metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1295-m1296

catena-Poly[[[di­aqua­manganese(II)]-μ3-pyridine-2,3-di­carboxyl­ato-κ4N,O2:O3:O3′] dihydrate]

aDepartment of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx101012@126.com

(Received 4 September 2008; accepted 13 September 2008; online 20 September 2008)

In the title coordination polymer, {[Mn(C7H3NO4)(H2O)2]·2H2O}n, the MnII ion is coordinated in a distorted octahedral environment by the O atoms of two water mol­ecules, one N and one O atoms of the chelating pyridine-2,3-dicarboxyl­ate (PDC) dianion, and two axial bridging carboxyl­ate O atoms from two adjacent PDC ligands. The fully deprotonated PDC anion acts a μ3-bridging ligand, establishing a chain structure along the a axis. These polymeric chains are connected into a three-dimensional framework via several inter­molecular O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Aghabozorg et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]); Baruah et al. (2007[Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4518-4524.]); Drew et al. (1971[Drew, M. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959-2962.]); Ghoer & Youssef (1993[Ghoer, M. S. & Youssef, A. A. (1993). Polyhedron, 12, 1871-1878.]); Kang et al. (2006[Kang, Y., Zhang, J., Li, Z. J., Cheng, J. K. & Yao, Y. G. (2006). Inorg. Chim. Acta, 359, 2201-2209.]); Li et al. (2006[Li, M., Xiang, J. F., Yuan, L. J., Wu, S. M., Chen, S. P. & Sun, J. T. (2006). Cryst. Growth Des. 6, 2036-2040.]); Manteghi et al. (2007[Manteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.]); Patrick et al. (2003[Patrick, B. O., Stevens, C. L., Storr, A. & Thompson, R. C. (2003). Polyhedron, 22, 3025-3035.]); Sun et al. (2006[Sun, L. P., Niu, S. Y., Jin, J., Yang, G. D. & Ye, L. (2006). Inorg. Chem. Commun. 9, 679-682.]); Takusagawa & Koetzle (1978[Takusagawa, F. & Koetzle, T. F. (1978). Acta Cryst. B34, 1149-1154.]); Turner & Batten (2007[Turner, D. R. & Batten, S. R. (2007). Acta Cryst. E63, m452-m454.]); Zhang & You (2003[Zhang, H.-T. & You, X.-Z. (2003). Acta Cryst. C59, m313-m314.]); Zhang et al. (2003[Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2003). Acta Cryst. E59, m1143-m1145.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H3NO4)(H2O)2]·2H2O

  • Mr = 292.11

  • Monoclinic, P 21 /c

  • a = 6.5719 (8) Å

  • b = 7.6703 (9) Å

  • c = 20.566 (3) Å

  • β = 93.3540 (10)°

  • V = 1034.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 291 (2) K

  • 0.38 × 0.15 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.639, Tmax = 0.865

  • 6428 measured reflections

  • 1921 independent reflections

  • 1774 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.07

  • 1921 reflections

  • 154 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O3 2.098 (3)
Mn1—O4 2.139 (3)
Mn1—O8i 2.144 (2)
Mn1—O5 2.160 (3)
Mn1—O6ii 2.242 (3)
Mn1—N1i 2.263 (3)
O3—Mn1—O4 96.07 (11)
O3—Mn1—O8i 168.80 (10)
O3—Mn1—O5 87.98 (10)
O4—Mn1—O5 87.54 (10)
O8i—Mn1—O5 95.89 (9)
O3—Mn1—O6ii 84.63 (10)
O5—Mn1—O6ii 164.11 (10)
O4—Mn1—N1i 166.71 (11)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O8 0.84 1.95 2.793 (4) 177
O1—H2W⋯O2iii 0.84 2.09 2.845 (4) 149
O2—H4W⋯O6iv 0.84 2.07 2.884 (4) 165
O2—H4W⋯O4v 0.84 2.56 3.043 (4) 118
O2—H3W⋯O4vi 0.85 1.94 2.788 (4) 180
O3—H5W⋯O7iv 0.84 1.85 2.691 (4) 175
O3—H6W⋯O1iv 0.85 1.92 2.730 (4) 159
O4—H8W⋯O1i 0.85 2.61 3.457 (4) 180
O4—H7W⋯O1vii 0.84 1.86 2.691 (4) 168
O4—H8W⋯O2vii 0.85 2.37 2.788 (4) 111
Symmetry codes: (i) -x+1, -y+2, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+1; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-2,3-dicarboxylic acid (H2PDC), being a potential multidentate bridging ligand, has aroused considerable interests in recent decades and a number of metal complexes have been reported. In these complexes, pyridine-2,3-dicarboxylic acid is partly or fully deprotonated and shows diverse coordination modes, such as non-coordinate (Takusagawa & Koetzle, 1978; Manteghi et al., 2007), monodentate (Drew et al., 1971; Ghoer & Youssef, 1993; Patrick et al., 2003; Baruah et al., 2007), µ2-bridging (Zhang et al., 2003; Aghabozorg et al., 2007; Sun et al., 2006; Turner & Batten, 2007; Kang et al., 2006), µ3-bridging (Zhang & You, 2003; Li et al., 2006). Here we describe another new compound in which the PDC is µ3-bridging, (I),(Fig. 1).

Complex (I) is composed of {[Mn(C7H3NO4)(H2O)2].2H2O}n units, in which the MnII ion is six-coordinated in a distorted octahedral geometry (Table 1) formed by two coordinated water molecules, one N and one O atoms of a PDC dianion and two different carboxylate O atoms in the axial position from another two adjacent PDC ligands. The deprotonated PDC are µ3-bridging ligands and they join the neighbouring MnII ions to form this one-dimensional linear chain structure along a axis. This kind of µ3-bridging mode is different from that have been published (Zhang & You, 2003; Li et al., 2006) as in this paper one bridging carboxylate O atom only links one metal ions, while in the latter one bridging carboxylate O atom simultaneously links two metal ions,respectively.

The carboxylate O atoms of PDC dianion and coordinate and non coordinated water molecules are all involved in rich O—H···O intermolecular hydrogen bonds (Table 2) and they connect polymetric chains into a three-dimensional framework (Fig. 2).

Related literature top

For related literature, see: Aghabozorg et al. (2007); Baruah et al. (2007); Drew et al. (1971); Ghoer & Youssef (1993); Kang et al. (2006); Li et al. (2006); Manteghi et al. (2007); Patrick et al. (2003); Sun et al. (2006); Takusagawa & Koetzle (1978); Turner & Batten (2007); Zhang & You (2003); Zhang et al. (2003).

Experimental top

The ligand H2PDC (1 mmol, 0.17 g) and NaOH (2 mmol, 0.08 g) were dissolved in water and methanol mixed solvent (20 ml, v/v 1:1). To this solution, Mn(CH3COO)2.4H2O (1 mmol, 0.25 g) was added and the resulting mixture was stirred and refluxed at 343 K for 5 h, then cooled to room temperature. After filtration and evaporation in air for a week, pink block-shaped crystals were obtained in a yield of 37%. Analysis, found (%): C, 28.70; H, 3.80; N, 4.71. C7H11Mn N O8 requires (%): C,28.75; H,3.76; N,4.79. (CCDC number 668395)

Refinement top

H atoms bonded to C atoms were positioned geometrically with C—H distance of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq. H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the building unit of the one-dimensional of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Uncoordinate water molecules and H atoms on C atoms have been omitted. [Symmetry codes: (A) 2 - x, 2 - y, 1 - z; (B) 1 - x, 2 - y, 1 - z; (C) -1 + x, y, z.]
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen bonds as dashed lines. For the sake of clarity, H atoms on C atoms have been omitted.
catena-Poly[[[diaquamanganese(II)]-µ3-pyridine-2,3-dicarboxylato- κ4N,O2:O3:O3'] dihydrate] top
Crystal data top
[Mn(C7H3NO4)(H2O)2]·2H2OF(000) = 596
Mr = 292.11Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4039 reflections
a = 6.5719 (8) Åθ = 2.8–28.1°
b = 7.6703 (9) ŵ = 1.31 mm1
c = 20.566 (3) ÅT = 291 K
β = 93.354 (1)°Block, pink
V = 1034.9 (2) Å30.38 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1921 independent reflections
Radiation source: fine-focus sealed tube1774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.640, Tmax = 0.865k = 99
6428 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.042P)2 + 2.0761P]
where P = (Fo2 + 2Fc2)/3
1921 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.49 e Å3
3 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Mn(C7H3NO4)(H2O)2]·2H2OV = 1034.9 (2) Å3
Mr = 292.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5719 (8) ŵ = 1.31 mm1
b = 7.6703 (9) ÅT = 291 K
c = 20.566 (3) Å0.38 × 0.15 × 0.11 mm
β = 93.354 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1921 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1774 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.865Rint = 0.015
6428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.07Δρmax = 0.49 e Å3
1921 reflectionsΔρmin = 0.74 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.69176 (6)0.76827 (6)0.38821 (2)0.01743 (17)
O10.3592 (5)0.7546 (3)0.70493 (14)0.0449 (7)
H1W0.34550.81910.67190.067*
H2W0.26950.78140.73070.067*
O20.9617 (5)0.4500 (4)0.74324 (14)0.0543 (8)
H3W0.88000.52690.75610.081*
H4W0.98780.39370.70990.081*
O30.7081 (4)0.4951 (3)0.38849 (13)0.0437 (7)
H5W0.72440.42340.41930.066*
H6W0.69500.43830.35320.066*
O40.6927 (4)0.7979 (4)0.28481 (13)0.0420 (6)
H7W0.59970.77490.25620.063*
H8W0.68030.90800.28730.063*
O50.3643 (4)0.7440 (3)0.37627 (14)0.0374 (6)
O60.0271 (4)0.7556 (3)0.37392 (13)0.0362 (6)
O70.2349 (5)0.7489 (3)0.51820 (13)0.0393 (6)
O80.3057 (4)0.9571 (3)0.59238 (11)0.0313 (5)
N10.2620 (4)1.2081 (4)0.50222 (14)0.0272 (6)
C10.2629 (5)0.9023 (4)0.53482 (15)0.0251 (7)
C20.2440 (4)1.0408 (4)0.48204 (15)0.0234 (6)
C30.2117 (5)1.0010 (4)0.41594 (16)0.0257 (7)
C40.1928 (4)1.1277 (4)0.37076 (14)0.0212 (6)
H40.16901.10200.32680.025*
C50.2096 (6)1.2911 (5)0.39172 (18)0.0374 (9)
H50.19711.38100.36140.045*
C60.2452 (6)1.3332 (5)0.45735 (17)0.0331 (8)
H60.25741.44950.46990.040*
C70.2003 (5)0.8171 (5)0.38797 (15)0.0255 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0193 (3)0.0159 (3)0.0170 (3)0.00007 (16)0.00015 (17)0.00174 (16)
O10.0536 (18)0.0450 (16)0.0354 (15)0.0076 (13)0.0033 (13)0.0040 (12)
O20.0584 (19)0.0623 (19)0.0426 (16)0.0277 (16)0.0062 (13)0.0098 (14)
O30.0653 (19)0.0273 (13)0.0376 (15)0.0005 (12)0.0048 (13)0.0011 (11)
O40.0416 (15)0.0498 (16)0.0339 (14)0.0068 (13)0.0048 (11)0.0014 (12)
O50.0277 (13)0.0371 (14)0.0475 (16)0.0024 (10)0.0035 (11)0.0113 (11)
O60.0259 (13)0.0410 (15)0.0413 (15)0.0027 (10)0.0015 (11)0.0103 (11)
O70.0592 (18)0.0225 (13)0.0353 (14)0.0028 (11)0.0030 (13)0.0002 (10)
O80.0405 (14)0.0286 (12)0.0242 (12)0.0002 (10)0.0024 (10)0.0017 (10)
N10.0272 (14)0.0247 (13)0.0297 (15)0.0008 (11)0.0024 (11)0.0001 (11)
C10.0223 (16)0.0250 (16)0.0279 (16)0.0009 (12)0.0010 (12)0.0004 (13)
C20.0182 (15)0.0249 (16)0.0273 (16)0.0004 (12)0.0016 (12)0.0000 (13)
C30.0183 (15)0.0292 (17)0.0298 (17)0.0003 (12)0.0016 (12)0.0001 (13)
C40.0262 (16)0.0241 (15)0.0133 (13)0.0011 (12)0.0004 (11)0.0015 (11)
C50.046 (2)0.0328 (19)0.033 (2)0.0036 (16)0.0031 (16)0.0099 (15)
C60.043 (2)0.0233 (16)0.0325 (18)0.0003 (14)0.0019 (15)0.0017 (14)
C70.0232 (17)0.0311 (17)0.0220 (15)0.0000 (13)0.0002 (12)0.0007 (13)
Geometric parameters (Å, º) top
Mn1—O32.098 (3)O6—Mn1iii2.243 (2)
Mn1—O42.139 (3)O7—C11.236 (4)
Mn1—O8i2.144 (2)O8—C11.272 (4)
Mn1—O52.160 (3)O8—Mn1i2.144 (2)
Mn1—O6ii2.242 (3)N1—C61.332 (4)
Mn1—N1i2.263 (3)N1—C21.352 (4)
O1—H1W0.8416N1—Mn1i2.263 (3)
O1—H2W0.8409C1—C21.519 (4)
O2—H3W0.8502C2—C31.397 (4)
O2—H4W0.8369C3—C41.346 (4)
O3—H5W0.8410C3—C71.523 (5)
O3—H6W0.8474C4—C51.327 (5)
O4—H7W0.8414C4—H40.9300
O4—H8W0.8497C5—C61.394 (5)
O5—C71.250 (4)C5—H50.9300
O6—C71.250 (4)C6—H60.9300
O3—Mn1—O496.07 (11)C1—O8—Mn1i119.8 (2)
O3—Mn1—O8i168.80 (10)C6—N1—C2118.0 (3)
O4—Mn1—O8i94.60 (10)C6—N1—Mn1i129.3 (2)
O3—Mn1—O587.98 (10)C2—N1—Mn1i112.7 (2)
O4—Mn1—O587.54 (10)O7—C1—O8126.4 (3)
O8i—Mn1—O595.89 (9)O7—C1—C2117.6 (3)
O3—Mn1—O6ii84.63 (10)O8—C1—C2116.0 (3)
O4—Mn1—O6ii79.30 (10)N1—C2—C3120.8 (3)
O8i—Mn1—O6ii94.02 (9)N1—C2—C1116.3 (3)
O5—Mn1—O6ii164.11 (10)C3—C2—C1122.9 (3)
O3—Mn1—N1i94.21 (10)C4—C3—C2121.1 (3)
O4—Mn1—N1i166.71 (11)C4—C3—C7114.1 (3)
O8i—Mn1—N1i74.75 (9)C2—C3—C7124.8 (3)
O5—Mn1—N1i101.24 (10)C5—C4—C3117.1 (3)
O6ii—Mn1—N1i93.33 (10)C5—C4—H4121.5
H1W—O1—H2W108.6C3—C4—H4121.5
H3W—O2—H4W140.9C4—C5—C6122.6 (3)
Mn1—O3—H5W131.3C4—C5—H5118.7
Mn1—O3—H6W120.6C6—C5—H5118.7
H5W—O3—H6W108.1N1—C6—C5120.4 (3)
Mn1—O4—H7W128.9N1—C6—H6119.8
Mn1—O4—H8W92.3C5—C6—H6119.8
H7W—O4—H8W100.4O6—C7—O5124.7 (3)
C7—O5—Mn1143.5 (2)O6—C7—C3117.4 (3)
C7—O6—Mn1iii147.3 (2)O5—C7—C3117.6 (3)
O3—Mn1—O5—C7151.0 (4)N1—C2—C3—C7176.7 (3)
O4—Mn1—O5—C7112.9 (4)C1—C2—C3—C72.7 (5)
O8i—Mn1—O5—C718.5 (4)C2—C3—C4—C51.1 (5)
O6ii—Mn1—O5—C7146.8 (4)C7—C3—C4—C5177.4 (3)
N1i—Mn1—O5—C757.1 (4)C3—C4—C5—C60.0 (5)
Mn1i—O8—C1—O7171.8 (3)C2—N1—C6—C50.2 (5)
Mn1i—O8—C1—C27.9 (4)Mn1i—N1—C6—C5177.7 (3)
C6—N1—C2—C30.9 (5)C4—C5—C6—N10.7 (6)
Mn1i—N1—C2—C3179.1 (2)Mn1iii—O6—C7—O5165.6 (3)
C6—N1—C2—C1179.7 (3)Mn1iii—O6—C7—C320.0 (6)
Mn1i—N1—C2—C11.4 (3)Mn1—O5—C7—O6177.6 (3)
O7—C1—C2—N1175.7 (3)Mn1—O5—C7—C38.0 (6)
O8—C1—C2—N14.0 (4)C4—C3—C7—O681.4 (4)
O7—C1—C2—C34.8 (5)C2—C3—C7—O6100.2 (4)
O8—C1—C2—C3175.5 (3)C4—C3—C7—O593.4 (4)
N1—C2—C3—C41.6 (5)C2—C3—C7—O585.0 (4)
C1—C2—C3—C4179.0 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O80.841.952.793 (4)177
O1—H2W···O2iv0.842.092.845 (4)149
O2—H4W···O6v0.842.072.884 (4)165
O2—H4W···O4vi0.842.563.043 (4)118
O2—H3W···O4vii0.851.942.788 (4)180
O3—H5W···O7v0.841.852.691 (4)175
O3—H6W···O1v0.851.922.730 (4)159
O4—H8W···O1i0.852.613.457 (4)180
O4—H7W···O1viii0.841.862.691 (4)168
O4—H8W···O2viii0.852.372.788 (4)111
Symmetry codes: (i) x+1, y+2, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x, y+3/2, z+1/2; (viii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H3NO4)(H2O)2]·2H2O
Mr292.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.5719 (8), 7.6703 (9), 20.566 (3)
β (°) 93.354 (1)
V3)1034.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.38 × 0.15 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.640, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
6428, 1921, 1774
Rint0.015
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.07
No. of reflections1921
No. of parameters154
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.74

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O32.098 (3)Mn1—O52.160 (3)
Mn1—O42.139 (3)Mn1—O6ii2.242 (3)
Mn1—O8i2.144 (2)Mn1—N1i2.263 (3)
O3—Mn1—O496.07 (11)O8i—Mn1—O595.89 (9)
O3—Mn1—O8i168.80 (10)O3—Mn1—O6ii84.63 (10)
O3—Mn1—O587.98 (10)O5—Mn1—O6ii164.11 (10)
O4—Mn1—O587.54 (10)O4—Mn1—N1i166.71 (11)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O80.841.952.793 (4)176.6
O1—H2W···O2iii0.842.092.845 (4)149.4
O2—H4W···O6iv0.842.072.884 (4)165.4
O2—H4W···O4v0.842.563.043 (4)117.9
O2—H3W···O4vi0.851.942.788 (4)179.7
O3—H5W···O7iv0.841.852.691 (4)175.1
O3—H6W···O1iv0.851.922.730 (4)159.2
O4—H8W···O1i0.852.613.457 (4)179.8
O4—H7W···O1vii0.841.862.691 (4)168.2
O4—H8W···O2vii0.852.372.788 (4)110.7
Symmetry codes: (i) x+1, y+2, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x, y+3/2, z+1/2; (vii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20471026) and the Natural Science Foundation of Henan Province (grant No. 0311021200).

References

First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4518–4524.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959–2962.  CrossRef Google Scholar
First citationGhoer, M. S. & Youssef, A. A. (1993). Polyhedron, 12, 1871–1878.  Google Scholar
First citationKang, Y., Zhang, J., Li, Z. J., Cheng, J. K. & Yao, Y. G. (2006). Inorg. Chim. Acta, 359, 2201–2209.  Web of Science CrossRef CAS Google Scholar
First citationLi, M., Xiang, J. F., Yuan, L. J., Wu, S. M., Chen, S. P. & Sun, J. T. (2006). Cryst. Growth Des. 6, 2036–2040.  Web of Science CSD CrossRef CAS Google Scholar
First citationManteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatrick, B. O., Stevens, C. L., Storr, A. & Thompson, R. C. (2003). Polyhedron, 22, 3025–3035.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L. P., Niu, S. Y., Jin, J., Yang, G. D. & Ye, L. (2006). Inorg. Chem. Commun. 9, 679–682.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakusagawa, F. & Koetzle, T. F. (1978). Acta Cryst. B34, 1149–1154.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTurner, D. R. & Batten, S. R. (2007). Acta Cryst. E63, m452–m454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2003). Acta Cryst. E59, m1143–m1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-T. & You, X.-Z. (2003). Acta Cryst. C59, m313–m314.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1295-m1296
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds