organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1947-o1948

4,4′-Methyl­enedianilinium bis­­(3-carb­­oxy-4-hy­droxy­benzene­sulfonate) monohydrate

aDepartment of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China, and bTongji Hospital, Huazhong University of Science and Technology, Wuhan 430070, People's Republic of China
*Correspondence e-mail: duguihuan@126.com

(Received 1 September 2008; accepted 10 September 2008; online 17 September 2008)

Co-crystallization of 4,4′-methyl­enediphenyl­amine (MDA) and 5-sulfosalicylic acid (5-H2SSA) yields the title salt, C13H16N22+·2C7H5O6S·H2O. The asymmetric unit is comprised of one dication, two anions and one water mol­ecule. In the crystal structure, the components of the salt are linked by a combination of inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds into a three-dimensional framework. In addition, two weak ππ inter­actions [with centroid–centroid distances of 3.8734 (15) and 3.7465 (15) Å] and one C—Hπ inter­action further stabilize the crystal structure.

Related literature

For related structures, see: Smith (2005[Smith, G. (2005). Acta Cryst. E61, o3398-o3400.]); Smith et al. (2005a[Smith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. E61, o313-o316.],b[Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105-o109.], 2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313-o2315.]). For background information, see: Wang et al. (2008[Wang, Z., Yao, K., Liu, Z. & Xu, H. (2008). Acta Cryst. E64, o1192.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N22+·2C7H5O6S·H2O

  • Mr = 652.63

  • Monoclinic, P 21

  • a = 5.8769 (1) Å

  • b = 18.8659 (3) Å

  • c = 12.9864 (2) Å

  • β = 94.668 (1)°

  • V = 1435.06 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 (2) K

  • 0.40 × 0.30 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.990

  • 16262 measured reflections

  • 6379 independent reflections

  • 5671 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.09

  • 6379 reflections

  • 433 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3009 Friedel pairs

  • Flack parameter: 0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.90 (4) 2.03 (4) 2.896 (4) 161 (3)
N1—H1B⋯O1ii 0.82 (4) 2.47 (3) 2.751 (3) 101 (3)
N1—H1B⋯O12 0.82 (4) 2.01 (4) 2.814 (4) 168 (3)
N1—H1C⋯O11iii 0.99 (4) 1.92 (4) 2.870 (3) 161 (3)
N2—H2A⋯O4iii 0.82 (4) 2.07 (4) 2.801 (4) 149 (3)
N2—H2C⋯O5 0.97 (4) 2.16 (4) 2.927 (4) 135 (3)
N2—H2B⋯O6 0.84 (4) 2.20 (4) 2.889 (4) 139 (3)
N2—H2C⋯O3i 0.97 (4) 2.19 (4) 2.940 (3) 134 (3)
O2—H2D⋯O11iv 0.80 (4) 1.91 (4) 2.688 (3) 164 (4)
O3—H3A⋯O1 0.86 (4) 1.77 (4) 2.569 (3) 153 (4)
O8—H8A⋯O13v 0.87 (5) 1.76 (5) 2.598 (4) 160 (4)
O9—H9A⋯O7 0.86 (5) 1.96 (4) 2.678 (3) 141 (4)
O9—H9A⋯O6vi 0.86 (5) 2.38 (4) 2.872 (3) 117 (3)
O13—H13A⋯O10vii 0.83 (8) 1.93 (8) 2.759 (4) 176 (7)
O13—H13B⋯O6 0.89 (7) 2.39 (7) 3.064 (4) 132 (6)
C2—H2⋯O5viii 0.93 2.54 3.452 (4) 168
C6—H6⋯O12 0.93 2.48 3.210 (3) 136
C12—H12⋯O9ix 0.93 2.55 3.428 (4) 158
C16—H16⋯Cgx 0.93 2.85 3.727 (3) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) x, y-1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) [-x+1, y-{\script{1\over 2}}, -z+1]; (vi) [-x, y-{\script{1\over 2}}, -z+1]; (vii) x, y+1, z; (viii) [-x+2, y-{\script{1\over 2}}, -z+2]; (ix) [-x, y+{\script{1\over 2}}, -z+1]; (x) [-x+1, y+{\script{1\over 2}}, -z+2]. Cg is the centroid of the C8–C13 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In a continuation of our studies on the molecular and supra-molecular structures in organic salts formed by 5-sulfosaliyclic acid (5-H2SSA) and N-containing lewis bases (Wang et al., 2008), we now report our findings on the title compound (Scheme I).

