organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2011-o2012

tert-Butyl 2-de­­oxy-4,5-O-iso­propyl­­idene-D-gluconate

aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 15 September 2008; accepted 23 September 2008; online 27 September 2008)

The relative configuration of tert-butyl 2-de­oxy-4,5-O-iso­propyl­idene-D-gluconate, C13H24O6, an inter­mediate in the synthesis of 2-de­oxy sugars, was determined by X-ray crystallography, and the crystal structure consists of chains of O—H⋯O hydrogen-bonded mol­ecules running parallel to the a axis. There are two mol­ecules in the asymmetric unit. The absolute configuration was inferred from the use of D-erythrono­lactone as the starting material.

Related literature

For background information, see: Granstrom et al. (2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]); Izumori (2002[Izumori, K. (2002). Naturwissenschaften, 89, 120-124.], 2006[Izumori, K. (2006). J. Biotechnol. 124, 717-722.]); Rao et al. (2008[Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316-3121.]); Yoshihara et al. (2008[Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739-745.]); Gullapalli et al. (2007[Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995-2000.]); Jones et al. (2008[Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904-1918.]). For related structures, see: Booth et al. (2008[Booth, K. V., Jenkinson, S. F., Fleet, G. W. J., Gullapalli, P., Yoshihara, A., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1385.]); Jenkinson, Booth, Gullapalli et al. (2008[Jenkinson, S. F., Booth, K. V., Gullapalli, P., Morimoto, K., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o1705-o1706.]); Jenkinson, Booth, Yoshihara et al. (2008[Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429.]). For related literature, see: Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]).

[Scheme 1]

Experimental

Crystal data
  • C13H24O6

  • Mr = 276.33

  • Triclinic, P 1

  • a = 5.9366 (2) Å

  • b = 11.1694 (5) Å

  • c = 12.7530 (6) Å

  • α = 113.413 (2)°

  • β = 100.3696 (19)°

  • γ = 93.783 (2)°

  • V = 754.42 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.50 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.73, Tmax = 1.00 (expected range = 0.727–0.995)

  • 11759 measured reflections

  • 3441 independent reflections

  • 2788 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 0.97

  • 3441 reflections

  • 344 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O19—H22⋯O38i 0.85 2.03 2.861 (4) 165
O13—H49⋯O19ii 0.81 2.06 2.842 (4) 162
O39—H5⋯O18iii 0.83 1.98 2.771 (4) 157
Symmetry codes: (i) x-1, y-1, z-1; (ii) x-1, y, z; (iii) x+1, y+1, z+1.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The technique of Izumoring (Izumori, 2002; Izumori, 2006; Granstrom et al., 2004), the biotechnological interconversion of monosaccharides, has been seen to be generally applied to 1-deoxy-(Yoshihara et al., 2008; Booth et al., 2008; Jenkinson, Booth, Gullapalli et al., 2008; Jenkinson, Booth, Yoshihara et al., 2008; Gullapalli et al., 2007) and methyl-branched sugars (Rao et al., 2008; Jones et al., 2008). In order to extend this methodology further, a series of 2-deoxy sugars were synthesized via the addition of lithium tert-butyl acetate to sugar lactones. Thus, lithium tert-butyl acetate was added to D-erythronolactone 1 and on reduction two compounds were obtained (Fig. 1). One product was crystalline and was unequivocally identified by X-ray crystallography to be the tert-butyl 2-deoxy-4,5-O-isopropylidene-D-gluconate (Fig. 2), with the absolute configuration being determined by the use of D-erythronolactone as the starting material.

The X-ray structure shows that there are two molecules in the asymmetric unit, these only differ in the orientation of the terminal hydroxyl groups O19 and O39 (Fig. 3) (torsion angles C4-C5-C6-O19 = 69.2° and C24-C25-C26-O39 = -170.4°). The remainder of the residues are very similar (Fig.3). After least squares fitting of the residues (excluding O19 and O39) against each other, the r.m.s. positional discrepancy is 0.1270 Å, the r.m.s. bond length discrepancy is 0.0082 degrees, and the r.m.s. torsion angle deviation is 5.5037 degrees. The molecules form hydrogen-bonded chains running parallel to the a-axis (Fig. 4, Fig.5). Only classic intermolecular hydrogen bonding has been considered.

Related literature top

For background information, see: Granstrom et al. (2004); Izumori (2002, 2006); Rao et al. (2008); Yoshihara et al. (2008); Gullapalli et al. (2007); Jones et al. (2008). For related structures, see: Booth et al. (2008); Jenkinson, Booth, Gullapalli et al. (2008); Jenkinson, Booth, Yoshihara et al. (2008). For related literature, see: Görbitz (1999).

Experimental top

The title compound was recrystallized from toluene: m.p. 345–347 K; [α]D22 +10.7 (c, 0.99 in CHCl3).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.37) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic scheme for the synthesis of the title compound.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. There are two molecules in the asymmetric unit. Carbon atoms are shown in green (molecule 1) or blue (molecule 2) and oxygen atoms in red (molecule 1) or purple (molecule 2).
[Figure 3] Fig. 3. Overlay of the two molecules in the asymmetric unit.
[Figure 4] Fig. 4. Packing diagram projected along the a-axis. Hydrogen bonds are shown by dotted lines.
[Figure 5] Fig. 5. Packing diagram projected along the c-axis. The crystal structure consists of layers of hydrogen bonded molecules lying perpendicular to the c-axis.
(I) top
Crystal data top
C13H24O6Z = 2
Mr = 276.33F(000) = 300
Triclinic, P1Dx = 1.216 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9366 (2) ÅCell parameters from 3172 reflections
b = 11.1694 (5) Åθ = 5–27°
c = 12.7530 (6) ŵ = 0.10 mm1
α = 113.413 (2)°T = 150 K
β = 100.3696 (19)°Plate, colourless
γ = 93.783 (2)°0.50 × 0.05 × 0.05 mm
V = 754.42 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
2788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.6°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.73, Tmax = 1.00k = 1414
11759 measured reflectionsl = 1615
3441 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(F2) + (0.05P)2 + 0.04P],
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.104(Δ/σ)max = 0.009
S = 0.97Δρmax = 0.29 e Å3
3441 reflectionsΔρmin = 0.37 e Å3
344 parametersExtinction correction: Larson (1970), Equation 22
3 restraintsExtinction coefficient: 300 (50)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H24O6γ = 93.783 (2)°
Mr = 276.33V = 754.42 (6) Å3
Triclinic, P1Z = 2
a = 5.9366 (2) ÅMo Kα radiation
b = 11.1694 (5) ŵ = 0.10 mm1
c = 12.7530 (6) ÅT = 150 K
α = 113.413 (2)°0.50 × 0.05 × 0.05 mm
β = 100.3696 (19)°
Data collection top
Nonius KappaCCD
diffractometer
3441 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2788 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 1.00Rint = 0.045
11759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.97Δρmax = 0.29 e Å3
3441 reflectionsΔρmin = 0.37 e Å3
344 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0837 (4)0.8713 (3)0.3566 (2)0.0306
C20.0148 (4)0.7957 (3)0.2427 (2)0.0322
C30.1598 (5)0.7048 (3)0.2533 (2)0.0300
C40.2288 (4)0.6384 (3)0.1362 (2)0.0296
C50.3854 (4)0.5302 (2)0.1211 (2)0.0297
C60.4988 (4)0.5130 (3)0.2286 (2)0.0338
O70.1033 (3)0.94685 (18)0.43945 (15)0.0333
C80.0854 (5)1.0276 (3)0.5600 (2)0.0342
C90.0134 (6)0.9420 (4)0.6127 (3)0.0497
C100.0575 (5)1.1357 (3)0.5601 (3)0.0448
C110.3368 (5)1.0859 (3)0.6218 (3)0.0469
O120.2796 (3)0.8666 (2)0.37003 (19)0.0434
O130.0757 (3)0.61392 (18)0.29471 (16)0.0330
O140.0195 (3)0.57145 (19)0.04704 (15)0.0335
C150.0657 (5)0.4490 (3)0.0322 (2)0.0315
C160.1538 (5)0.3507 (3)0.0776 (2)0.0403
C170.1621 (5)0.4644 (3)0.1296 (2)0.0408
O180.2336 (3)0.41137 (18)0.04004 (16)0.0325
O190.6656 (3)0.4251 (2)0.20259 (18)0.0391
C210.6774 (5)0.7195 (3)0.8287 (2)0.0356
C220.8773 (5)0.7868 (3)0.9330 (2)0.0357
C231.0405 (4)0.8902 (3)0.9222 (2)0.0306
C241.2437 (5)0.9472 (3)1.0283 (2)0.0350
C251.4344 (5)1.0537 (3)1.0373 (2)0.0327
C261.4393 (5)1.0846 (3)0.9321 (2)0.0373
O270.7534 (3)0.6588 (2)0.73097 (16)0.0386
C280.5895 (5)0.5818 (3)0.6156 (2)0.0400
C310.7540 (6)0.5357 (4)0.5339 (3)0.0531
C300.4520 (6)0.4661 (4)0.6211 (3)0.0553
C290.4360 (6)0.6706 (4)0.5831 (3)0.0533
O320.4758 (4)0.7182 (2)0.8340 (2)0.0513
O330.9021 (3)0.9849 (2)0.90964 (19)0.0433
O341.1547 (4)1.0087 (2)1.13082 (17)0.0549
C351.2946 (5)1.1313 (3)1.2071 (2)0.0377
C361.1384 (6)1.2284 (4)1.2579 (3)0.0572
C371.4752 (6)1.1154 (4)1.2987 (3)0.0593
O381.4021 (3)1.17115 (18)1.13186 (15)0.0334
O391.2520 (3)1.14885 (18)0.90474 (16)0.0354
H210.05520.86640.22650.0350*
H3740.15350.74910.18850.0343*
H310.30320.75270.30230.0358*
H410.30720.71130.12410.0318*
H510.51230.55650.09370.0299*
H610.57850.59720.28540.0415*
H620.38420.48670.26760.0379*
H910.00910.99310.69690.0748*
H920.17810.90900.57410.0753*
H930.07080.86660.59690.0762*
H1010.06951.18920.63830.0603*
H1020.01841.19240.53100.0619*
H1030.21121.09370.50940.0604*
H1110.34901.14320.70560.0638*
H1120.39111.13600.58170.0621*
H1130.43031.01390.61210.0605*
H1610.13350.26440.13560.0533*
H1620.27100.38930.11180.0541*
H1630.20180.34270.01020.0533*
H1710.21040.38250.17640.0583*
H1720.04390.48330.18090.0615*
H1730.29320.53560.09310.0603*
H2210.81350.83091.00280.0370*
H2220.96740.72300.94700.0375*
H2311.10050.84160.84410.0329*
H2411.31490.87251.03240.0438*
H2511.58711.02451.05030.0384*
H2611.58571.14530.95440.0459*
H2621.43081.00160.86390.0418*
H3110.66430.47810.45590.0697*
H3120.84100.60730.52690.0725*
H3130.86020.48480.55750.0711*
H3010.35120.41530.54560.0753*
H3020.36150.50070.67930.0752*
H3030.55650.41290.64240.0755*
H2910.35500.62320.50020.0783*
H2920.32330.69220.63270.0779*
H2930.53420.75080.59610.0786*
H3611.23111.31401.30970.0856*
H3621.05541.19461.30150.0842*
H3631.03131.23541.19540.0846*
H3711.56761.20091.35120.0897*
H3721.39541.07961.34090.0880*
H3731.57441.05531.26000.0883*
H220.60690.34430.17450.0550*
H370.99881.04070.90810.0730*
H490.03940.56170.25500.0476*
H51.26941.22330.95970.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0284 (13)0.0241 (13)0.0345 (13)0.0024 (10)0.0056 (10)0.0082 (11)
C20.0343 (13)0.0255 (13)0.0318 (12)0.0046 (10)0.0077 (10)0.0069 (11)
C30.0297 (12)0.0274 (13)0.0316 (12)0.0024 (10)0.0081 (9)0.0109 (11)
C40.0343 (13)0.0236 (13)0.0312 (12)0.0027 (10)0.0103 (10)0.0110 (11)
C50.0298 (12)0.0228 (13)0.0335 (12)0.0009 (10)0.0102 (10)0.0079 (10)
C60.0298 (12)0.0320 (14)0.0391 (14)0.0067 (11)0.0087 (10)0.0136 (11)
O70.0300 (9)0.0307 (10)0.0312 (9)0.0033 (7)0.0109 (7)0.0030 (8)
C80.0352 (13)0.0356 (15)0.0266 (12)0.0057 (11)0.0112 (10)0.0058 (11)
C90.0574 (19)0.0531 (19)0.0414 (15)0.0020 (15)0.0160 (14)0.0213 (15)
C100.0477 (16)0.0340 (16)0.0424 (16)0.0098 (13)0.0092 (13)0.0053 (13)
C110.0385 (16)0.0500 (19)0.0384 (14)0.0013 (13)0.0060 (12)0.0063 (14)
O120.0297 (10)0.0414 (12)0.0477 (11)0.0036 (8)0.0120 (8)0.0059 (9)
O130.0321 (9)0.0332 (10)0.0339 (9)0.0005 (7)0.0081 (7)0.0147 (8)
O140.0379 (10)0.0288 (10)0.0280 (9)0.0092 (8)0.0063 (7)0.0057 (8)
C150.0414 (15)0.0258 (13)0.0253 (11)0.0103 (11)0.0086 (10)0.0073 (10)
C160.0411 (15)0.0351 (15)0.0359 (14)0.0033 (12)0.0043 (11)0.0080 (12)
C170.0532 (17)0.0378 (16)0.0294 (13)0.0083 (13)0.0126 (12)0.0103 (12)
O180.0370 (10)0.0227 (9)0.0354 (9)0.0049 (7)0.0046 (7)0.0110 (8)
O190.0311 (9)0.0307 (10)0.0510 (11)0.0069 (8)0.0077 (8)0.0129 (9)
C210.0399 (15)0.0298 (15)0.0351 (14)0.0042 (11)0.0074 (11)0.0121 (12)
C220.0425 (15)0.0291 (14)0.0307 (13)0.0038 (11)0.0035 (11)0.0100 (11)
C230.0322 (13)0.0275 (13)0.0321 (12)0.0102 (10)0.0064 (10)0.0121 (11)
C240.0422 (15)0.0286 (14)0.0331 (13)0.0028 (11)0.0042 (11)0.0140 (12)
C250.0325 (13)0.0268 (13)0.0349 (13)0.0068 (10)0.0073 (10)0.0085 (11)
C260.0428 (15)0.0322 (15)0.0400 (14)0.0115 (12)0.0153 (12)0.0146 (12)
O270.0370 (10)0.0368 (11)0.0310 (9)0.0039 (8)0.0019 (8)0.0053 (8)
C280.0374 (14)0.0404 (17)0.0348 (14)0.0020 (12)0.0015 (11)0.0120 (13)
C310.0525 (19)0.059 (2)0.0333 (14)0.0006 (16)0.0091 (13)0.0060 (14)
C300.066 (2)0.049 (2)0.0388 (16)0.0109 (16)0.0027 (14)0.0126 (15)
C290.0459 (17)0.065 (2)0.0492 (17)0.0050 (16)0.0018 (14)0.0293 (17)
O320.0376 (11)0.0576 (15)0.0490 (12)0.0053 (10)0.0111 (9)0.0120 (11)
O330.0349 (10)0.0435 (12)0.0654 (14)0.0144 (9)0.0148 (9)0.0343 (11)
O340.0727 (15)0.0466 (13)0.0281 (10)0.0250 (11)0.0114 (10)0.0031 (9)
C350.0431 (15)0.0355 (15)0.0299 (13)0.0060 (12)0.0042 (11)0.0125 (12)
C360.061 (2)0.062 (2)0.0487 (17)0.0073 (17)0.0258 (16)0.0180 (17)
C370.067 (2)0.067 (2)0.0449 (18)0.0006 (18)0.0012 (16)0.0313 (18)
O380.0384 (10)0.0290 (10)0.0301 (9)0.0022 (8)0.0085 (7)0.0097 (8)
O390.0481 (11)0.0262 (9)0.0302 (9)0.0090 (8)0.0087 (8)0.0096 (8)
Geometric parameters (Å, º) top
C1—C21.508 (3)C21—C221.504 (4)
C1—O71.344 (3)C21—O271.337 (3)
C1—O121.206 (3)C21—O321.210 (4)
C2—C31.524 (4)C22—C231.522 (4)
C2—H210.977C22—H2210.988
C2—H3740.937C22—H2220.971
C3—C41.526 (3)C23—C241.522 (4)
C3—O131.418 (3)C23—O331.423 (3)
C3—H310.940C23—H2311.066
C4—C51.546 (4)C24—C251.542 (4)
C4—O141.445 (3)C24—O341.429 (3)
C4—H410.989C24—H2410.975
C5—C61.504 (4)C25—C261.516 (4)
C5—O181.435 (3)C25—O381.439 (3)
C5—H510.961C25—H2510.992
C6—O191.429 (3)C26—O391.427 (3)
C6—H610.954C26—H2610.988
C6—H621.004C26—H2620.978
O7—C81.469 (3)O27—C281.490 (3)
C8—C91.513 (4)C28—C311.520 (4)
C8—C101.521 (4)C28—C301.514 (5)
C8—C111.521 (4)C28—C291.516 (5)
C9—H910.974C31—H3110.971
C9—H920.985C31—H3120.967
C9—H930.977C31—H3130.962
C10—H1010.956C30—H3010.960
C10—H1020.974C30—H3020.966
C10—H1030.980C30—H3030.964
C11—H1110.990C29—H2910.983
C11—H1120.970C29—H2920.979
C11—H1130.987C29—H2930.973
O13—H490.807O33—H370.827
O14—C151.420 (3)O34—C351.418 (4)
C15—C161.508 (4)C35—C361.499 (5)
C15—C171.520 (4)C35—C371.512 (4)
C15—O181.432 (3)C35—O381.431 (3)
C16—H1610.986C36—H3610.975
C16—H1620.970C36—H3620.967
C16—H1630.987C36—H3630.959
C17—H1710.968C37—H3710.976
C17—H1720.965C37—H3720.955
C17—H1730.974C37—H3730.967
O19—H220.849O39—H50.832
C2—C1—O7110.2 (2)C22—C21—O27110.8 (2)
C2—C1—O12124.6 (2)C22—C21—O32124.2 (2)
O7—C1—O12125.2 (2)O27—C21—O32125.0 (3)
C1—C2—C3112.8 (2)C21—C22—C23113.8 (2)
C1—C2—H21102.3C21—C22—H221108.0
C3—C2—H21110.5C23—C22—H221108.2
C1—C2—H374105.5C21—C22—H222111.0
C3—C2—H374112.2C23—C22—H222108.3
H21—C2—H374112.9H221—C22—H222107.4
C2—C3—C4109.1 (2)C22—C23—C24110.0 (2)
C2—C3—O13111.77 (19)C22—C23—O33105.6 (2)
C4—C3—O13113.4 (2)C24—C23—O33113.9 (2)
C2—C3—H31111.7C22—C23—H231106.9
C4—C3—H31100.9C24—C23—H231110.2
O13—C3—H31109.6O33—C23—H231109.8
C3—C4—C5118.7 (2)C23—C24—C25119.8 (2)
C3—C4—O14107.8 (2)C23—C24—O34108.3 (2)
C5—C4—O14104.06 (19)C25—C24—O34104.3 (2)
C3—C4—H41105.0C23—C24—H241106.4
C5—C4—H41109.2C25—C24—H241108.8
O14—C4—H41112.2O34—C24—H241108.9
C4—C5—C6118.2 (2)C24—C25—C26119.6 (2)
C4—C5—O18103.49 (19)C24—C25—O38103.7 (2)
C6—C5—O18109.7 (2)C26—C25—O38108.4 (2)
C4—C5—H51105.4C24—C25—H251108.9
C6—C5—H51104.5C26—C25—H251101.8
O18—C5—H51116.0O38—C25—H251115.1
C5—C6—O19110.7 (2)C25—C26—O39113.7 (2)
C5—C6—H61107.6C25—C26—H261105.0
O19—C6—H61107.9O39—C26—H261108.5
C5—C6—H62113.0C25—C26—H262108.2
O19—C6—H62112.6O39—C26—H262107.9
H61—C6—H62104.6H261—C26—H262113.6
C1—O7—C8121.33 (19)C21—O27—C28121.5 (2)
O7—C8—C9110.5 (2)O27—C28—C31101.9 (2)
O7—C8—C10109.2 (2)O27—C28—C30109.1 (2)
C9—C8—C10112.6 (2)C31—C28—C30111.3 (3)
O7—C8—C11102.4 (2)O27—C28—C29110.2 (3)
C9—C8—C11110.9 (3)C31—C28—C29111.3 (3)
C10—C8—C11110.7 (3)C30—C28—C29112.6 (3)
C8—C9—H91109.0C28—C31—H311108.8
C8—C9—H92109.5C28—C31—H312113.1
H91—C9—H92112.0H311—C31—H312106.9
C8—C9—H93107.4C28—C31—H313111.9
H91—C9—H93110.2H311—C31—H313106.7
H92—C9—H93108.6H312—C31—H313109.1
C8—C10—H101109.9C28—C30—H301108.4
C8—C10—H102109.8C28—C30—H302108.0
H101—C10—H102108.0H301—C30—H302109.9
C8—C10—H103108.1C28—C30—H303109.6
H101—C10—H103110.7H301—C30—H303110.6
H102—C10—H103110.4H302—C30—H303110.2
C8—C11—H111110.5C28—C29—H291108.4
C8—C11—H112106.6C28—C29—H292109.2
H111—C11—H112111.1H291—C29—H292110.0
C8—C11—H113109.5C28—C29—H293108.0
H111—C11—H113111.5H291—C29—H293111.1
H112—C11—H113107.5H292—C29—H293110.0
C3—O13—H49118.0C23—O33—H37102.0
C4—O14—C15108.28 (18)C24—O34—C35110.3 (2)
O14—C15—C16108.2 (2)O34—C35—C36108.2 (3)
O14—C15—C17111.3 (2)O34—C35—C37110.9 (3)
C16—C15—C17112.9 (2)C36—C35—C37113.5 (3)
O14—C15—O18103.72 (19)O34—C35—O38104.4 (2)
C16—C15—O18109.1 (2)C36—C35—O38108.6 (3)
C17—C15—O18111.1 (2)C37—C35—O38110.6 (2)
C15—C16—H161111.7C35—C36—H361109.6
C15—C16—H162106.1C35—C36—H362107.2
H161—C16—H162111.4H361—C36—H362110.4
C15—C16—H163108.4C35—C36—H363109.2
H161—C16—H163111.4H361—C36—H363110.6
H162—C16—H163107.5H362—C36—H363110.0
C15—C17—H171109.6C35—C37—H371109.8
C15—C17—H172110.2C35—C37—H372107.5
H171—C17—H172107.4H371—C37—H372110.8
C15—C17—H173107.8C35—C37—H373109.1
H171—C17—H173110.7H371—C37—H373109.7
H172—C17—H173111.1H372—C37—H373109.9
C5—O18—C15106.46 (18)C25—O38—C35107.8 (2)
C6—O19—H22113.3C26—O39—H5107.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H21···O34i0.982.463.407 (4)164
C3—H31···O12ii0.942.543.442 (4)161
C9—H91···O39iii0.972.603.502 (4)154
C10—H103···O120.982.403.031 (4)121
C22—H222···O14iv0.972.503.349 (4)147
C30—H302···O320.972.403.009 (4)121
O19—H22···O38v0.852.032.861 (4)165
O33—H37···C260.832.573.231 (4)138
O33—H37···O390.831.882.703 (4)171
O13—H49···O19iii0.812.062.842 (4)162
O39—H5···O18vi0.831.982.771 (4)157
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x1, y1, z1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H24O6
Mr276.33
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.9366 (2), 11.1694 (5), 12.7530 (6)
α, β, γ (°)113.413 (2), 100.3696 (19), 93.783 (2)
V3)754.42 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.73, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
11759, 3441, 2788
Rint0.045
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 0.97
No. of reflections3441
No. of parameters344
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.37

Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O19—H22···O38i0.852.032.861 (4)165
O13—H49···O19ii0.812.062.842 (4)162
O39—H5···O18iii0.831.982.771 (4)157
Symmetry codes: (i) x1, y1, z1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Oxford University Crystallography Service for access to equipment.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBooth, K. V., Jenkinson, S. F., Fleet, G. W. J., Gullapalli, P., Yoshihara, A., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationGullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.  Web of Science CrossRef CAS Google Scholar
First citationIzumori, K. (2002). Naturwissenschaften, 89, 120–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzumori, K. (2006). J. Biotechnol. 124, 717–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJenkinson, S. F., Booth, K. V., Gullapalli, P., Morimoto, K., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o1705–o1706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316–3121.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationYoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2011-o2012
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds