0.30 × 0.25 mm |
V = 561.87 (12) Å3 |
Bruker SMART CCD area-detector diffractometer | 2962 independent reflections |
Radiation source: fine-focus sealed tube | 2952 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
ϕ and ω scans | θmax = 29.1°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −10→10 |
Tmin = 0.121, Tmax = 0.176 | k = −12→12 |
6510 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0557P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | (Δ/σ)max = 0.010 |
2962 reflections | Δρmax = 1.20 e Å−3 |
116 parameters | Δρmin = −1.44 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.115 (6) |
(C8H12N)2[PtCl6] | γ = 108.471 (8)° |
Mr = 652.15 | V = 561.87 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.6302 (8) Å | Mo Kα radiation |
b = 9.1328 (9) Å | µ = 6.96 mm−1 |
c = 9.4599 (10) Å | T = 298 K |
α = 99.201 (8)° | 0.32 × 0.30 × 0.25 mm |
β = 109.683 (8)° |
Bruker SMART CCD area-detector diffractometer | 2962 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 2952 reflections with I > 2σ(I) |
Tmin = 0.121, Tmax = 0.176 | Rint = 0.099 |
6510 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.18 | Δρmax = 1.20 e Å−3 |
2962 reflections | Δρmin = −1.44 e Å−3 |
116 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.0000 | 0.5000 | 0.0000 | 0.03163 (12) | |
Cl1 | 0.1751 (2) | 0.65180 (16) | 0.26337 (11) | 0.0496 (3) | |
Cl2 | −0.2671 (2) | 0.5772 (2) | −0.01978 (15) | 0.0522 (3) | |
Cl3 | −0.1501 (2) | 0.27660 (16) | 0.07023 (13) | 0.0486 (3) | |
N1 | −0.2844 (7) | 0.7163 (6) | 0.3174 (5) | 0.0473 (9) | |
H1D | −0.2918 | 0.6752 | 0.2261 | 0.057* | |
C1 | −0.2767 (12) | 0.4641 (8) | 0.3642 (6) | 0.0567 (14) | |
H1A | −0.1645 | 0.4737 | 0.3364 | 0.068* | |
H1B | −0.4017 | 0.3993 | 0.2738 | 0.068* | |
H1C | −0.2670 | 0.4137 | 0.4465 | 0.068* | |
C2 | −0.2721 (8) | 0.6278 (7) | 0.4197 (5) | 0.0448 (10) | |
C3 | −0.2540 (10) | 0.6948 (7) | 0.5686 (6) | 0.0496 (11) | |
H3 | −0.2448 | 0.6366 | 0.6410 | 0.059* | |
C4 | −0.2496 (10) | 0.8492 (8) | 0.6091 (6) | 0.0533 (12) | |
C5 | −0.2300 (17) | 0.9231 (11) | 0.7709 (8) | 0.077 (2) | |
H5A | −0.3464 | 0.9469 | 0.7620 | 0.092* | |
H5B | −0.1094 | 1.0211 | 0.8227 | 0.092* | |
H5C | −0.2215 | 0.8483 | 0.8310 | 0.092* | |
C6 | −0.2651 (10) | 0.9340 (7) | 0.4965 (7) | 0.0540 (12) | |
H6 | −0.2611 | 1.0380 | 0.5221 | 0.065* | |
C7 | −0.2858 (9) | 0.8639 (7) | 0.3499 (6) | 0.0493 (11) | |
C8 | −0.3106 (14) | 0.9436 (10) | 0.2211 (9) | 0.0687 (18) | |
H8A | −0.4370 | 0.8775 | 0.1325 | 0.082* | |
H8B | −0.2007 | 0.9562 | 0.1898 | 0.082* | |
H8C | −0.3100 | 1.0478 | 0.2589 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.03766 (15) | 0.03245 (15) | 0.02614 (14) | 0.01452 (9) | 0.01484 (8) | 0.00745 (7) |
Cl1 | 0.0642 (7) | 0.0451 (6) | 0.0288 (4) | 0.0166 (5) | 0.0150 (4) | 0.0042 (3) |
Cl2 | 0.0546 (6) | 0.0726 (8) | 0.0457 (5) | 0.0397 (6) | 0.0252 (5) | 0.0200 (5) |
Cl3 | 0.0621 (7) | 0.0406 (6) | 0.0440 (5) | 0.0148 (5) | 0.0274 (5) | 0.0148 (4) |
N1 | 0.049 (2) | 0.052 (2) | 0.0380 (16) | 0.0178 (18) | 0.0172 (15) | 0.0113 (15) |
C1 | 0.076 (4) | 0.061 (3) | 0.045 (2) | 0.039 (3) | 0.028 (2) | 0.016 (2) |
C2 | 0.052 (2) | 0.047 (2) | 0.0385 (18) | 0.024 (2) | 0.0190 (17) | 0.0110 (16) |
C3 | 0.062 (3) | 0.052 (3) | 0.041 (2) | 0.028 (2) | 0.0239 (19) | 0.0121 (18) |
C4 | 0.062 (3) | 0.054 (3) | 0.044 (2) | 0.026 (2) | 0.023 (2) | 0.0060 (19) |
C5 | 0.116 (7) | 0.067 (5) | 0.052 (3) | 0.044 (5) | 0.039 (4) | 0.005 (3) |
C6 | 0.059 (3) | 0.042 (3) | 0.057 (3) | 0.018 (2) | 0.023 (2) | 0.012 (2) |
C7 | 0.046 (2) | 0.047 (3) | 0.049 (2) | 0.0134 (19) | 0.0164 (18) | 0.0172 (19) |
C8 | 0.074 (4) | 0.063 (4) | 0.067 (3) | 0.025 (3) | 0.024 (3) | 0.033 (3) |
Pt1—Cl1 | 2.3225 (11) | C3—H3 | 0.9300 |
Pt1—Cl1i | 2.3225 (11) | C4—C6 | 1.409 (9) |
Pt1—Cl2 | 2.3199 (12) | C4—C5 | 1.507 (8) |
Pt1—Cl2i | 2.3199 (12) | C5—H5A | 0.9600 |
Pt1—Cl3i | 2.3197 (13) | C5—H5B | 0.9600 |
Pt1—Cl3 | 2.3197 (13) | C5—H5C | 0.9600 |
N1—H1D | 0.8600 | C6—C7 | 1.365 (9) |
C1—C2 | 1.488 (8) | C6—H6 | 0.9300 |
C1—H1A | 0.9600 | C7—N1 | 1.338 (8) |
C1—H1B | 0.9600 | C7—C8 | 1.505 (8) |
C1—H1C | 0.9600 | C8—H8A | 0.9600 |
C2—N1 | 1.355 (7) | C8—H8B | 0.9600 |
C2—C3 | 1.385 (6) | C8—H8C | 0.9600 |
C3—C4 | 1.388 (8) | ||
Cl1—Pt1—Cl1i | 180.0 | C2—C3—C4 | 119.7 (5) |
Cl2—Pt1—Cl1i | 89.35 (5) | C2—C3—H3 | 120.2 |
Cl2i—Pt1—Cl1i | 90.65 (5) | C4—C3—H3 | 120.2 |
Cl2—Pt1—Cl1 | 90.65 (5) | C3—C4—C6 | 118.9 (5) |
Cl2—Pt1—Cl2i | 180.0 | C3—C4—C5 | 120.0 (6) |
Cl3—Pt1—Cl1 | 90.10 (5) | C6—C4—C5 | 121.1 (6) |
Cl3i—Pt1—Cl1i | 90.10 (5) | C4—C5—H5A | 109.5 |
Cl3—Pt1—Cl1i | 89.90 (5) | C4—C5—H5B | 109.5 |
Cl3—Pt1—Cl2 | 90.45 (6) | H5A—C5—H5B | 109.5 |
Cl3i—Pt1—Cl2i | 90.45 (6) | C4—C5—H5C | 109.5 |
Cl3—Pt1—Cl2i | 89.55 (6) | H5A—C5—H5C | 109.5 |
Cl3i—Pt1—Cl3 | 180.0 | H5B—C5—H5C | 109.5 |
C2—N1—H1D | 118.0 | C7—C6—C4 | 120.1 (5) |
C7—N1—C2 | 123.9 (5) | C7—C6—H6 | 119.9 |
C7—N1—H1D | 118.0 | C4—C6—H6 | 119.9 |
C2—C1—H1A | 109.5 | N1—C7—C6 | 118.9 (5) |
C2—C1—H1B | 109.5 | N1—C7—C8 | 117.6 (6) |
H1A—C1—H1B | 109.5 | C6—C7—C8 | 123.5 (6) |
C2—C1—H1C | 109.5 | C7—C8—H8A | 109.5 |
H1A—C1—H1C | 109.5 | C7—C8—H8B | 109.5 |
H1B—C1—H1C | 109.5 | H8A—C8—H8B | 109.5 |
N1—C2—C3 | 118.5 (5) | C7—C8—H8C | 109.5 |
N1—C2—C1 | 117.3 (4) | H8A—C8—H8C | 109.5 |
C3—C2—C1 | 124.2 (5) | H8B—C8—H8C | 109.5 |
C1—C2—N1—C7 | 178.8 (6) | C3—C4—C6—C7 | 0.6 (10) |
C3—C2—N1—C7 | −1.9 (9) | C5—C4—C6—C7 | −179.0 (7) |
N1—C2—C3—C4 | 0.2 (9) | C4—C6—C7—N1 | −2.2 (10) |
C1—C2—C3—C4 | 179.5 (6) | C4—C6—C7—C8 | 177.8 (7) |
C2—C3—C4—C6 | 0.4 (10) | C6—C7—N1—C2 | 2.9 (9) |
C2—C3—C4—C5 | 180.0 (7) | C8—C7—N1—C2 | −177.0 (6) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl2 | 0.86 | 2.45 | 3.301 (5) | 173 |
C1—H1C···Cl1ii | 0.96 | 2.81 | 3.743 (6) | 165 |
C8—H8A···Cl3iii | 0.96 | 2.80 | 3.731 (10) | 163 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x−1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | (C8H12N)2[PtCl6] |
Mr | 652.15 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.6302 (8), 9.1328 (9), 9.4599 (10) |
α, β, γ (°) | 99.201 (8), 109.683 (8), 108.471 (8) |
V (Å3) | 561.87 (12) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 6.96 |
Crystal size (mm) | 0.32 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.121, 0.176 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6510, 2962, 2952 |
Rint | 0.099 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.088, 1.18 |
No. of reflections | 2962 |
No. of parameters | 116 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.20, −1.44 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Pt1—Cl1 | 2.3225 (11) | Pt1—Cl3 | 2.3197 (13) |
Pt1—Cl2 | 2.3199 (12) | ||
Cl2—Pt1—Cl1i | 89.35 (5) | Cl3—Pt1—Cl1i | 89.90 (5) |
Cl2—Pt1—Cl1 | 90.65 (5) | Cl3—Pt1—Cl2 | 90.45 (6) |
Cl3—Pt1—Cl1 | 90.10 (5) | Cl3—Pt1—Cl2i | 89.55 (6) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl2 | 0.86 | 2.45 | 3.301 (5) | 173.00 |
C1—H1C···Cl1ii | 0.96 | 2.81 | 3.743 (6) | 165.00 |
C8—H8A···Cl3iii | 0.96 | 2.80 | 3.731 (10) | 163.00 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x−1, −y+1, −z. |
Acknowledgements
We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Biradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67–78. CrossRef CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Foces-Foces, C., Llamas-Saiz, A. L., Lorente, P., Golubev, N. S. & Limbach, H.-H. (1999). Acta Cryst. C55, 377–381. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hallfeldt, J. & Urland, W. (2002). Z. Anorg. Allg. Chem. 628, 2661–2664. CrossRef CAS Google Scholar
Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem. 40, 795–800. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335–341. Web of Science CSD CrossRef Google Scholar
Juan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem. 37, 4756–4757. PubMed Google Scholar
Li, D. & Liu, D. (2003). Anal. Sci. 19, 1089–1090. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Terzis, A. & Mentzafos, D. (1983). Inorg. Chem. 22, 1140–1143. CSD CrossRef CAS Web of Science Google Scholar
Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460–m2461. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748–m2749. Web of Science CrossRef IUCr Journals Google Scholar
Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512–519. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350–354. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, there has been considerable interest in proton transfer systems and their structures (Rafizadeh et al., 2006; Yousefi, Amani & Khavasi, 2007; Abedi et al., 2008; Hojjat Kashani et al., 2008). Several proton transfer systems using 2,4,6-trimethylpyridine, with proton donor molecules, such as [2,4,6-tmpy.H]2[H2BTEC], (II), (Biradha & Zaworotko, 1998), {[2,4,6-tmpy.H]10[Er(H2O)Cl5]2[ErCl6]3Cl}, (III), (Hallfeldt & Urland, 2002), [2,4,6-tmpy.H][2-NBA], (IV) and [2,4,6-tmpy.H][3,5-NBA], (V), (Foces-Foces et al., 1999) [where 2,4,6-tmpy.H is 2,4,6-trimethylpyridinium, H2BTEC is dihydrogen-1,2,4,5-benzenetetracarboxylate, 2-NBA is 2-nitrobenzoate and 3,5-NBA is 3,5- nitrobenzoate] have been synthesized and characterized by single-crystal X-ray diffraction methods.
There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6].2H2O, (VI), and [HpyI-3]2[PtCl6].2H2O, (VII),(Zordan & Brammer, 2004), [BMIM]2[PtCl6], (VIII), and [EMIM]2[PtCl6], (IX), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (X), (Juan et al., 1998), {p-C6H4(CH2ImMe)2[PtCl6]}, (XI), (Li & Liu, 2003), [het][PtCl6].2H2O, (XII), (Hu et al., 2003), [9-MeGuaH]2[PtCl6].2H2O, (XIII), (Terzis & Mentzafos, 1983), [HpyCl-3]3[PtCl6]Cl, (XIV), (Zordan et al., 2005), [2,9-dmphen.H]2[PtCl6], (XV), (Yousefi, Ahmadi et al., 2007), [H2DA18C6][PtCl6].2H2O, (XVI), (Yousefi et al., 2007a), [2,6-dmpy.H]2[PtCl6], (XVII), (Amani et al., 2008) and [TBA]3[PtCl6]Cl, (XVIII), (Yousefi et al., 2007b) [where hpy is halo-pyridinium, BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methyl- imidazolium, DABCO is 1,4-diazabicyclooctane, Im is imidazolium, het is 2-(α-hydroxyethyl)thiamine, 9-MeGuaH is 9-methylguaninium, 2,9-dmphen.H is 2,9-dimethyl-1,10-phenanthrolinium, H2DA18C6 is 1,10-Diazonia-18-crown-6, 2,6-dmpy.H is 2,6-dimethylpyridinium and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of (I), (Fig. 1) contains one independent protonated 2,4,6-trimethylpyridinium cation and one half of a centrosymmetric [PtCl6]2- anion. The Pt ion has an octahedral coordination. In cation, the bond lengths and angles are in good agreement with the corresponding values in (II) and (IV). In [PtCl6]2- anion, the Pt—Cl bond lengths and Cl—Pt—Cl bond angles (Table 1) are also within normal ranges, as in (XVI), (XVII) and (XVIII).
In the crystal structure (Fig. 2), intramolecular N—H···Cl and intermolecular C—H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.