Two 5-HSSA- anions, one 4,4'-methylenediphenylammonium dication (MDA2+) and one water molecules comprise the asymmetric unit of (I) (Fig. 1). As in similar analogous organic adducts which have been previuosly reported (Smith et al., 2005a,b; Smith, 2005; Smith et al., 2006), both the sulfonic H atoms are transferred to the amine N atom, yielding the title organic salt. However, the conformations of the sulfonate groups are different in the two anions. The perpendicular distances of the sulfonate O4, O5 and O6 atoms to their adjacent benzene plane are 0.585 (1), 1.263 (1) and 0.967 (1) Å, respectively. The corresponding distances are 1.456 (1), 0.844 (1) and 0.312 (1)Å for O10, O11 and O12 atoms, respectively.

In the crystal structure, the component ions are linked by a combination of O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig.2). An analysis using PLATON (Spek, 2003) showed that two π-π [Cg1···Cg3 = 3.8734 (15) and dperpendicular = 3.522 (2) Å, symmetry code: 1 + x, y, z; Cg2···Cg3 = 3.7465 (15) and dperpendicular = 3.526 (2), symmetry code: 1 - x,1/2 + y,1 - z, where Cg1, Cg2 and Cg3 are the centroids of the C1—C6, C8—C13 and C21—C26 benzene rings, respectively] and one C—H···π [dH16—Cg2= 2.85 Å, dC16—Cg2= 3.727 (3) Å, AC16—H16···Cg2=157°, symmetry code: 1 - x,1/2 + y,2 - z] interactions exist, which further consolidate the crystal structure.

Related literature top

For related structures, see: Smith (2005); Smith et al. (2005a,b, 2006). For background information, see: Wang et al. (2008). Cg is the centroid of the C8–C13 ring.

Experimental top

All reagents and solvents were used as obtained without further purification. Equivalent molar amount of 4,4'-methylenediphenylamine and 5-sulfosalicylic acid dihydrate were dissolved in 95% methanol (20 ml). The mixture was stirred for 30 minutes at 300 K and then filtered. Colorless plate crystals of (I) suitable for single-crystal X-ray diffraction analysis grew at the bottom of the vessel in two weeks after slow evaporation of the solution.

Refinement top

The title compound is racemic in solution but spontaneously resolved upon crystallization. The absolute configuration of the molecules in the crystal selected was readily determined and the configuration has no chemical significance.

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and refined in a riding mode [Uiso(H) = 1.2Ueq(C)]. H atoms bonded to N and O atoms were found in difference maps and the N—H and O—H distances were refined freely [the refined distances are given in Table 1; Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), respectively].

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional framework structure. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing.
4,4'-Methylenedianilinium bis(3-carboxy-4-hydroxybenzenesulfonate) monohydrate top
Crystal data top
C13H16N22+·2C7H5O6S·H2OF(000) = 680
Mr = 652.63Dx = 1.510 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7439 reflections
a = 5.8769 (1) Åθ = 2.7–27.0°
b = 18.8659 (3) ŵ = 0.26 mm1
c = 12.9864 (2) ÅT = 296 K
β = 94.668 (1)°Plate, colorless
V = 1435.06 (4) Å30.40 × 0.30 × 0.04 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6379 independent reflections
Radiation source: fine focus sealed Siemens Mo tube5671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
0.3° wide ω exposures scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.894, Tmax = 0.990k = 2424
16262 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.1606P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
6379 reflectionsΔρmax = 0.33 e Å3
433 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 3009 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C13H16N22+·2C7H5O6S·H2OV = 1435.06 (4) Å3
Mr = 652.63Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8769 (1) ŵ = 0.26 mm1
b = 18.8659 (3) ÅT = 296 K
c = 12.9864 (2) Å0.40 × 0.30 × 0.04 mm
β = 94.668 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6379 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5671 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.990Rint = 0.023
16262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.33 e Å3
S = 1.09Δρmin = 0.17 e Å3
6379 reflectionsAbsolute structure: Flack (1983), 3009 Friedel pairs
433 parametersAbsolute structure parameter: 0.05 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9685 (4)0.25024 (11)0.7833 (2)0.0379 (5)
C21.1742 (5)0.28453 (14)0.8000 (2)0.0466 (6)
H21.28390.26840.85020.056*
C31.2157 (5)0.34335 (14)0.7412 (3)0.0490 (7)
H31.35490.36670.75210.059*
C41.0543 (5)0.36826 (13)0.6662 (2)0.0430 (6)
C50.8515 (5)0.33235 (15)0.6504 (2)0.0491 (7)
H50.74270.34770.59930.059*
C60.8060 (5)0.27345 (14)0.7097 (2)0.0477 (6)
H60.66670.25010.69930.057*
C71.0939 (6)0.43468 (15)0.6053 (2)0.0537 (7)
H7A1.01420.43090.53710.064*
H7B1.25560.43970.59690.064*
C81.0094 (5)0.49994 (13)0.6599 (2)0.0419 (6)
C91.1433 (5)0.53092 (14)0.7404 (2)0.0464 (6)
H91.28750.51250.75940.056*
C101.0668 (5)0.58854 (14)0.7929 (2)0.0451 (6)
H101.15970.60960.84560.054*
C110.8526 (4)0.61432 (12)0.7664 (2)0.0398 (5)
C120.7149 (4)0.58484 (15)0.6869 (2)0.0442 (6)
H120.57020.60310.66890.053*
C130.7954 (5)0.52752 (15)0.6342 (2)0.0486 (6)
H130.70320.50730.58050.058*
N10.9214 (5)0.18836 (12)0.8458 (2)0.0443 (5)
H1B0.804 (6)0.1679 (19)0.824 (3)0.053*
H1A0.928 (5)0.1973 (18)0.914 (3)0.053*
H1C1.040 (6)0.1513 (18)0.845 (3)0.053*
N20.7665 (5)0.67217 (14)0.8262 (2)0.0515 (6)
H2A0.861 (6)0.703 (2)0.841 (3)0.062*
H2B0.665 (6)0.696 (2)0.793 (3)0.062*
H2C0.692 (6)0.6611 (19)0.888 (3)0.062*
C140.5812 (4)0.96279 (12)0.95964 (18)0.0340 (5)
C150.4353 (4)0.99410 (13)1.02603 (19)0.0365 (5)
C160.2674 (5)0.95376 (14)1.0667 (2)0.0445 (6)
H160.17550.97391.11380.053*
C170.2356 (5)0.88431 (13)1.0379 (2)0.0407 (6)
H170.11990.85791.06430.049*
C180.3759 (4)0.85330 (11)0.96958 (19)0.0347 (5)
C190.5485 (4)0.89143 (12)0.93132 (19)0.0351 (5)
H190.64390.87010.88670.042*
C200.7674 (4)1.00540 (13)0.91927 (19)0.0379 (5)
O10.7991 (3)1.06703 (9)0.94503 (16)0.0494 (5)
O20.8919 (4)0.97200 (11)0.85615 (17)0.0505 (5)
H2D0.967 (7)1.001 (2)0.831 (3)0.076*
O30.4490 (4)1.06391 (9)1.05113 (16)0.0493 (5)
H3A0.565 (7)1.079 (2)1.021 (3)0.074*
O40.0960 (4)0.74792 (10)0.94941 (17)0.0548 (5)
O50.4898 (4)0.72016 (10)0.99028 (16)0.0533 (5)
O60.3678 (3)0.76210 (11)0.82021 (14)0.0492 (4)
S10.32980 (11)0.76440 (3)0.92902 (5)0.03782 (15)
C210.0913 (5)0.20452 (12)0.48434 (19)0.0384 (5)
C220.1231 (5)0.17470 (14)0.4583 (2)0.0420 (6)
C230.1983 (4)0.11873 (15)0.5176 (2)0.0440 (6)
H230.34420.10040.50280.053*
C240.0591 (4)0.09056 (13)0.5976 (2)0.0400 (5)
H240.10940.05270.63550.048*
C250.1583 (4)0.11918 (13)0.62162 (18)0.0368 (5)
C260.2297 (4)0.17632 (13)0.56590 (19)0.0373 (5)
H260.37260.19620.58330.045*
C270.1761 (5)0.26283 (15)0.4210 (2)0.0466 (6)
O70.0906 (5)0.27667 (13)0.33542 (18)0.0716 (7)
O80.3540 (4)0.29627 (12)0.46501 (18)0.0578 (6)
H8A0.407 (7)0.328 (3)0.424 (3)0.087*
O90.2667 (4)0.19688 (13)0.37804 (16)0.0554 (5)
H9A0.206 (7)0.231 (2)0.348 (3)0.083*
O100.4348 (4)0.01754 (12)0.6798 (2)0.0732 (7)
O110.2003 (3)0.06836 (11)0.80492 (16)0.0520 (5)
O120.5149 (4)0.13324 (13)0.74758 (17)0.0589 (5)
S20.34239 (10)0.08090 (3)0.72033 (5)0.03813 (15)
O130.4004 (7)0.87302 (16)0.6497 (3)0.0986 (11)
H13A0.404 (11)0.917 (4)0.657 (5)0.148*
H13B0.314 (12)0.857 (4)0.698 (5)0.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (14)0.0255 (11)0.0430 (13)0.0029 (9)0.0114 (11)0.0018 (9)
C20.0433 (15)0.0386 (13)0.0572 (17)0.0012 (11)0.0001 (12)0.0006 (12)
C30.0386 (14)0.0371 (13)0.072 (2)0.0061 (11)0.0098 (13)0.0020 (13)
C40.0540 (16)0.0288 (11)0.0487 (15)0.0009 (11)0.0189 (13)0.0001 (10)
C50.0567 (17)0.0378 (13)0.0515 (17)0.0028 (12)0.0034 (13)0.0017 (12)
C60.0461 (15)0.0360 (13)0.0604 (17)0.0075 (11)0.0012 (12)0.0022 (12)
C70.074 (2)0.0380 (14)0.0532 (17)0.0042 (13)0.0280 (16)0.0007 (12)
C80.0533 (16)0.0303 (11)0.0443 (14)0.0045 (11)0.0166 (12)0.0069 (10)
C90.0385 (14)0.0394 (14)0.0615 (17)0.0006 (11)0.0053 (12)0.0073 (12)
C100.0426 (13)0.0405 (13)0.0516 (15)0.0040 (11)0.0003 (11)0.0008 (12)
C110.0439 (14)0.0317 (11)0.0450 (14)0.0026 (10)0.0110 (11)0.0057 (10)
C120.0395 (13)0.0438 (13)0.0489 (15)0.0009 (12)0.0006 (11)0.0020 (13)
C130.0526 (16)0.0453 (14)0.0476 (16)0.0092 (12)0.0011 (12)0.0004 (12)
N10.0522 (14)0.0327 (11)0.0493 (14)0.0007 (10)0.0109 (11)0.0053 (10)
N20.0526 (16)0.0430 (13)0.0598 (17)0.0009 (11)0.0102 (13)0.0071 (11)
C140.0373 (12)0.0294 (10)0.0354 (12)0.0008 (9)0.0033 (10)0.0028 (9)
C150.0399 (13)0.0297 (10)0.0399 (13)0.0018 (9)0.0024 (10)0.0014 (10)
C160.0502 (15)0.0355 (12)0.0506 (16)0.0006 (11)0.0204 (12)0.0063 (11)
C170.0437 (14)0.0350 (12)0.0452 (14)0.0063 (10)0.0155 (11)0.0015 (11)
C180.0416 (14)0.0255 (10)0.0373 (13)0.0028 (9)0.0050 (10)0.0019 (9)
C190.0395 (13)0.0295 (10)0.0369 (13)0.0001 (9)0.0076 (10)0.0003 (9)
C200.0408 (13)0.0352 (12)0.0378 (13)0.0018 (10)0.0042 (10)0.0072 (10)
O10.0584 (11)0.0307 (9)0.0610 (12)0.0109 (8)0.0165 (9)0.0016 (8)
O20.0503 (12)0.0434 (10)0.0609 (12)0.0058 (8)0.0237 (9)0.0028 (9)
O30.0632 (12)0.0300 (9)0.0572 (12)0.0089 (8)0.0202 (10)0.0088 (8)
O40.0591 (12)0.0426 (11)0.0648 (13)0.0178 (9)0.0169 (10)0.0127 (9)
O50.0722 (14)0.0328 (9)0.0542 (12)0.0043 (9)0.0013 (10)0.0003 (8)
O60.0616 (12)0.0444 (9)0.0418 (10)0.0044 (9)0.0053 (8)0.0081 (9)
S10.0465 (3)0.0268 (2)0.0410 (3)0.0056 (2)0.0090 (2)0.0048 (2)
C210.0487 (14)0.0309 (11)0.0366 (12)0.0026 (10)0.0093 (11)0.0031 (10)
C220.0445 (14)0.0435 (13)0.0382 (13)0.0094 (11)0.0041 (11)0.0046 (11)
C230.0355 (13)0.0548 (15)0.0425 (14)0.0062 (11)0.0078 (11)0.0064 (12)
C240.0403 (13)0.0396 (12)0.0415 (13)0.0027 (11)0.0108 (10)0.0017 (11)
C250.0403 (13)0.0353 (12)0.0352 (13)0.0007 (10)0.0063 (10)0.0040 (10)
C260.0375 (12)0.0355 (11)0.0398 (13)0.0009 (10)0.0077 (10)0.0025 (10)
C270.0587 (16)0.0359 (12)0.0461 (15)0.0022 (13)0.0098 (12)0.0003 (13)
O70.0983 (19)0.0600 (15)0.0541 (14)0.0140 (12)0.0090 (13)0.0217 (11)
O80.0705 (14)0.0522 (12)0.0510 (13)0.0155 (10)0.0072 (11)0.0091 (10)
O90.0532 (12)0.0598 (13)0.0519 (12)0.0058 (10)0.0041 (9)0.0067 (10)
O100.0848 (17)0.0520 (12)0.0842 (17)0.0241 (12)0.0150 (14)0.0013 (12)
O110.0452 (10)0.0580 (12)0.0537 (11)0.0025 (9)0.0091 (8)0.0180 (9)
O120.0511 (12)0.0624 (13)0.0609 (13)0.0159 (10)0.0087 (10)0.0176 (10)
S20.0342 (3)0.0355 (3)0.0456 (3)0.0013 (2)0.0084 (2)0.0066 (3)
O130.136 (3)0.0565 (15)0.112 (3)0.0003 (17)0.058 (2)0.0240 (16)
Geometric parameters (Å, º) top
C1—C61.368 (4)C16—C171.371 (3)
C1—C21.373 (4)C16—H160.9300
C1—N11.461 (3)C17—C181.389 (3)
C2—C31.381 (4)C17—H170.9300
C2—H20.9300C18—C191.370 (3)
C3—C41.384 (4)C18—S11.772 (2)
C3—H30.9300C19—H190.9300
C4—C51.372 (4)C20—O11.220 (3)
C4—C71.510 (4)C20—O21.305 (3)
C5—C61.390 (4)O2—H2D0.80 (4)
C5—H50.9300O3—H3A0.86 (4)
C6—H60.9300O4—S11.454 (2)
C7—C81.524 (4)O5—S11.446 (2)
C7—H7A0.9700O6—S11.4490 (19)
C7—H7B0.9700O6—O133.064 (4)
C8—C131.377 (4)C21—C261.388 (4)
C8—C91.386 (4)C21—C221.396 (4)
C9—C101.378 (4)C21—C271.484 (4)
C9—H90.9300C22—O91.353 (3)
C10—C111.367 (4)C22—C231.400 (4)
C10—H100.9300C23—C241.375 (4)
C11—C121.376 (4)C23—H230.9300
C11—N21.454 (3)C24—C251.399 (4)
C12—C131.384 (4)C24—H240.9300
C12—H120.9300C25—C261.382 (3)
C13—H130.9300C25—S21.763 (3)
N1—H1B0.82 (4)C26—H260.9300
N1—H1A0.90 (4)C27—O71.211 (4)
N1—H1C0.99 (4)C27—O81.311 (4)
N2—H2A0.82 (4)O8—H8A0.87 (5)
N2—H2B0.84 (4)O9—H9A0.86 (5)
N2—H2C0.97 (4)O10—S21.431 (2)
C14—C151.396 (3)O11—S21.4526 (19)
C14—C191.405 (3)O12—S21.439 (2)
C14—C201.487 (3)O13—H13A0.83 (8)
C15—O31.357 (3)O13—H13B0.89 (7)
C15—C161.384 (4)
C6—C1—C2121.0 (2)C16—C15—C14119.7 (2)
C6—C1—N1119.4 (2)C17—C16—C15120.5 (2)
C2—C1—N1119.5 (2)C17—C16—H16119.8
C1—C2—C3119.0 (3)C15—C16—H16119.8
C1—C2—H2120.5C16—C17—C18120.1 (2)
C3—C2—H2120.5C16—C17—H17119.9
C2—C3—C4121.4 (3)C18—C17—H17119.9
C2—C3—H3119.3C19—C18—C17120.4 (2)
C4—C3—H3119.3C19—C18—S1119.29 (18)
C5—C4—C3118.3 (2)C17—C18—S1120.28 (18)
C5—C4—C7120.0 (3)C18—C19—C14119.9 (2)
C3—C4—C7121.6 (3)C18—C19—H19120.1
C4—C5—C6121.1 (3)C14—C19—H19120.1
C4—C5—H5119.5O1—C20—O2123.5 (2)
C6—C5—H5119.5O1—C20—C14121.3 (2)
C1—C6—C5119.2 (3)O2—C20—C14115.3 (2)
C1—C6—H6120.4C20—O2—H2D106 (3)
C5—C6—H6120.4C15—O3—H3A104 (3)
C4—C7—C8110.9 (2)S1—O6—H2B111.3 (10)
C4—C7—H7A109.5S1—O6—O13135.06 (12)
C8—C7—H7A109.5H2B—O6—O1399.8 (10)
C4—C7—H7B109.5O5—S1—O6111.97 (12)
C8—C7—H7B109.5O5—S1—O4110.99 (13)
H7A—C7—H7B108.1O6—S1—O4113.21 (12)
C13—C8—C9118.4 (2)O5—S1—C18107.80 (12)
C13—C8—C7121.2 (3)O6—S1—C18106.63 (12)
C9—C8—C7120.4 (3)O4—S1—C18105.80 (11)
C10—C9—C8121.2 (3)C26—C21—C22119.5 (2)
C10—C9—H9119.4C26—C21—C27120.3 (2)
C8—C9—H9119.4C22—C21—C27120.1 (2)
C11—C10—C9119.2 (3)O9—C22—C21123.8 (2)
C11—C10—H10120.4O9—C22—C23116.9 (2)
C9—C10—H10120.4C21—C22—C23119.3 (2)
C10—C11—C12121.2 (2)C24—C23—C22120.8 (2)
C10—C11—N2119.1 (3)C24—C23—H23119.6
C12—C11—N2119.7 (2)C22—C23—H23119.6
C11—C12—C13118.9 (2)C23—C24—C25119.7 (2)
C11—C12—H12120.6C23—C24—H24120.1
C13—C12—H12120.6C25—C24—H24120.1
C8—C13—C12121.2 (3)C26—C25—C24119.7 (2)
C8—C13—H13119.4C26—C25—S2120.4 (2)
C12—C13—H13119.4C24—C25—S2119.95 (19)
C1—N1—H1B112 (2)C25—C26—C21120.9 (2)
C1—N1—H1A114 (2)C25—C26—H26119.5
H1B—N1—H1A114 (3)C21—C26—H26119.5
C1—N1—H1C113.3 (19)O7—C27—O8123.6 (3)
H1B—N1—H1C103 (3)O7—C27—C21122.4 (3)
H1A—N1—H1C100 (3)O8—C27—C21114.0 (2)
C11—N2—H2A114 (3)C27—O8—H8A112 (3)
C11—N2—H2B113 (2)C22—O9—H9A109 (3)
H2A—N2—H2B100 (4)O10—S2—O12112.51 (15)
C11—N2—H2C119 (2)O10—S2—O11113.65 (14)
H2A—N2—H2C107 (3)O12—S2—O11111.27 (13)
H2B—N2—H2C102 (3)O10—S2—C25107.66 (14)
C15—C14—C19119.3 (2)O12—S2—C25106.02 (12)
C15—C14—C20119.7 (2)O11—S2—C25105.07 (11)
C19—C14—C20121.0 (2)O6—O13—H13A127 (5)
O3—C15—C16118.2 (2)H13A—O13—H13B106 (6)
O3—C15—C14122.1 (2)
C6—C1—C2—C30.1 (4)C19—C14—C20—O1178.7 (3)
N1—C1—C2—C3179.4 (3)C15—C14—C20—O2178.7 (2)
C1—C2—C3—C40.1 (4)C19—C14—C20—O20.8 (4)
C2—C3—C4—C50.9 (4)H2B—O6—S1—O52.9 (10)
C2—C3—C4—C7176.9 (3)O13—O6—S1—O5133.47 (18)
C3—C4—C5—C61.5 (4)H2B—O6—S1—O4129.3 (10)
C7—C4—C5—C6176.3 (3)O13—O6—S1—O4100.15 (19)
C2—C1—C6—C50.5 (4)H2B—O6—S1—C18114.8 (10)
N1—C1—C6—C5180.0 (3)O13—O6—S1—C1815.8 (2)
C4—C5—C6—C11.4 (4)C19—C18—S1—O582.1 (2)
C5—C4—C7—C888.5 (3)C17—C18—S1—O599.1 (2)
C3—C4—C7—C889.3 (3)C19—C18—S1—O638.3 (2)
C4—C7—C8—C1395.7 (3)C17—C18—S1—O6140.5 (2)
C4—C7—C8—C981.2 (3)C19—C18—S1—O4159.1 (2)
C13—C8—C9—C100.9 (4)C17—C18—S1—O419.7 (3)
C7—C8—C9—C10177.9 (2)C26—C21—C22—O9177.7 (2)
C8—C9—C10—C111.6 (4)C27—C21—C22—O91.6 (4)
C9—C10—C11—C121.6 (4)C26—C21—C22—C232.6 (4)
C9—C10—C11—N2176.1 (2)C27—C21—C22—C23178.7 (2)
C10—C11—C12—C130.8 (4)O9—C22—C23—C24176.9 (2)
N2—C11—C12—C13176.8 (3)C21—C22—C23—C243.4 (4)
C9—C8—C13—C120.1 (4)C22—C23—C24—C251.5 (4)
C7—C8—C13—C12177.1 (2)C23—C24—C25—C261.1 (4)
C11—C12—C13—C80.1 (4)C23—C24—C25—S2177.24 (19)
C19—C14—C15—O3175.8 (2)C24—C25—C26—C211.9 (4)
C20—C14—C15—O33.7 (4)S2—C25—C26—C21176.48 (18)
C19—C14—C15—C162.9 (4)C22—C21—C26—C250.0 (4)
C20—C14—C15—C16177.6 (2)C27—C21—C26—C25176.1 (2)
O3—C15—C16—C17175.3 (3)C26—C21—C27—O7160.4 (3)
C14—C15—C16—C173.5 (4)C22—C21—C27—O715.6 (4)
C15—C16—C17—C181.6 (4)C26—C21—C27—O817.9 (3)
C16—C17—C18—C190.8 (4)C22—C21—C27—O8166.1 (2)
C16—C17—C18—S1178.0 (2)C26—C25—S2—O10101.6 (2)
C17—C18—C19—C141.3 (4)C24—C25—S2—O1076.8 (2)
S1—C18—C19—C14177.48 (19)C26—C25—S2—O1219.1 (2)
C15—C14—C19—C180.5 (4)C24—C25—S2—O12162.6 (2)
C20—C14—C19—C18180.0 (2)C26—C25—S2—O11137.0 (2)
C15—C14—C20—O11.8 (4)C24—C25—S2—O1144.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.90 (4)2.03 (4)2.896 (4)161 (3)
N1—H1B···O1ii0.82 (4)2.47 (3)2.751 (3)101 (3)
N1—H1B···O120.82 (4)2.01 (4)2.814 (4)168 (3)
N1—H1C···O11iii0.99 (4)1.92 (4)2.870 (3)161 (3)
N2—H2A···O4iii0.82 (4)2.07 (4)2.801 (4)149 (3)
N2—H2C···O50.97 (4)2.16 (4)2.927 (4)135 (3)
N2—H2B···O60.84 (4)2.20 (4)2.889 (4)139 (3)
N2—H2C···O3i0.97 (4)2.19 (4)2.940 (3)134 (3)
O2—H2D···O11iv0.80 (4)1.91 (4)2.688 (3)164 (4)
O3—H3A···O10.86 (4)1.77 (4)2.569 (3)153 (4)
O8—H8A···O13v0.87 (5)1.76 (5)2.598 (4)160 (4)
O9—H9A···O70.86 (5)1.96 (4)2.678 (3)141 (4)
O9—H9A···O6vi0.86 (5)2.38 (4)2.872 (3)117 (3)
O13—H13A···O10vii0.83 (8)1.93 (8)2.759 (4)176 (7)
O13—H13B···O60.89 (7)2.39 (7)3.064 (4)132 (6)
C2—H2···O5viii0.932.543.452 (4)168
C6—H6···O120.932.483.210 (3)136
C12—H12···O9ix0.932.553.428 (4)158
C16—H16···Cgx0.932.853.727 (3)157
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1; (vi) x, y1/2, z+1; (vii) x, y+1, z; (viii) x+2, y1/2, z+2; (ix) x, y+1/2, z+1; (x) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC13H16N22+·2C7H5O6S·H2O
Mr652.63
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.8769 (1), 18.8659 (3), 12.9864 (2)
β (°) 94.668 (1)
V3)1435.06 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.30 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.894, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
16262, 6379, 5671
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.09
No. of reflections6379
No. of parameters433
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.17
Absolute structureFlack (1983), 3009 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.90 (4)2.03 (4)2.896 (4)161 (3)
N1—H1B···O1ii0.82 (4)2.47 (3)2.751 (3)101 (3)
N1—H1B···O120.82 (4)2.01 (4)2.814 (4)168 (3)
N1—H1C···O11iii0.99 (4)1.92 (4)2.870 (3)161 (3)
N2—H2A···O4iii0.82 (4)2.07 (4)2.801 (4)149 (3)
N2—H2C···O50.97 (4)2.16 (4)2.927 (4)135 (3)
N2—H2B···O60.84 (4)2.20 (4)2.889 (4)139 (3)
N2—H2C···O3i0.97 (4)2.19 (4)2.940 (3)134 (3)
O2—H2D···O11iv0.80 (4)1.91 (4)2.688 (3)164 (4)
O3—H3A···O10.86 (4)1.77 (4)2.569 (3)153 (4)
O8—H8A···O13v0.87 (5)1.76 (5)2.598 (4)160 (4)
O9—H9A···O70.86 (5)1.96 (4)2.678 (3)141 (4)
O9—H9A···O6vi0.86 (5)2.38 (4)2.872 (3)117 (3)
O13—H13A···O10vii0.83 (8)1.93 (8)2.759 (4)176 (7)
O13—H13B···O60.89 (7)2.39 (7)3.064 (4)132 (6)
C2—H2···O5viii0.932.543.452 (4)167.7
C6—H6···O120.932.483.210 (3)135.7
C12—H12···O9ix0.932.553.428 (4)157.7
C16—H16···Cgx0.932.853.727 (3)157
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1; (vi) x, y1/2, z+1; (vii) x, y+1, z; (viii) x+2, y1/2, z+2; (ix) x, y+1/2, z+1; (x) x+1, y+1/2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant Nos. 10574047, 10574048 and 20490210. This work was also supported by the National 973 Project under grant No. 2006CB921605.

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2005). Acta Cryst. E61, o3398–o3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. E61, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313–o2315.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Yao, K., Liu, Z. & Xu, H. (2008). Acta Cryst. E64, o1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1947-o1948
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds